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Abstract
Smart materials and structures have developed rapidly, especially their application in the
aerospace field has been widely valued and recognized in recent years. Shape memory cyanate
ester (SMCE) resin as a class of smart polymers has a broad application prospect in space
deployable structure due to the high glass transition temperature (Tg) and excellent mechanical
properties. In this work, the SMCE resins were prepared by regulating cyanate prepolymer with
small molecules, showing high Tg (> 218 ◦C) and high storage modulus (E′ > 3.15 GPa). The
SMCE resins maintained a high shape fixity rate (Rf > 95%) at high operating temperatures
(100 ◦C and 120 ◦C) for 30 d, providing a great potential application for active deformation
structures. Moreover, the synergy of carboxyl (–COOH) functionalized multi-walled
carbon nanotubes and short carbon fiber enhanced the thermodynamic properties and
shape-changing function of the SMCE composites. The spring made by SMCE composite
exhibits 360◦ freedom rotation, which can be used as smart structures in the aerospace
field.

Supplementary material for this article is available online

Keywords: shape memory cyanate ester resin, composites, γ-ray radiation,
high shape fixity rate, flexible spring arm

(Some figures may appear in colour only in the online journal)

1. Introduction

Shape memory polymer (SMP) is a kind of smart material,
which has the advantages of large strain and low density. It
has broad application prospects in space deployable structures
[1–4]. Cyanate ester (CE) is considered as one of the ideal
resins for aerospace structural materials due to its excellent

∗
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thermal stability, high Tg, low moisture absorption and coef-
ficient of linear expansion [5–8]. During the service of space-
craft, it is strongly affected by various space environment
factors, such as high vacuum, atomic oxygen (AO), cold and
thermal cycle, radiation, ultraviolet (UV) radiation and space
debris [9–13], which will lead to the performance degradation
of polymer materials. The environment is one of the main reas-
ons that affect the reliability and life-span of spacecraft and
induce the performance degradation of spacecraft materials.
Therefore, it is necessary to study space radiation, especially
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the γ-ray damage mechanism of SMCE. The interaction beha-
viors between different particles and irradiated materials are
different, but their mechanisms of destruction are similar
[14–17], So far, the research on radiation damage of CE
resin mainly focuses on thermal degradation and outgassing
[18–21].

In addition to the damage mechanism, the effects of irra-
diation on shape memory performances of SMPs have also
attracted attention. Hou et al [22] found that the Rf of epoxy-
based SMP was almost constant at approximately 99.6% and
the Rr decreased sharply after 1 MeV electron radiation. They
also found that the Rr of shape memory epoxy (SMEP) resin
decreased exponentially with decreasing electron dose rate
[23]. Furthermore, the Rf of SMEP resin had an almost neg-
ligible reduction after 1 MeV proton radiation. However, the
Rr decreased significantly [24]. Leng et al [25] indicated the
Rr of SMEP resin was greater than 95%, which meant that
γ-ray radiation had little effect on Rr. Gao et al [26] demon-
strated that the shape memory polyimide films could maintain
Rf and Rr even after 30 cycles under AO and UV irradiation
and space thermal cycling environments. Xie et al [27] poin-
ted out that AO had no adverse effect on the shape memory
performance of cyanate-based SMP. There is little research
has been done on the degradation of SMCE resins, especially
on Rf.

The space environment in which the spacecraft in service
is not static, particularly the ambient temperatures. The tem-
perature differences can reach hundreds. How can a device
made of resin composites be kept in a stable structure in
such a volatile environment? Resins that maintain a high Rf
at high temperatures can meet this requirement. Therefore,
it is a new challenge to develop this kind of polymer. It is
well known that the shape fixing behavior of polymers is
caused by the storage of strain energy in the chain segments
between crosslinking points [28, 29]. The high Rf depends
on the high homogeneity distribution of the chain segments
[30], which shows that the smaller the half peak width of
tan δ peak is, the higher the temperature is. Moreover, the
high stiffness of the chain segments is unfavorable to shape
fixing. Therefore, low molecular weight modifiers containing
flexible chain segments are expected to enable SMCE resin
to exhibit excellent shape-fixing behavior at high operating
temperatures.

