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A B S T R A C T   

Constitutive models that describe nonlinear elastic mechanical behavior are indispensable in the design of en-
gineering components fabricated of elastomeric materials. The main drawbacks of the existing models include 
complexities in calibrating the model to experimental data and erroneous descriptions of multi-axial response. 
These challenges motivate researchers to continually formulate new or improved models with better predictive 
capabilities. In this work, we propose a new polynomial-type phenomenological model with linear and loga-
rithmic dependence on the first and the second invariants respectively. Model parameters were obtained by 
utilizing the Levenberg-Marquardt algorithm to fit the model expression to the strain energy density data 
calculated from the experimental data of uniaxial tension loading. The predictive performance of our proposed 
model in comparison to that of three popular existing models was determined by utilizing three sets of classical 
experimental data from the literature with varying deformation ranges. Quantities used to relate the predicted 
and the experimental data include the coefficient of determination, relative errors, and average relative error (for 
overall behavior). The computations demonstrated that the proposed model exhibits superior predictive capa-
bilities for the entire deformation range whilst requiring minimum efforts in obtaining its parameters, thus, 
exhibits the desirable features of a phenomenological hyperelastic model.   

1. Introduction 

With numerous advantages over physical experiments, numerical 
simulation is the most expedient method of assessing engineering 
component behavior under different loading conditions for design pur-
poses. However, the accuracy of the simulation is dependent on the 
material’s constitutive model. Consequently, the research on the 
mathematical modeling of material behavior is critical in achieving the 
most accurate and reliable simulation results. In the aerospace and 
automotive industries, elastomers are indispensable engineering mate-
rials that are extensively utilized in fabricating various components. The 
design process of these components is challenging as elastomeric ma-
terials exhibit a complex mechanical response to loading (Francisco Lalo 
et al., 2019). The complexity arises from two main factors. Firstly, these 
materials can withstand extremely large deformations (up to 700% en-
gineering strains) that are recoverable upon removal of the load (hence 
known as hyperelastic). The second and the most important factor is that 
they exhibit a stress-strain relation that is particularly nonlinear 

especially at large deformations (Muhr, 2005). Accordingly, the appli-
cation of linear elasticity theory to describe the material behavior is 
unfitting since a definite Young’s modulus can’t be obtained. Instead, 
the stress expression is derived from a strain energy density function 
expression that is commonly denoted as W. It represents the strain en-
ergy stored in the material per unit of the reference volume to deform it 
to the current configuration. 

The fundamental step, therefore, in the constitutive modeling of 
elastomeric materials is in formulating an appropriate form of W. The 
formulation of W expression follows two main theories namely micro-
mechanical and phenomenological. The micromechanical approach in-
volves the utilization of statistical mechanics to describe the 
macroscopic material behavior from the microstructural level. Examples 
of micromechanical-based models in the literature include the eight- 
chain (Arruda and Boyce, 1993), the extended tube (Kaliske and Hein-
rich, 1999), and a recent one by Xiang et al. (Xianget al., 2018). 
Phenomenological models involve observing the experimental behavior 
of the material under different conditions of homogenous deformations 
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and thereafter fitting to mathematical equations formulated based on 
continuum mechanics techniques and are expressed in terms of the in-
variants of the Cauchy-Green deformation tensor or the principal 
stretches. Examples of phenomenological models include the 
neo-Hookean (Treloar, 1975), Mooney-Rivlin (Mooney, 1940; Rivlin, 
1948), Yeoh (1993), and Ogden (Ogden, 1972). In-depth discussions on 
hyperelastic material models can be found in the earlier review by 
Steinmann et al. (Paul et al., 2012) and the most recent review by Dal 
et al. (2021). Phenomenological models are more prominent in the 
literature thanks to their relative advantages including material pa-
rameters that are easily obtained by fitting the model equation to 
experimental data, does not require the understanding of the material’s 
microstructure, are computationally efficient, and apply to a wide va-
riety of materials, unlike the micromechanical models which may be 
material-specific. Furthermore, phenomenological models have been 
the basis of more advanced constitutive relations that describe the 
complex mechanical behavior of soft materials. For instance, Upadhyay 
et al. (Upadhyay et al., 2020a) extended the Mooney-Rivlin model to 
capture the gel concentration-dependent behavior of hydrogels. In their 
other recent work (Upadhyay et al., 2020b), the authors developed a 
viscous dissipation potential that when combined with the 
Mooney-Rivlin model (as in their work) or any other hyperelastic model 
results in a visco-hyperelastic constitutive model that can describe both 
the linear and nonlinear large deformation behaviors of elastomeric 
materials over a wide range of strain rates. The main assumptions 
adhered to in formulating hyperelastic models include that the material 
is isotropic, the response is strain-rate independent, and generally 
incompressible (Bischoff et al., 2001). The incompressibility assumption 
leads to simplified model equations without affecting the accuracy. 

However, the practical behavior of elastomeric materials in certain 
loading conditions such as hydrostatic compression involves volume 
changes whereby the initial volume is reduced by up to 20% (Horgan 
and Murphy, 2007). Importantly, incompressible models lead to nu-
merical problems during finite element implementations since the 
Poisson’s ratio is 0.5 resulting in infinitely large Lame’s constant. 
Therefore, a model that will describe the practical behavior of elasto-
meric materials and is suitable for finite element implementation must 
include the compressibility term. 

