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Abstract 
 
Dielectric elastomer is a kind of typical electro-active polymer material. Under external electric field it can produce large electrostric-

tion deformation and possesses the advantages of high elastic energy density, super short response time, high efficiency, and so on. It is 
widely used in the artificial muscles, facial expressions, actuators, energy harvesters, sensors, robots and Braille display devices, and also 
shows huge application potential in the aerospace and intelligent bionic areas. We built the free energy of the dielectric elastomer electri-
cal-mechanical coupling system and investigated its constitutive relation and stability behavior. Then we calculated the elastomer’s criti-
cal deformation suffering from the voltage. If electrical breakdown, electromechanical instability and snap-through instability can be 
avoided, the large electrostriction deformation can induce adiabatic temperature change and isothermal entropy change of the dielectric 
elastomer. We used the entropy-temperature or electric displacement-electric field plane to describe the temperature change and entropy 
change of dielectric elastomer undergoing large electrostriction deformation. With the influence of temperature, we developed a tempera-
ture and deformation coupling thermodynamical free energy model to calculate the electric field induced variation of temperature and 
entropy in dielectric elastomers. The results should offer great help in guiding the design and fabrication of excellent actuators featuring 
soft dielectric elastomers.  
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1. Introduction 

Large deformation will be generated when an electric field 
is applied on thin dielectric elastomer film [1-10]. Due to their 
excellent properties, such as high elastic energy density, quick 
response, low cost, light weight, high efficiency, and easy to 
be processed, dielectric elastomers show great potential appli-
cations in the area of smart bionics, medical devices, aeronau-
tics and astronautics. Many devices have been designed based 
on dielectric elastomers such as actuators, sensors, tactile dis-
play and energy harvesters etc. [11-25]. The main failure 
modes [20, 23] of dielectric elastomers include electric break-
down, material rupture, loss of tension, electromechanical 
instability [9-13, 15, 16, 19, 21], which will badly hinder the 
wide application of dielectric elastomers. Hence, a well estab-
lished theoretical study on the failure mechanism of dielectric 
elastomers is a critical issue. Recently, the nonlinear mechani-
cal performance [8, 28, 29], electromechanical stability [9-13, 
15, 16, 19, 21], dynamical performance [7, 27, 28] and failure 

of application devices [26, 29] of dielectric elastomers are the 
hotspots of the theoretical research on electroactive soft mate-
rial.  

In fact, when an electrical field is applied to dielectric elas-
tomer, it will produce a large deformation. From the stage with-
out deformation to the large deformation, the interior dipoles 
have an arrangement from unordered state to ordered state, and 
further lead to the isothermal entropy change and adiabatic tem-
perature change of the dielectric elastomer [30, 31]. 

When an electrical field is applied to a polar dielectric mate-
rial, the material’s polarization will change from the original 
dipole-disordered state to ordered state, accompanied by an 
entropy change and temperature change under isothermal or 
adiabatic condition [32, 33]. 

In this paper, we proposed the expression of dielectric con-
stant relying on temperature and stretch, established the free 
energy function of dielectric elastomer’s thermodynamic sys-
tem under an adiabatic process, and deduced the constitutive 
relation. These simulation results should offer great help in 
guiding the design and fabrication of excellent actuators fea-
turing dielectric elastomers. 
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2. Fundamental theory 

2.1 Preview 

Fig. 1 shows the relationship of entropy and temperature, 
which is a group of work conjugate parameters of polar di-
electric subjected to voltage. At the original temperature, 
without electrical field, the dipole of polar dielectric is chaotic, 
at this time; the entropy of the dielectric is relatively high. 
When subjected to voltage, the polar dielectric can reach its 
critical breakdown charge 

B
D  along two kinds of routes 

(here we chose breakdown charge BD  as the critical value, 
we can also choose breakdown electric field): the isothermal 
process and the adiabatic process. In the isothermal process, 
within the increase of electric field, for the dipole orientation 
arrangement, the entropy of dielectric decreases. When reach-
ing the critical breakdown charge BD , the entropy gets to the 
minimum, the entropy change maxSD  is largest at the time. In 
the adiabatic process, within the increase of electric field, the 
temperature of dielectric increases too; when reaching the 
critical breakdown charge BD , the temperature reaches the 
maximum, and the temperature change maxTD  is largest at 
the time. From Fig. 1 we can see, the influencing factors of 
polar dielectric entropy including electric field and tempera-
ture. When the temperature changes a little, we can ignore its 
influence. While analyzing polar dielectric within large elec-
trocaloric effect, we need to consider the influence of tempera-
ture. Therefore, we considered the influence of temperature 
when building free energy. In Fig. 1, LT  is the initial tem-
perature, 0E =  is the initial field, BD is the breakdown 
charge. 