In this work, polyethylene glycol diglycidyl ether (PEG-
DGE) with low molecular weight and flexible chain, was
selected to modify the CE resin to give the resin anticipated
shape fixing property at high temperatures. The mechanism
of degradation and damage of SMCE resin by γ-ray irra-
diation was studied, furthermore, the mechanical properties,
thermal stability, mass loss and shape memory properties of
the SMCE resin underγ-ray irradiation were analyzed system-
atically. The thermal conduction pathways jointly constructed
by carbon nanotubes (CNT) and carbon fiber (CF) are condu-
cive to heat conduction and improve the shape recovery per-
formance of the SMCE resins. The flexible spring arm with
free deformation, which is made of CNT and CF reinforced
CE composites, is designed to meet the requirements of space
applications.

2. Materials and methods

2.1. Materials

Bisphenol-A CE prepolymer was purchased from Yang Zhou
Chemical Industry Park, Jiangsu, China. PEGDGE (average
Mn 500) and Benzophenone (BP) were purchased from
Sigma-Aldrich. Carboxyl (–COOH) functionalized multi-
walled CNT and short CF were obtained from the Chinese
Academy of Sciences Chengdu Organic Chemistry Co. Ltd.,
China.

2.2. Preparation of CE resin and their composites

CE resin: a certain amount of Bisphenol-A white particulate
cyanate ester monomer (CEM) was placed in a clean beaker
and then dissolved into a liquid at 120 ◦C. Keep heating while
slowly stirring for 72 h to prepare CE prepolymer. Then, the
CE prepolymer was heated to 50 ◦C in a beaker. PEGDGE
was added to the beaker with stirring continuously to obtain
a homogeneous solution, namely resin precursor. The mass
ratios of CE prepolymer and PEGDGE are 5:1 and 10:1, which
were cured at 180 ◦C for 3 h and then 210 ◦C for 3 h. The CE
and CE’ resin plates were obtained.

CE composite: 0.5 wt%, 1.0 wt% and 2.0 wt% CNT or CF
was added into the resin precursor, respectively, stirring for
2.0 h at 50 ◦C and 1.0 h at room temperature, and the CNT
doped CE resins (CE-0.5CNT, CE-1.0CNT and CE-2.0CNT)
and the CF doped CE resins (CE-0.5CF, CE-1.0CF and CE-
2.0CF) were obtained. 2.0 wt% CNTs and 2.0 wt% CFs were
added into CE precursor with stirring for 2.0 h at 50 ◦C
and 1.0 h at room temperature, and CE/CNT/CF composite
(CECCC) was obtained.

Springs: As shown in figure 1, the precursor was injected
into a silicone hose with a 3 mm inner diameter and 5 mm
outside diameter by the syringe. The silicone hose filled with
resin precursor was convolved around a graduated column and
fixed with 5 mm or 10 mm screw pitch, and then was cured at
180 ◦C for 3 h and 210 ◦C for 3 h. Remove the silicone hose
to obtain the spring.

2.3. Space environmental exposure test

The orbital environmental parameter of the space station
truss structure for 30 years’ electron radiation is 104~105 Gy
[25, 31]. The SMCE resins were irradiated by the 60Co
radiation source, which was provided by the Heilongjiang
Academy of Sciences (Harbin, China). Moreover, the effect of
a higher dose (106 Gy) of γ-ray on the CE resin was also stud-
ied. The SMCE resins irradiated by 104, 105 and 106 Gy are
called IR1-CE, IR2-CE and IR3-CE, respectively. The dose
rate is 5.0 Gy s−1and the irradiation time is 2000 s, 20 000 s,
200 000 s, respectively.

2.4. Characterization and measurements

The x-ray diffraction (XRD) analysis was characterized using
a Rigaku Miniflex Japan. The CE film samples were tested
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Figure 1. (a) The manufacturing process of a spring. (b) The
prepared spring and its parameters. (c) The prepared springs with 5
and 10 mm screw pitches.