The practical response of elastomeric materials to loading conditions 
is predominantly complex, three-dimensional, and involves multi-axial 
deformation modes. The predictive performance of a model in such a 
complex response is established by checking its ability to reproduce 
experimental data in three modes of homogenous deformation namely 
uniaxial tension, equibiaxial extension, and pure shear. We consider an 
excellent phenomenological model as the one that can describe the 
experimental behavior in each of the loading modes in an accurate 
manner whilst requiring a single set of model constants obtained by 
fitting the W expression to strain energy density data calculated from 
uniaxial tension loading stress-strain data. We refer to a model that 
accurately reproduces the experimental behavior in all of the three 
modes as having achieved a complete behavior. Unlike the uniaxial 
tension loading data which is readily available due to the ease of 
experimenting, the equibiaxial tension experiment setup is complex, 
requires complicated specimen geometry, is time-consuming, and in-
volves high costs. The shortcomings of existing models include the 
inability to achieve complete behavior, inaccuracies at large de-
formations, and requiring simultaneous fitting. For instance, the Bider-
man model (Biderman, 1958) excellently captures the uniaxial tension 
and pure shear loading but posts erroneous results in equibiaxial 
extension. The well-known neo-Hookean model (Treloar, 1975) is suit-
able for small deformations as it leads to severe errors at moderate and 
large deformations. The Mooney-Rivlin model (Mooney, 1940; Rivlin, 
1948) requires the simultaneous fitting of the uniaxial and the equi-
biaxial loading data and is inaccurate at large deformations. Although 
the fitting process for phenomenological models generally does not 
involve any restrictions on the material parameters since the 
Clausius-Duhem inequality is already applied in formulating the W 
expression, physically-reasonable predicted behavior can be achieved 
by imposing mathematical restrictions on the parameters such as those 
proposed by Upadhyay et al. (Upadhyay et al., 2019). 

There have been persistent research efforts to obtain W expression 
that accurately describes the experimentally observed behavior of 
elastomeric materials. Hitherto, the research remains active as the re-
searchers strive to achieve a universal constitutive model. As put by 
Destrade et al. (DestradeGiuseppe Saccomandi and Sgura, 2017), a 
universal constitutive model is the one that can satisfactorily describe the 
mechanical response of a given elastomeric material in all the defor-
mation modes and strain ranges. Carroll (2011) demonstrated an 
interesting and unconventional method of formulating the W expression 
whereby the final form of W is achieved through a three-step process. 
Whereas the model posted remarkable predictions according to the 

Table 1 
Model parameters.  

Model Experimental data 

Treloar (8% S vulcanized rubber) Kawabata et al. (Isoprene rubber) Alexander (Neoprene rubber) 

Mooney-Rivlin C10 = 181825.63,
C01 = − 7618.22  

C10 = 167833.49,
C01 = 1096.05  

C10 = 646828.58,
C01 = − 76739.76  

Yeoh C10 = 164907.76,
C20 = − 955.64,
C30 = 33.76  

C10 = 193032.94,
C20 = − 5221.29,
C30 = 240.39  

C10 = 340590.58,
C20 = 2620.65,
C30 = 72.322  

Gent-Thomas C1 = 181825.63
C2 = − 82974.07  

C1 = 167833.49
C2 = 8601.89  

C1 = 646828.58
C2 = − 909914.79  

This work β1 = 148629.25
β2 = − 517.37
β3 = 27.54  

β1 = 160103.53
β2 = − 1540.45
β3 = 71.40  

β1 = 304681.99
β2 = 3009.15
β3 = 65.08   

Table 2 
Algorithm for implementing the model equations in a Python code.  

Input parameters: 
1. εeng #Engineering strain  
2. β1, β2, β3,K #Model constants  
For all the engineering strain points, calculate: 
I. λ = εeng + 1 #Stretches  
II. F according to Eq. (9) #Deformation gradient  

III. J = detF, C = FT⋅F, B = F⋅FT#Volume ratio, left and right Cauchy-Green 
tensors  

IV. C* = J− 2/3C, B* = J− 2/3B #Distortional left and right Cauchy-Green tensors  

V. I1 = tr C, I2 = 0.5(I21 − tr(C2)) # First and the second invariants  

VI. I*1 = J− 2/3I1, I*2 = J− 4/3I2# Distortional parts of the first and second invariants  
VII. Cauchy stress tensor σ, according to Eq. (11) and Eq. (13)  
VIII. Von Mises stress from the components of the Cauchy stress tensor 

σmises =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
2
((σ11 − σ22)

2
+ (σ22 − σ33)

2
+ (σ33 − σ11)

2
+ 6((σ12)

2
+ (σ23)

2
+ (σ31)

2
))