In Fig. 2, we use another group of work conjugate parame-
ters, the electric field and the electric displacement, to describe 
two kinds of physical process: the isothermal process and the 
adiabatic process. Subjected to a voltage, the electric dis-
placement would increase from 0 to the breakdown electric 
charge BD , the constant gradient line represents the isothermal 
process, and the crescent gradient line represents the adiabatic 
process. While the gradient of the line depends on temperature, 

the higher the temperature reaches, the larger the gradient is. 
Here, we assume that BD  is a straight line, but in fact, for the 
influence of temperature BD  is a curve, for the influence is 
relatively low; we ignored the temperature's influence in the 
figure. 

 
2.2 Constitutive model of dielectric elastomer 

For the isotropic, homogeneous and incompressible ther-
moelastic solid, the free energy function can be expressed as a 
function with four variables, 1l , 2l , ~D and T , namely 

~
1 2( , , , )W D Tl l , where 1l  and 2l  are stretches in the 

principal planar directions, ~D donates nominal electric dis-
placement, T represents current temperature.  

 

( ) ( ) ( )~ ~
1 2 1 2 1 2, , , , , , , ,s eW T D W T W T Dl l l l l l= +   (1) 

 
where ( )1 2, ,sW Tl l  is thermoelastic energy per unit volume, 

( )~
1 2, , ,eW T Dl l  is electric filed energy density. 

Considering the influence of temperature, a proposed ther-
moelastic strain energy function is 
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( )
( )
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2 2 2 2

1 1 2 1 2
1 2 2 2 2 2
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31, , .
2 3
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- -

é ù+ + -
ê ú= +ê ú+ + + -ê úë û

 

 (2) 
 
Eq. (2) describes the coupling influence of temperature and 

stretch of the thermodynamical system. The first item in Eq. 
(2) is the Mooney-Rivlin elastic energy. N is the number of 
polymer chains per unit volume of dielectric elastomer, kT is 
the temperature in units of energy and ( )NkT Tm= , here 

( )Tm  is the temperature related shear modulus under infini-
tesimal deformation, 1C  and 2C  are the dimensionless 
material parameters, which are related to the material of di-
electric elastomer and its application devices' structure; what's 
more, 1 2 1C C+ = , which is determined by experimental data.  

The second term of Eq. (2) ( )Tx  is called the thermal 
contribution. It donates the thermal contribution of tempera-

 
 
Fig. 1. The change in temperature and entropy of polar dielectrics in 
isothermal process and adiabatic process. 

 

 
 
Fig. 2. The relationship between electric field and electric displace-
ment of polar dielectrics in isothermal process and adiabatic process. 
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ture to the free energy of the thermodynamic system.  
We can describe the derivation of the thermal contribution 

simply. The thermal contribution can be expressed as 
( ) ( )T Q T TSx = - , where ( )Q T  is the internal energy. As 

the temperature rises, internal energy ( ) 0 0( )Q T c T T= - . 

According to the relation of specific heat for constant volume 

and entropy, 0
Sc T
T
¶

=
¶

, we obtain 0
0

ln TS c
T

= , where 0c  

is the specific heat of polar dielectric, 0T  and T  are the 
temperatures in reference and current states, respectively. 
Therefore, the thermal contribution of the thermodynamic 

system related to temperature is ( ) 0 0
0

[( ) ln ]TT c T T T
T

x = - - , 

which reflects the effect of temperature on the free energy of 
polar dielectric thermo-electric coupling system. And the ex-
pression of thermal contribution is widely applicable to the 
thermodynamic systems with great temperature changes.  

In Jean-Mistral’s experiment, it is indicated that the dielec-
tric constant of dielectric elastomer is related to the tempera-
ture and stretch. Therefore, in the following study, a model of 
electric field energy density function with variable dielectric 
constant is introduced to analyze the mechanical performance 
and electromechanical stability of dielectric elastomers. Con-
sidering the influence of temperature and stretch, according to 
the research of Jean-Mistral and the Debye equation function, 
we propose the expression of dielectric constant 1 2( , , )Te l l  
as follows: 

 

1 2 1 2( , , ) rT
T
ae l l e bl l= + + .  (3) 

 
The dielectric constant is the inverse proportion function of 

the temperature; due to the thermal force field the dipoles 
reorientate, which is the molecular origin of the macroscopic 
dielectric permittivity, is strongly restricted. In Eq. (3), 

2

03
Mha
ke

= , M  is the dipole density of a dielectric elastomer, 

h  is the dipole moment of a dielectric elastomer, k  is the 
Boltzmann constant, 0e  is the dielectric permittivity of a 

vacuum, b  is the coefficient of electrostriction a dielectric 
elastomer.  