by Fourier Transform Infrared Spectroscopy (FTIR, Perkin
Elmer Corp., US). Dynamic mechanical analysis (DMA) of
the resins was carried out using the DMA Q800 apparatus
(TA Corp., US) with a 1 Hz frequency. Thermogravimetry
analysis (TGA) of the samples was carried out using an ana-
lyzer (Mettler-Toledo, Switzerland) from 25 ◦C to 800 ◦Cwith
a 10 ◦C min−1 ramp rate. The mechanical properties of CE
resin specimens were characterized using an Instron 5500 R
Universal Testing Machine (Instron Corp., USA). A rheolo-
gical test of CE prepolymer was carried out by DHR Discov-
ery (TA Corp., US) with a 25 mm parallel plate clamp and
1000 µmworking gap. The surface and cross-section morpho-
logies of SMCE resins and composites were exposed using
a scanning electron microscope (SEM) (JSM-7600F, JEOL
Ltd.). The samples were sputtered with gold for 30 s before
observation. The thermal conductivity of the specimens was
tested by LFA 457 laser thermal conductometer (Netzsch,
Germany).

3. Results

3.1. Curing of the SMCE resin and composites

There are two cyano-groups in a CEM molecule. Three
neighboring cyano-groups can be self-polymerized to form a
triazine ring structure without any catalyst or curing agent. The
diagrammatic drawing of the self-polymerization reaction is
shown in figure 2(a). The rhombuses represent cyano-groups,
and the hexagons represent triazine rings as the connection
points of the network structure. The CE resin has high strength,
which is due to the high content of triazine rings. However,
highly symmetrical structures of the triazine rings lead to the
brittleness of pristine CE resin. The toughness of CE resin can

be improved by inhibiting the formation of the triazine ring
structure.

PEGDGE is an epoxy-terminated liner monomer, whose
addition prevents the self-polymerization reaction of some
cyano-groups. The cyano-groups react with epoxy groups
to produce five-membered oxygen-nitrogen heterocycles
(ONHCs) as shown in figure 2(b). The producing mechan-
ism of ONHCs was reported in our previous work [32]. Com-
pared with the triazine rings, the ONHCs have higher activity.
Therefore, the ONHCs are more likely to be damaged by
γ-rays than the triazine rings. Another modifier is BP, which
almost did not participate in the chemical reactions during
the curing process. The interaction with other components
is primarily intermolecular force. The main role of BP is to
reduce the stiffness difference between PEGDGE and CE res-
ulting in high homogeneity distribution of molecular chains of
all components.

The prepared resin precursor is a mixture of CE prepoly-
mer and modifiers, whose thermal analyses, rheological and
curing properties are shown in figures S1 (available online
at stacks.iop.org/SMS/31/045010/mmedia) and 3(a), (b). The
viscosity decreases with the increase of shear rate, which is
consistent with the shear-thinning characteristic of liquid poly-
mer. The initial viscosity of the resin precursor is 177.0 Pa·s.
The resin precursor has a high viscosity and poor fluidity at
room temperature, which is not suitable for molding. The com-
plex viscosity of the resin precursor varies with curing temper-
ature. The inset curve clearly shows that the complex viscos-
ity increases distinctly when the curing temperature is above
202 ◦C. Therefore, we set the curing temperature of the resin
precursor at 210 ◦C.

The curing is accompanied by the formation of network
structures in the resin where crosslinking points are hard seg-
ments, such as triazine rings and ONHCs, and the molecular
chains between the crosslinking points are soft segments. Two
samples (CE resin and CE’ resin) were prepared by adjusting
the ratio of CE prepolymer to PEGDGE. The wide-angle XRD
method is to analyze crystallinity and phase of the cured resins
with 2.0 mm thickness. Two broad peaks can be observed at
around 18◦ and 45◦ (2θ) of XRD patterns (figure 3(c)) indic-
ating poor crystallinity of the resins [33, 34]. The 0.8◦ shift
indicates that covalent bonds in CE resin are shorter than that
in CE’ resin. The CE’ resin is expected to have higher hard-
ness than the CE resin. The DMA curves (figure 3(d)) show
that the E′ is 2432 MPa for the CE resin and 3151 MPa for the
CE’ resin at 25 ◦C. The peak of tan δ is labeled as Tg, which
is 190.3 ◦C for the CE resin and 218.8 ◦C for the CE’ resin.
CNT and CF are added to the resin precursor to enhance the
mechanical properties and thermal conductivity of the resins.
CNT as conductive filler formed the main thermal conduct-
ivity channels in the CE matrix. CF was introduced to repair
defects in conductivity channels and networks. Tg of CECCC
is 180.5 ◦C which is 10 ◦C lower than that of CE, and E′ of
CECCC is 2781.0 MPa which is about 350 MPa higher than
that of CE.