√

IX. Engineering stress from the Cauchy stress 

σeng =
σtrue

εeng + 1  
X. Return σeng   
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classical experimental data by Treloar’s data (Treloar, 1944); it is worth 
noting that the three-step process is not convenient for practical appli-
cation, the incompressibility assumption makes it unsuitable for finite 
element implementation, the W expressions violates the restriction that 
it should have a zero value at the undeformed state and that a single 
fitting of the model to uniaxial extension data leads to erroneous pre-
dictions in equibiaxial tension. Melly et al. (Melly et al., 2021) addressed 
the drawbacks of the Carroll (2011) model by modifying the W 
expression accordingly resulting in an improved version whose param-
eters can be obtained in a single fitting of uniaxial data and is imple-
mentable in a finite element program. The authors (Khajehsaeid et al., 
2013) proposed a micromechanical three-parameter W expression 
containing exponential-logarithmic terms of the first invariant. The idea 
was further pursued by Bahreman et al. (2016) where they proposed 
different forms of W expressions that combine polynomial, logarithmic, 
and exponential terms of the first and the second invariants. Although 
the authors demonstrated that their proposed W forms are capable of 
describing the behavior of elastomeric materials to a relatively higher 
degree of accuracy, obtaining the material parameters is quite chal-
lenging. Blaise et al. (Betchewe et al., 2020) developed a five-parameter 
phenomenological model that is dependent on both the first and the 
second invariants derived from the generalized Rivlin (Rivlin and 
Saunders, 1951) and Gornet et al. (2012) models respectively. Anssar-
i-Benam and Bucchi (2021) proposed a two-parameter generalized 
neo-Hookean type constitutive model for elastomeric materials. The 
model was demonstrated to describe the experimental behavior with 
impressive accuracy given that it required only two parameters. How-
ever, obtaining the material parameters is a challenging task and the 

model is independent of the second invariant. In general, the inclusion of 
the second invariant in the W expression results in better predictions, 
particularly in equibiaxial loading mode. Results from a recent theo-
retical and experimental study carried out by Anssari-Benam et al. 
(Anssari-Benam et al., 2021) substantiated that the inclusion of the 
second invariant in formulating the W expression is a necessary step for 
more accurate model predictions. 

The limitations of the existing models and the indispensability of 
constitutive models in the modern engineering component design 
inspire researchers to formulate better-performing models. The research 
focus is on obtaining models with desirable features such as the ability to 
accurately describe the experimental behavior in all the loading modes, 
requiring few material parameters which are obtained by fitting only the 
uniaxial extension data in a single fitting, applicability to the entire 
strain range, and implementable in a finite element program. This work 
proposes a phenomenological model with the mentioned features. The 
model is inspired by the generalized Rivlin model (Rivlin and Saunders, 
1951) and requires three material parameters. To demonstrate the 
model’s predictive capabilities, three sets of experimental data from the 
literature including the classical data by Treloar (1944) (8% Sulfur 
vulcanized rubber), Kawabata et al. (1981) (isoprene rubber), and 
Alexander (1968) (Neoprene rubber) are utilized. The data in this work 
represents both the moderate (Kawabata et al.) and large (Treloar and 
Alexander) deformations. Using the coefficient of determination and the 
relative error to quantify the model’s ability to reproduce the experi-
mental data, it is demonstrated that it performs better than well-known 
hyperelastic models including Mooney-Rivlin (Mooney, 1940; Rivlin, 
1948), Yeoh (1993), and the Gent-Thomas (Gent and Thomas, 1958). 

Fig. 1. Model performances in predicting the uniaxial tension loading data of Kawabata et al. (Kawabata et al., 1981). (a) stress-strain plots, (b) relative error-strain 
plots, and (c) the average relative error for each model. 
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2. Constitutive modeling 

2.1. Proposed strain energy density function 

The most significant development in the phenomenological theory of 
hyperelasticity was the model (also known as the polynomial model) 
proposed by Rivlin and Saunders (1951) in which W is expressed as a 
double-sum infinite power series of the two invariants of Cauchy-Green 
deformation tensor as shown in Eq. (1). 

W =
∑N

p=0

∑N

q=0
Cpq(I1 − 3)p

(I2 − 3)q (1) 

The terms Cpq in Eq. (1) represents the model parameters and the first 
parameter C00, is taken to be zero so that W vanishes at the undeformed 
state, I1 and I2 are the first and the second invariants of Cauchy-Green 
deformation tensor respectively given by Eq. (2). 

I1 = tr  C

I2 =
1
2
[
(I1)

2
− tr

(
C2)] (2)  

where C is the right Cauchy-Green deformation tensor given by C = FT⋅ 
F and F is the deformation gradient. For N = 1, N = 2, and N = 3, the 
number of model parameters required are 3, 8, and 15 respectively. This 
is the main drawback of the polynomial model; a large number of pa-
rameters complicates the fitting process and does not necessarily 
improve the predictive capabilities. Moreover, the models derived from 
it such as the Mooney-Rivlin (Mooney, 1940; Rivlin, 1948) (obtained 

when the first two terms of expanded Eq. (1) are considered) require 
simultaneous fitting for stable parameters. To circumvent these draw-
backs, we propose a new form of a polynomial model whose expression 
is a single-sum infinite series of the first and the second invariants. As 
shown in Eq. (3), the proposed model takes the logarithmic form for the 
second invariant term as it has been proven to be more accurate than the 
linear form (Dal et al., 2021). Importantly, it drastically reduces the 
number of required parameters. For instance, if N = 3, the number of 
parameters required is 3 in contrast to 15 for Eq. (1). 