 
2.3 Electric field induced variation of temperature and entropy 

The elastomer is taken to be network of long polymers 
obeying Gaussian statistics, so that the elastic behavior of the 
elastomer is neo-Hookean type. For an ideal dielectric elas-

tomer, the dielectric energy per unit volume is 
2

2
D
e

, and the 

dielectric constant e  is a constant independent of deforma-
tion. Consider the electrostriction of dielectric elastomers, the 
dielectric constant is a function of the stretches, the dielectric 

energy per unit volume is 
~2

2 2
1 2

1 22 ( , )
D l l

e l l
- - . Hence, the elec-

tric field energy density function of incompressible dielectric 
elastomers can be written as follows: 

 

( )
~2

~ 2 2
1 2 1 2

1 2

, , ,
2

e

r

DW T D

T
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é ù+ +ê úë û

.  (4) 

 
During the fabrication process of actuators, the dielectric 

elastomer would be subject to pre-stretch, most commonly, 
unequal biaxial stretch. Therefore, in the following study, to 
simplify the calculation, we set 2 1p pl l l= = , where p  is 
the ratio between principal planar stretches of dielectric elas-
tomer. Sometimes, this pre-stretch could be an equal biaxial 
one, such as while making the spherical devices featuring 
isotropic dielectric elastomers; this can be treated as a special 
case of 1p = . 

Considering Eqs. (1)-(4), the nominal stress of dielectric 
elastomer’s thermodynamic system in the two planar principal 
directions, the nominal electric field in the thickness direction 
and the entropy are obtained, respectively, as is shown in the 
following. 

The dimensionless nominal electric displacement, the 
nominal electric field and the entropy of dielectric elastomer 
can be obtained as follows:  
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 (6) 
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When the electric field applied on dielectric elastomer in-
creases from a low voltage, the temperature and the entropy 
variation will be generated. The plane of work conjugated 
parameters entropy-temperature is applied to demonstrate this 
process. In this plane, the allowable range of dielectric elas-
tomer’s thermoelectromechanical system is encircled by four 
curves: T , T T+ D , ~E  and ~

EMIE . In the allowable range, 
each point in a plane represents a specified temperature and 
voltage state of dielectric elastomer, each curve represents a 
temperature and voltage variation process, and each cycle 
represents a possible thermodynamics energy cycle.  

From the experiment result of Jean-Mistral [34] and Wissler 
[35], we get 3.1834 / ,r F me =  1 0.5220,C =  2 0.4780,C =  

645.4224 / ,F K ma = × 0.0533 / .F mb = - Other typical pa-
rameters are 3 2

0 1.7 10 /C J m K= ´ × , 23.66 /NK J m K= × . 
Then when p=0.8, 1, 1.2 respectively, the change in tempera-
ture and entropy under ~

EMIE  and without electric field is 
shown in Fig. 3. To obtain a maximum temperature and en-

tropy change, dielectric elastomer application cooling devices 
with small p should be selected.  

 
3. Conclusions 

We first proposed the expression of dielectric constant rely-
ing on temperature and stretch, established the free energy 
function of dielectric elastomer’s thermodynamic system un-
der an adiabatic process, and deduced the constitutive relation. 
Under the condition of equal biaxial and unequal biaxial, the 
thermo-electromechanical stability of dielectric elastomer is 
studied. As a result, with the increase of temperature and the 
decrease of the ratio between principal planar stretches, the 
stability of dielectric elastomer materials or structures in-
creases. Then, the thermodynamic performance of dielectric 
elastomer undergoing variable temperature and electric field is 
studied. The allowable energy range of dielectric elastomer 
under the condition of equal and unequal biaxial stretch is 

Then by substituting Eq. (5) into Eq. (7), the entropy can be expressed as a function of stretch and temperature: 
 

{ }
2 2 2 2 4 2 2 2 4

1 2
2 2 2 4 2 2 2 40

1 2 2 2 2 1 2
0

{ [( 1)) 2 )] [ ( 1) 2 )] }1ln [( 1) 3] [( 1) 3] .
2 2 2 2 3r

sp TC p p TC p pcS T NkC p p C p p
Nk Nk T T p p T p

la l l l l
l l l l

e a bl

- - - - -

- - - -
- - -

+ - + - + + -
= - + + - + + + - -

é ù+ +ë û

                                    

  (8) 
 
The allowable energy range of dielectric elastomer is determined by the critical conditions which the elastomers could encoun-

ter during their working process. The main failure mode of soft materials such as dielectric elastomer is electromechanical insta-
bility. Therefore, the ~

EMIE  value is the most important issue to determine the energy allowable range.  
Considering biaxial stretch that the principal planar stretch ratio is set as p , i.e., 2 1p pl l l= = , according to Eq. (6), at a con-

stant s , when 
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the function ~ ( , )E sl reaches its maximum value. This maximum nominal electric field corresponds to the critical voltage for the 
onset of the electromechanical instability. By submitting it into Eqs. (5) and (6), the formulations of the dimensionless nominal 
electric displacement nominal electric field, the nominal displacement and the entropy can be induced, respectively. 
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described. Finally, the electric-induced temperature and en-
tropy variation of dielectric elastomer is evaluated. Numerical 
results will offer great help in guiding the design and fabrica-
tion of dielectric elastomer application devices, such as dielec-
tric elastomer actuators working in variable ambient tempera-
ture. 
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