In addition, the tensile test result of CE specimens doped
with different content of CNT is shown in figure S2. The addi-
tion of 0.5 wt% and 1.0 wt% CNT increased the CE resin’s
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Figure 2. Schematic diagram of the cross-linking structure of pure CE resin (a) and modified CE resin (b).

Figure 3. (a) The shear-thinning behavior of resin precursor; (b) The viscosity-temperature curve during polymerization; (c) XRD patterns
of CE resins; (d) The modulus and tan δ curves concerning the temperature of the resins.

tensile strength and fracture elongation, while 2.0 wt% CNT
decreased the fracture elongation of the resin. 2.0 wt% CNT
has negative effects on mechanical properties of the CE resin,
indicating potential agglomeration at a high CNT content. To
confirm the synergetic enhancements, the thermal conductiv-
ity was investigated and exhibited in table S1. The thermal
conductivity of the CE resin is 0.206 W ((m∗k)−1) and that of
the CE resin doped with 2.0 wt% CNT is 0.278 W ((m∗k)−1),
which demonstrates that CNT is not sufficient to form the
thermal conductivity channels in the CE matrix. The thermal
conductivity of the CE resin doped with CNT and CF is about

twice as much as that of the CE resin. The CF is bridged with
CNT nearby, forming the thermal conductivity channels.

3.2. Thermodynamic properties of the SMCE resins and
composites

The physical properties of the CE resin change after γ-ray
radiation. The mass of CE specimens increases with the
increasing irradiation dose as shown in figure 4(a). The mass
increases by more than 0.2% for IR3-CE. Ionics and free rad-
icals produce under γ-ray radiation, and the radiation-induced
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Figure 4. (a) The mass variation of CE resin after irradiation; (b) E’ and tan δ values versus temperature of the CE resin and irradiated CE
resin; (c) Stress–strain behaviors of the resins and their composites; (d) Stress–strain behaviors of the CE resin before and after γ-ray
irradiation.

free radicals undergo chemical reactions with oxygen result-
ing in increasingmass [35–37]. In addition, the four specimens
change in color from wine red to orange-red as the inset is
shown. The effect of γ-ray radiation on the mechanical per-
formances of the CE renin is also concerned. E′ and tan δ
with temperature curves of the CE, IR1-CE, IR2-CE and IR3-
CE resins are shown in figure 4(b) and table S2. The E′ is
increased by about 200.8 MPa after 106 Gy γ-ray radiation,
which means the capacity to store strain energy increases. The
Tg shifts to lower temperature after 106 Gy γ-ray radiation,
which decreases from 190.3 ◦C to 186.2 ◦C. The decrease is
caused by the breaking of molecular chains between crosslink-
ing points in the CE resin.

The tensile test is to characterize the mechanical properties
of the resins, which can analyze the tensile strength and tough-
ness of the resins. The stress–strain curves of CE, CECCC,
CE’ and CE’/CNT/CF composite (CE’CCC) specimens tested
at 25 ◦C or high temperature (Tg of the specimen) are present
in figure 4(c). The curves of the CE and CECCC specimens
reveal a 0.4% decrease of elongation at break and a 10.9 MPa
increase of tensile strength after the addition of CNT and CF.
And the curves of the CE’ and CE’CCC specimens show a
0.6% increase of elongation at break and a 7.0 MPa increase
of tensile strength after the addition of CNT and CF. To sum-
marize, the synergistic effect of CNT and CF improves the
tensile strength and has little effect on fracture elongation.
Figure 4(d) records that the elongation at break increases from
4.81% to 5.93% after 106 Gy γ-ray radiation, which is caused
by the destruction of molecular chains between the crosslink-
ing points and then the slip of the molecular chain under the
stress.