W =
∑N

i=1
βi

[

I1 + ln
(

I2

3

)

− 3
]i

(3)  

where βi are the material parameters. The W expression presented in 
equation (3) is based on the common assumption of incompressibility. 
To model the compressible behavior of elastomeric materials, it is 
necessary to additively decompose the W expression into distortional 
and volumetric parts as shown in Eq. (4) (Murphy and Rogerson, 2018). 
The former represents part of W that is responsible for shape change 
whereas the latter for volume change. 

W =Wd
(
I*

1 , I*
2

)
+ Wv(J) (4)  

where the subscripts d and v represent the distortional and the volu-
metric parts respectively, J is the volume ratio given by J = detF 
whereas the distortional parts of I1 and I2 are given by I*

1 = J− 2/3I1 and 
I*
2 = J− 4/3I2 respectively. Whilst there are numerous forms of Wv in the 

literature (Doll and Schweizerhof, 2000), the most commonly used form 
(see Eq. (5) (Horgan and Murphy, 2009)) is utilized in this work. 

Fig. 2. Model performances in reproducing the equibiaxial loading data of Kawabata et al. (Kawabata et al., 1981). (a) predicted and the experimental stress-strain 
plots, (b) relative error-strain plots, and (c) the average relative error for each model. 
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Wv =
K
2
(J − 1)2 (5) 

The constant K in Eq. (5) is the bulk modulus of the material. With 
Eqs. (3)–(5), we obtain the compressible version of our proposed model 
as shown in Eq. (6). 

W =
∑N

i=1
βi

[

I*
1 + ln

(
I*

2

3

)

− 3
]i

+
K
2
(J − 1)2 (6) 

The order, N, influences the accuracy of the predicted data, espe-
cially for large deformations. The capability of the model to describe the 
upturn of the engineering stress-strain curve at large deformations in-
creases with increasing N to a certain value. The optimal value of N 
should be carefully determined to avoid complicating the model with a 
large number of parameters. As will be demonstrated in section 4.5, this 
value was found to be 3 for our model. Re-writing Eq. (6) with N = 3, 
we obtain the explicit W expression for our proposed model as shown in 
Eq. (7). 

W = β1

[

I*
1 + ln

(
I*

2

3

)

− 3
]

+ β2

[

I*
1 + ln

(
I*

2

3

)

− 3
]2

+ β3

[

I*
1 + ln

(
I*

2

3

)

− 3
]3

+
K
2
(J − 1)2

(7)  

where β1, β2 and β3 are the model parameters. 

2.2. Stress-strain relation 

For a phenomenological model with dependence on the first two 
invariants and considering compressibility of the material, the deriva-
tion process of the Cauchy stress σ expression from the W expression was 
meticulously presented in the mechanics of solid polymers book by 
Bergström (2015). Consequently, it will just be stated in this work and 
readers may check on the mentioned book for a step-by-step derivation 
process. For arbitrary loading of a hyperelastic material and considering 
volume changes during deformation, the σ tensor expression is given in 
Eq. (8). 

σ=
2
J

(
∂W
∂I*

1
+ I*

1
∂W
∂I*

2

)

B* −
2
J

∂W
∂I*

2
(B*)

2
+

(
∂W
∂J

−
2I*

1

3J
∂W
∂I*

1
−

4I*
2

3J
∂W
∂I*

2

)

I (8)  

where B = F⋅FT is the left Cauchy-Green deformation tensor whereas B* 

is its distortional part given by B* = J− 2/3B. The response in a specific 
loading mode is determined by its corresponding F expression given in 
Eq. (9). 

Fut =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

λ 0 0

0
1
̅̅̅
λ

√ 0

0 0
1
̅̅̅
λ

√

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, Feb =

⎡

⎢
⎢
⎢
⎣

λ 0 0

0 λ 0

0 0
1
λ2

⎤

⎥
⎥
⎥
⎦
, Fps =

⎡

⎢
⎢
⎢
⎣

λ 0 0

0 1 0

0 0
1
λ

⎤

⎥
⎥
⎥
⎦

(9)  

where the subscripts ut, eb, and ps stand for uniaxial tension, equibiaxial 
extension, and pure shear respectively. To get the σ expression for our 

Fig. 3. Model performances in reproducing the pure shear loading data of Kawabata et al. (Kawabata et al., 1981). (a) model and experimental engineering 
stress-strain curves, (b) plots of relative error against strain, and (c) the average relative errors. 

S.K. Melly et al.                                                                                                                                                                                                                                 



Mechanics of Materials 165 (2022) 104179

6

proposed model, it is necessary to obtain the partial derivatives of its W 
expression given in Eq. (7) with respect to I*

1, I*
2 and J as shown in Eq. 

(10). 

∂W
∂I*

1
= β1 + 2β2

[

I*
1 + ln

(
I*

2

3

)

− 3
]

+ 3β3

[

I*
1 + ln

(
I*

2

3

)

− 3
]2

∂W
∂I*

2
=

(
1
I*

2

){

β1 + 2β2

[

I*
1 + ln

(
I*

2

3

)

− 3
]

+ 3β3

[

I*
1 + ln

(
I*

2

3

)

− 3
]2
}

∂W
∂J

= K(J − 1)

(10) 

Substituting Eq. (10) to Eq. (8) yields the proposed model’s σ tensor 
expression for arbitrary loading given in Eq. (11). 

σ=2
J

{

β1+2β2

[

I*
1 +ln

(
I*

2

3

)

− 3
]

+3β3

[

I*
1 +ln

(
I*

2

3

)

− 3
]2(

1+
I*

1

I*
2

)}

(B*)−

2
JI*

2

{

β1+2β2

[

I*
1 +ln

(
I*

2

3

)

− 3
]

+3β3

[

I*
1 +ln

(
I*

2

3

)

− 3
]2
}

(B*)
2
+

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

K(J − 1)−
2I*

1

3J

{

β1+2β2

[

I*
1 +ln

(
I*

2

3

)

− 3
]

+3β3

[

I*
1 +ln

(
I*

2

3

)

− 3
]2
}

−

4
3J

{

β1+2β2

[

I*
1 +ln

(
I*

2

3

)

− 3
]

+3β3

[

I*
1 +ln

(
I*

2

3

)

− 3
]2
}

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

I

(11) 

As mentioned in the introductory part of this work, the performance 
of the proposed model will be compared with that of popular existing 
models including Mooney-Rivlin (Mooney, 1940; Rivlin, 1948), Yeoh 
(1993), and the Gent-Thomas (Gent and Thomas, 1958). For conve-
nience, compressible versions of the W expressions of these models are 
presented in Eq. (12). 

Fig. 4. Comparisons of model performances in describing the uniaxial tension behavior of vulcanized rubber by Treloar (Treloar, 1944). (a) experimental and the 
predicted stress-strain curves, (b) relative error-strain plots, and (c) the average relative errors. 
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WYH = C10
(
I*

1 − 3
)
+ C20

(
I*

1 − 3
)2

+ C30
(
I*

1 − 3
)3

+
K
2
(J − 1)2

WMR = C10
(
I*

1 − 3
)
+ C01

(
I*

2 − 3
)
+

K
2
(J − 1)2

WGT = C1
(
I*

1 − 3
)
+ C2 ln

(
I*

2

3

)

+
K
2
(J − 1)2

(12)  

where the subscripts YH,MR, and GT stand for Yeoh, Mooney-Rivlin, 
and Gent-Thomas respectively. According to Eq. (8), the correspond-
ing σ expressions are given in Eq. (13).   

3. Model implementation 

To obtain the predicted Cauchy stress data, the model σ expressions 
given in Eq. (11) and Eq. (13) are implemented in computer codes 
written in Python language. The model parameters required during 
implementation are obtained by fitting the W expressions given in Eq. 
(7) and Eq. (12) to strain energy density-strain data (obtained by 
calculating the area under uniaxial tension engineering stress-strain 
curves). The strain energy density and engineering strain relate in a 
highly nonlinear manner, particularly for large deformations. Conse-

quently, fitting of the W expressions for model constants is a nonlinear 
least-squares problem. The Levenberg-Marquardt Algorithm (LMA) 
(Levenberg, 1944; Marquardt, 1963), which is the most widely used 
optimization algorithm due to its superior performance over other 

Fig. 5. Model performances in reproducing the equibiaxial tension loading data of vulcanized rubber by Treloar (Treloar, 1944). (a) model-predicted and experi-
mental engineering stress-strain curves, (b) relative error-strain plot, and (c) the average relative errors. 

σYH =
2
J

[
C10 + 2C20

(
I*

1 − 3
)
+ 3C30

(
I*

1 − 3
)2
]
B* +

[

K(J − 1) −
2I*

1

3J

(
C10 + 2C20

(
I*

1 − 3
)
+ 3C30

(
I*

1 − 3
)2
)]

I

σMR =
2
J
(
C10 + I*

1 C01
)
B* −

2
J
C01(B*)

2
+

[

K(J − 1) −
2I*

1

3J
C10 −

4I*
2

3J
C01

]

I

σGT =
2
J

(

C1 + I*
1
C2

I*
2

)

B* −
2
J

C2

I*
2
(B*)

2
+

[

K(J − 1) −
2I*

1

3J
C1 −

4I*
2

3J
C2

I*
2

]

I

(13)   
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methods, is utilized in this work. The flowchart for implementing the 
LMA in Python code is presented in our previous work (Melly et al., 
2021). The model parameters obtained for each of the experimental data 
are given in Table 1. It is worth noting that for the bulk modulus K, a 
value 500MPa was used for all the experimental data. 

Taking the proposed model whose σ tensor expression is given in Eq. 
(11) as an example, the algorithm for implementing it in Python code is 
shown in Table 2. It is worth noting that the σ tensor expression yields 
true stress (Cauchy stress) components whereby the scalar value (Von 
Mises) must be obtained and converted to engineering stress as shown in 
the algorithm. 