The thermal stability of the CE resin is influenced by γ-
ray which can be revealed by TGA. Figures 5(a) and (b) show
the TGA curves of CE specimens at different γ-ray doses
measured in a high-purity air and N2 atmosphere. The ini-
tial thermal decomposition temperature (T5%) is defined as
the temperature at which the weight loss is 5%. T5% of the
CE resin is 324.7 ◦C. T5% of the CE resin is 324.7 ◦C which
decreases gradually with the increasing radiation dose. When
the γ-ray dose is 106 Gy, T5% is 297.0 ◦C. The decomposi-
tion process is endothermic on the whole as shown in figure
S3. There is an exothermic peak in the heat flow curves at
520 ◦C~600 ◦C which is attributed to the decomposition of
triazine rings [38, 39]. When the temperature exceeds 650 ◦C,
the weight is no longer reduced, so the curve shows a plateau
stage. The carbon residue ratio of the four specimens is 1.4%,
1.5%, 1.1% and 0.6% at 800 ◦C, respectively. The results
show that the carbon residue ratio decreases with the increas-
ing radiation dose. The cross-linking structure of SMCE resin
is destroyed by high-energy γ-ray radiation, which leads to
the reduction of crosslinking density and thermal stability of
SMCE resin. The decomposition in N2 is different from that in
air. T5% of CE resin increases from 284.9 ◦C to 352.8 ◦C with
the increasingγ-ray dose. The carbon residue rates of CE, IR1-
CE and IR2-CE are almost the same, about 23.6%, and that of
IR3-CE is 19.2%, which indicates that the carbon skeleton of
the CE resin is difficult to decompose in the N2 atmosphere,
and part bonds on the carbon skeleton are destroyed by 106 Gy
γ-ray.

The chemical bond changes in the irradiated resins can be
seen in FT-IR spectra. Figure S5 demonstrates the FT-IR spec-
tra of CE, IR1-CE, IR2-CE and IR3-CE. The peaks at 2968
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Figure 5. TGA curves of the SMCE resin before and after γ-ray
irradiation in the air (a) and N2 (b) atmosphere.

and 2871 cm−1 are attributed to C–H stretching vibration in
–CH3 and –CH2–. The two peaks at 1564 and 1366 cm−1 can
be corresponding to 1,3,5-triazine groups [40] and the peak
at 1503 cm−1 belongs to the benzene ring [5]. There is no
new peak after γ-rays radiation and a slight change in peak
intensity which is probably caused by the differences in film
thickness.

3.3. Surface morphologies of the SMCE resins

SEM was used to evaluate the influence of γ-ray radiation on
the surface morphology of the CE resin. Backscattered elec-
tron (BSE) images of surfacemorphology and cut surfacemor-
phology of the CE specimen and the IR3-CE specimen are
shown in figure 6. The mold caused some scratches on the sur-
face during preparation and the magnified images of CE and
IR3-CE have no significant difference. The CE and IR3-CE
specimens are cut and the enlarged views of the cut surfaces
show no significant difference. In addition, secondary electron
(SE) images of surface morphologies and cross-section mor-
phologies of the CE and IR3-CE specimens are shown in figure
S6. The surface of the CE plate is smooth and has no changes
after irradiation as shown in figure S6(a). The cross-sectional

images in figure S6(b) are the sections of CE and IR3-CE spe-
cimens after the tensile test. The section cracks are similar in
the two images, which are low in sharpness and diffuse. The
section morphologies are rough and show the characteristics
of feather fracture with high toughness and high strength, so
the brittleness of the material is low and the plastic deforma-
tion is significant. It indicates that the added linear monomer
has entered the crosslinking network structure of cyanate ester,
resulting in increased flexibility and enhanced toughness of
the material. Nevertheless, some differences could be found in
the two enlarged images. There are micro-pits and tensile tear
stripes in the radial extension zone near the fracturing source
for the IR3-CE specimen, showing obvious ductile fracture
characteristics.