4. Results and discussion 

We now present the performances of our proposed model (referred to 
as this work), Mooney-Rivlin (Mooney, 1940; Rivlin, 1948), Yeoh 
(1993), and Gent-Thomas (Gent and Thomas, 1958) models in 
describing the experimental data of isoprene rubber by Kawabata et al. 
(1981), 8% S vulcanized rubber by Treloar (1944), and neoprene rubber 
by Alexander (1968). To quantify the overall accuracy of the model’s 
predictions in each loading mode, we obtained the coefficient of 
determination, R2, whose expression is given in Eq. (14). 

R2 = 1 −

∑n

i=1
(ei − pi)

2

∑n

i=1
(ei − em)

2
(14)  

where n, ei, pi and em are the size of the data points, experimental data at 
point i, predicted data at point i, and the mean experimental data 
respectively. Generally, the R2 values range from zero to one with the 
latter meaning that there is a perfect match between the predicted and 
the experimental data. It is not unusual to obtain negative values which 
would mean that the average value of the predicted data is way far from 
the mean value of the experimental data. To visualize the predictive 
performance of the models on the entire loading range in each loading 
mode, the percentage relative error, δ, was obtained according to Eq. 
(15) and plotted against the strains. 

δ=
(⃒⃒σ exp − σpred

⃒
⃒

σ exp

)

× 100 (15)  

where σ exp and σpred are the experimental and the predicted stresses 
respectively. Furthermore, the average value of δ in each loading mode 
was obtained and, in addition to R2, used as an indication of the models’ 
accuracy. It should be noted that a perfectly accurate model will have δ 
that is equal to zero. Finally, the overall behavior of the models in each 
experimental data was quantified by calculating the overall δ (obtained 
by summing the average values in each loading mode and dividing by 
three). We also present the influence of the order number N, in our 
proposed model’s W expression given in Eq. (6) to its accuracy in each 
loading mode of each experimental data. 

Fig. 6. Model performances in reproducing the pure shear loading data of vulcanized rubber by Treloar (Treloar, 1944). (a) model-predicted and experimental 
engineering stress-strain curves, (b) relative error-strain plot, and (c) the average relative errors. 

S.K. Melly et al.                                                                                                                                                                                                                                 



Mechanics of Materials 165 (2022) 104179

9

4.1. Isoprene rubber (Kawabata et al. (Kawabata et al. (1981)) 

With engineering strains less than 300% in the uniaxial tension 
loading, it is categorized as moderate deformation. As shown in Fig. 1 
(a), the models posted excellent predictions with R2 values greater than 
0.97. The Mooney-Rivlin and the Gent-Thomas models have comparable 
predictive capabilities as demonstrated in the relative error-strain plots 
given in Fig. 1 (b) and the average relative errors shown in Fig. 1 (c) 
whereas our proposed model outperforms all the models with R2 value 
greater than 0.99 and average relative error of roughly 1%. 

This work’s model performed relatively well in describing the 
equibiaxial loading behavior with R2 value of 0.95 in contrast to 0.79, 
0.87, and 0.83 for Yeoh, Mooney-Rivlin, and Gent-Thomas models 
respectively as shown in Fig. 2 (a). The relative error-strain plots given 
in Fig. 2 (b) present a better visualization of the models’ performance 
across the strain range. It is shown that this work’s model predictions 
had the lowest relative errors with an average of 6.77% which was 
approximately half that of the other models as shown in Fig. 2 (c). 

As in the uniaxial tension loading, all the models in this study per-
formed well in pure shear loading with R2 values of more than 0.93 as 
shown in Fig. 3 (a). The plot of relative errors against strain given in 
Fig. 3 (b) shows that this work’s model predictions had relatively lower 
errors with an average of 7.68% compared to over 11% for the other 
models as shown in Fig. 3 (c). Mostly, relative errors below 10% are 
acceptable. 

4.2. Vulcanized rubber data (Treloar (Treloar (1944)) 

In the uniaxial tension loading, the vulcanized rubber was subjected 
to deformations of approximately 650% engineering strain. Thus, it is a 
case of large deformation and the data has been used extensively in 
determining the predictive capabilities of new models. At deformation 
above 450% engineering strain, the Mooney-Rivlin and the Gent- 
Thomas models stress-strain curves exhibit a linear behavior whereas 
the experimental curve takes an upturn forming the characteristic S- 
shaped curve for elastomeric materials at large deformations a shown in 
Fig. 4 (a) thus leading to severe errors with R2 values of about 0.57. In 
contrast, this work’s and the Yeoh models capture the upturn behavior 
accurately with R2 values greater than 0.99. The relative error-strain 
plot in Fig. 4 (b) illustrates the behavior of the models throughout the 
deformation whereby the Mooney-Rivlin and Gent-Thomas models re-
cord increasing errors at strain above 450% with about 55% relative 
errors at maximum strain. As shown in Fig. 4 (c), Yeoh and this work’s 
models posted average relative errors that are less than 5% as opposed to 
over 20% for Mooney-Rivlin and Gent-Thomas models. 

According to the literature, Treloar’s equibiaxial loading data is 
challenging to reproduce as most models post erroneous results. This 
work’s model recorded excellent predictions with R2 value of above 0.98 
in contrast to − 0.58, 0.76, and 0.87 for Mooney-Rivlin, Gent-Thomas, 
and Yeoh models (see Fig. 5 (a)). As mentioned, the negative value of R2 

for Mooney-Rivlin model simply means that the average of the predicted 
data is far much worse than the average of the experimental data. As 
shown in Fig. 5 (b), this work’s model predictions had the lowest relative 

Fig. 7. Comparisons of model performances in reproducing the uniaxial tension experimental data of neoprene rubber by Alexander (Alexander, 1968). (a) 
stress-strain curves, (b) relative error-strain curves, and (c) the average relative errors. 
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errors with an average of 7.77% as shown in Fig. 5 (c). This is about a 
third of Yeoh and Gent-Thomas models and about a fifth that of Mooney- 
Rivlin. Simply put, our proposed model is about three and five times 

more accurate than Yeoh and Mooney-Rivlin models respectively in the 
equibiaxial loading data of Treloar. 

The stress-strain curves presented in Fig. 6 (a) show that all the 
models in this study described the pure shear loading satisfactorily with 
the lowest being the Yeoh model with R2 value of 0.96. Further analysis 
of the relative errors in Fig. 6 (b) shows that the models recorded large 
relative errors of about 20% at engineering strains up to 150%. The 
average relative errors presented in Fig. 6 (c) demonstrate that the 
Mooney-Rivlin, Gent-Thomas, and this work’s models post acceptable 
errors of less than 8% whereas the Yeoh model has 11.1%. 

4.3. Neoprene rubber data (Alexander (Alexander (1968)) 

Neoprene rubber films were subjected to uniaxial and equibiaxial 
tension loading to about 735% and 440% engineering strains respec-
tively. This data is particularly interesting because it is to a larger 
deformation relative to the classical Treloar’s data and the stress-strain 
curve has a steep upturn. Expectedly, the Mooney-Rivlin and the Gent- 
Thomas models posted erroneous predictions with R2 values of 0.48 as 
shown in Fig. 7 (a). This is because the models with a linear dependence 
on the first and the second invariants cannot describe the upturn of the 
stress-strain curve at large deformations. On the other hand, this work’s 
and Yeoh models captured the behavior accurately with R2 values of 
0.99 as shown in Fig. 7 (a) and minimal relative errors (less than 5%) 
particularly at large deformations as shown in Fig. 7 (b). The average of 
the relative error plots in Fig. 7 (c) shows the comparable behavior of 
this work’s and Yeoh models where both have errors below 10%. 

Fig. 8. Comparisons of model performances in reproducing the equibiaxial tension experimental data of neoprene rubber by Alexander (Alexander, 1968). (a) 
stress-strain curves, (b) relative error-strain curves, and (c) the average relative errors. 

Fig. 9. The overall performance of the models in reproducing the experi-
mental data. 
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The model performances in reproducing the equibiaxial loading data 
are shown in Fig. 8. It is demonstrated that this work’s model predictions 
are to a relatively higher accuracy based on the R2 value and the relative 
errors. It is also demonstrated that the R2 value alone is not a sufficient 
indicator of a model’s accuracy. The Mooney-Rivlin model posted R2 

value of 0.75 yet had the highest average relative error of 44%. 

4.4. Overall predictive capabilities 

The results from the previous sub-sections demonstrate the fact that 
hyperelastic models describe experimental behavior in different loading 
modes to varying accuracy levels. For instance, the errors in the pre-
dicted uniaxial tension data may be minimal but significant in equi-
biaxial tension data. Considering that elastomeric components are 
subjected to complex loads, evaluating the overall performance of the 
models is necessary for reliable predictions. To this end, the averages of 
the average relative errors in each loading mode for each experimental 
data were utilized to indicate the overall predictive capabilities of the 
models. As shown in Fig. 9, this work’s model recorded relatively lower 
overall relative errors in all the experimental data. It is also noted that 
the models performed better in moderate deformations (Kawabata’s 
data) and more errors were recorded in Alexander’s data due to the 
difficulty in reproducing its equibiaxial data. 

4.5. Influence of N 

As this work’s model W expression given in Eq. (6) is of polynomial 
type, it is important to determine the influence of N on the model’s 
accuracy to obtain the optimum number of material parameters. A large 
number of model parameters renders the model expression overly 
complicated and leads to non-unique optimal parameter sets. It also 
complicates the fitting process making it difficult to determine the best 
set of material parameters that can give accurate and robust predictions 
in multi-axial loading. There should be a balance between the 
complexity of the model and the accuracy of the predictions. Too few 
parameters lead to models that cannot capture the upturn of the stress- 
strain curve at large deformations. Therefore, values of N ranging from 
1 − 6 were selected and the model’s Cauchy stress expression and pre-
dictions were obtained at all the loading modes in each experimental 
data. It was found that moderate deformations as in the experimental 
data by Kawabata et al. (1981), N influences both the uniaxial and 
equibiaxial behavior as shown in Fig. 10 (a) and (b). From N = 1 to N =