The surface chemical compositions and atomic valence
states of the CE resin before and after γ-ray radiation are ana-
lyzed by XPS. The C1s peak curves are shown in figure 7. The
raw peak is split into three sub-peaks, then the three sub-peaks
are fitted into a peak (red curve). The location and area propor-
tion of the three subpeaks are listed in table 1. The sub-peaks
located at 284.6 eV, 285.5 eV, 288.6 eV are assigned to C–
C/C–H, C–O and C=O/O–C=N bonds, respectively [41–43].
As γ-ray increased, the proportion of C=O/O–C=N peak area
decreases significantly from 8.7% to 2.8%, which is caused by
the synergistic action of C=O bonds and O–C=N bonds. The
C=O bond in the CE resin is broken and its ratio is reduced by
γ-ray radiation. The formation of triazine rings and oxygen-
nitrogen heterocyclic rings is the direct cause of the increased
ratio of O–C=N bond during irradiation. As γ-ray increases,
the proportion of C–O peak area increases slightly from 34.8%
to 36.5% and that of C–C/C–H peak increases from 56.5% to
60.7% indicating the destruction of C–O bonds and C–C/C–H
bonds by γ-ray. C–O bond in PEGDGE may dissociate after
γ-ray radiation, which means the crosslinked network of the
CE resin is destroyed to some extent and the ability of segment
motion is enhanced.

3.4. Shape memory properties of the SMCE resins

The tan δ peak width at half height (W) is labeled in figure S7,
which is related to the shape memory performances of the res-
ins. The smaller W is, the less transition time between glassy
state and rubbery state is. Moreover, the shape recovery pro-
cess is fast and the Rf is higher. W is 27.7 ◦C for the CE resin
and 25.4 ◦C for the CE’ resin, which demonstrates that the
shape fixing performance of the CE’ resin is better than that of
the CE resin.

New cross-linking points andmolecular fragments generate
in the process of γ-ray irradiation, which makes a difference
to Rf and Rr. Rf and Rr of the CE and IR3-CE specimens are
measured by stretch-recovery cycles. The chains becomemore
active when the resin is heated and become more ordered dur-
ing stretching. Four tensile cycles of the CE and IR3-CE resins
were performed as shown in figures 8(a) and (b). Rf and Rr of
the cycles are calculated by equations (1) and (2):

Rf =
ε

εload
, (1)
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Figure 6. BSE images of (a) surface morphology and (b) cut surface morphology of the CE and IR3-CE specimens.

Figure 7. XPS spectra of C1s after (a) 0 Gy, (b) 104 Gy, (c) 105 Gy, (d) 106 Gy γ-ray radiation.

Rr =
εload − (εrec − ε0)

εload
, (2)

where ε and εload are the strain after unloading and the max-
imum strain under load, respectively. εrec is the strain after
shape recovery and ε is the strain at the beginning of every
cycle.
Rf of the CE and IR3-CE resins at different test temper-

atures (at 25 ◦C, 60 ◦C, 100 ◦C) is shown in figures 8(c),
(d) and table S3. Rf (at 25 ◦C) of the CE resin decreases
from 99.6% to 99.5% after irradiation, and Rf (at 100 ◦C)
decreases from 97.6% to 97.3%. The decrease is attributed to
soft segments destroyed by γ-ray radiation. The reason for the

decrease is that the potential energy storage capacity of the
soft segments is weakened due to γ-ray radiation. Moreover,
the Rr of every cycle is listed in table S4. The average Rr is
95.8% for the CE resin and 98.9% for the IR3-CE resin at
25 ◦C. Rr is affected by the crosslinking points in the network
structure. Rr of the CE resin increases after γ-ray radiation.
The unreacted functional groups in the resin undergo second-
ary crosslinking underγ-ray radiation increasing cross-linking
points, which increased the recovery force and Rr of the CE
resin.

In addition to the stretch mode, Rf of the samples at bend
mode is tested at different temperatures for 30 d. ‘U’ is a
temporary shape of the CE resin. Rf and Rr are calculated by
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Table 1. Characteristics of the peak in XPS C1s spectra for epoxy-based shape memory polymer before and after γ-ray radiation.

Samples Bonds
Binding

energy (eV) Proportion (%)

CE C=O/O–C=N 288.6 8.7
C–O 285.5 34.8
C–C/C–H 284.6 56.5

IR1-CE C=O/O–C=N 288.8 5.7
C–O 285.5 36.6
C–C/C–H 284.6 57.7

IR2-CE C=O/O–C=N 288.8 3.7
C–O 285.5 37.0
C–C/C–H 284.6 59.3

IR3-CE C=O/O–C=N 288.8 2.8
C–O 285.5 36.5
C–C/C–H 284.6 60.7

Figure 8. Tensile memory performance of the CE resin (a), (c) and the irradiated CE resin (b), (d).

equations (3) and (4), respectively. The results are shown in
figure 9 and table S5:

Rf =
180◦ − θ

180◦
, (3)

Rr =
θ

180◦
, (4)

where θ is the shape recovery angle. Rf decreases and then
levels off with time. Rf of the CE resin is more than 99.2% at
25 ◦C, 97.9% at 60 ◦C and 95.6% at 100 ◦C on the 30th day.
Rf of the IR3-CE resin is more than 99.0% at 25 ◦C, 97.3% at

60 ◦C and 94.8% at 100 ◦C. The comparison demonstrates that
γ-ray radiation will slightly reduce the Rf due to the damage
of soft segments in the CE resin, which is consistent with that
in the stretch mode.

The recovery processes of the CE and IR3-CE resins are
within 15 s and are shown in figures 10(a) and (b). The shape
recovery angle of the CE resin is about 1◦ at 15 s and its
Rr reaches up to 99.4%. The shape recovery angle of the
IR3-CE resin is about 3◦ and its Rr is about 98.3%. The res-
ults demonstrate that irradiation has a negative effect on the
Rr of the CE resin due to the destruction of molecular chains
between the crosslinking points. The shape recovery angle of
CECCC) is about 2◦ at 15 s and its Rr reaches up to 98.9%

8
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Figure 9. Rf of the CE resin (a) and the IR3-CE resin (b) at bending mode.

Figure 10. The shape recovery process of U-shape specimens at 190 ◦C.

as shown in figure 10(c), which is slightly lower than the
Rr of the CE resin. However, the shape recovery of CECCC
shows a significant advantage at 2, 5 and 10 s compared with
that of the CE resin, which is caused by the addition of CNT
and CF.

A spring-based elastic arm is designed, which is inspired
by flexible manipulators. As shown in figure 11(a), the curves
show stress–strain behaviors of the two springs with 5 and
10mm screw pitches, which are almost straight lines. The frac-
ture strain of the spring with screw pitch 10 mm is 100% and

9
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Figure 11. (a) The tensile fracture behavior behaviors of the stretched springs; (b) The shape recovery process of the spring in the space; (c)
and (d) The spring elastic arm.

that of the spring with screw pitch 5 mm is over 150%. The
spring can be used for extension flexible arms to grasp objects,
which not only can stretch and contract, but also has the bend-
ing function.

In the space coordinate system, the X-axis act as the axle
wire of the spring and one end is located on the original point
(O) as shown in figure 11(b). Shape recover spring could store
strain energy, controllably release energy and possess super
deformation ability in space compared with common spring,
which has a characteristic of variable stiffness. The E’ of the
CE composite decrease with temperature increases. The stiff-
ness degradation is conducive to deform. It can bend in any
direction, and it also can be compressed and stretched. The
forming temperature is 180 ◦C and then the bent spring is
cooled to 25 ◦C. The shape recovery temperature is set to
170 ◦C which is lower than Tg, resulting in the spring retain-
ing a certain rigidity to overcome its gravity. The flexibility
of the spring gives the spring unlimited potential as an elastic
arm. As shown in figures 11(c) and (d), the elastic arm con-
sists of a spring, a woven net and a claw. The net is stretchable
and has a good match with the spring. The elastic arm can be
stretched or compressed to grab and hold objects, such as the
end of service aircraft and debris in space.

4. Conclusion

The shape memory CE resins were prepared by introducing
functional modifiers into the cyanate prepolymer. The CE
resin was exposed to 106 Gy γ-ray, whose Tg decreased from
190.2 ◦C to 186.2 ◦C and elongation at break increased by
22.9%. T5% of the CE resin dropped from 324.7 ◦C to 297.0 ◦C
after γ-ray irradiation and the residual carbon rate decreased
from 1.4% to 0.6% at 800 ◦C. In addition, the CE resin demon-
strates excellent shape memory behaviors. The CE resin has
a high Rf of 95.6% at 100 ◦C for 30 d. The multiscale fillers
(CNT and CF) jointly construct thermal conductivity channels

to enhance the thermal conductivity of the CE resin improving
the shape recovery efficiency. The SMCE resin and its com-
posites with excellent Rr and Rf at high operating temperat-
ures show more advantages than most common thermosets.
The elastic arm made of CNT/CF doped CE resin is expected
to stand out in deployable space structures.
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