5, the influence in the uniaxial tension loading was negligible as the 
predictions posted R2 values greater than 0.99 and an optimum at N = 3 
of 0.9997. However, at N = 6 the curves deviate drastically leading to a 
reduction in R2 value. For equibiaxial loading in moderate deformations 
as shown in Fig. 10 (b), it was found that increasing N values lead to 
unusual behavior in the stress-strain curves with varying levels of ac-
curacy instead of increasing accuracy. This may be attributed to unstable 
material parameters obtained in the fitting process. The optimum value 

Fig. 10. Comparison of experimental and model-predicted stress-strain curves at different N values for data by Kawabata et al. (Kawabata et al., 1981). (a) uniaxial 
tension, (b) equibiaxial extension, and (c) pure shear. 
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for equibiaxial loading is found to be 0.9593 at N = 3 whereas the curve 
at N = 6 deviated so much that decided against including it. From 
Fig. 10 (c), it is shown that N has a negligible effect on pure shear 
loading predictions. As demonstrated in Fig. 10, only a single term of our 

proposed model, i.e. N = 1, suffices is reproducing the experimental data 
for moderate deformations in all the loading modes to high accuracy 
levels. 

For large deformation as in the data by Treloar (1944) and Alexander 

Fig. 11. Model-predicted stress-strain curves at different N values compared to data by Treloar (Treloar, 1944). (a) uniaxial tension, (b) equibiaxial extension, and 
(c) pure shear. 

Fig. 12. Model-predicted stress-strain curves at different N values compared to data by Alexander (Alexander, 1968). (a) uniaxial tension and (b) equibiaxial tension.  
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(1968), N was found to significantly impact the accuracy of the pre-
dicted data in the uniaxial tension loading. As shown in Fig. 11 (a), the 
accuracy in the uniaxial tension increases with N value up to an opti-
mum R2 of 0.9915 at N = 3 and thereafter a drop in accuracy with 
increasing N. Similarly, increasing N yielded better predictions in 
equibiaxial tension up to N = 3 where further increase had a negligible 
effect on the accuracy as shown in Fig. 11 (b). Only at N = 2 were the 
predictions in the pure shear loading of relatively lower accuracy with 
R2 of 0.96 as shown in Fig. 11 (c) whereas the rest stood at 0.98. The 
difference is insignificant and, therefore, we can conclude that it does 
not affect the pure shear loading of Treloar’s data. Owing to the large 
deformation and steep upturn of the neoprene rubber stress-strain 
curves, N has a significant effect on the accuracy of the model pre-
dictions in both uniaxial and equibiaxial loadings as demonstrated in 
Fig. 12. The optimum N value for uniaxial tension is found to be 3 
whereas, in equibiaxial tension, the accuracy is improved up to N = 4 
where a further increase in N value becomes insignificant to the R2 

value. 

5. Conclusions 

Phenomenological constitutive models of hyperelastic materials are 
more popular than their micromechanical counterparts thanks to their 
relative advantages such as the ease of obtaining material parameters 
and applicability to a wide range of materials. Important features of a 
phenomenological model concern its capability to describe experi-
mental behavior in three loading modes (uniaxial tension, equibiaxial 
extension, and pure shear), the process of calibrating the model equation 
to obtain its parameters, and the number of experimental data sets 
required. As the practical loading on an elastomeric component involves 
complex three-dimensional loads, it is imperative that the model accu-
rately describes the experimental behavior in the three loading modes 
from moderate to large deformations for reliable designs. Furthermore, 
the model parameters should be obtained in a single fitting process using 
easily available experimental data such as the uniaxial tension other 
than obtaining each parameter individually or requiring data from 
multiple loading modes as it increases the complexity, time, and the cost 
of the fitting process. 

With inspiration from the generalized Rivlin model, this work pro-
posed a polynomial-type phenomenological model whose strain energy 
density function expression has linear and logarithmic first and second 
invariants of the Cauchy-Green deformation tensor respectively. Its 
predictive capabilities in the entire deformation range of hyperelastic 
materials were determined by utilizing three sets of experimental data 
from the literature. The coefficient of determination, commonly known 
as R-squared, is the most common quantity that is utilized to indicate 
how the predicted data correlates with the experimental data. However, 
it is not sufficient to rely on only the R-squared especially when the 
predictive performances of several models are to be compared as com-
parable values do not necessarily mean comparable predictive behavior. 
Therefore, obtaining the relative errors at every strain point and their 
averages for every loading mode is necessary for the complete charac-
terization of models’ predictive abilities. Based on R-squared values, 
relative error-strain plots, and average relative errors, this work’s model 
was found to better describe the experimental response in comparison to 
three popular models from the literature. Models with a linear depen-
dence on the invariants of the Cauchy-Green deformation tensor fail to 
describe the characteristic S-shaped stress-strain curve at large de-
formations. The order of a polynomial model significantly affects the 
accuracy of the predicted data particularly in the uniaxial and equi-
biaxial loading at large deformation. There is an optimum order beyond 
which further increase is insignificant to the model’s accuracy and may 
lead to severe errors in the predictions. Consequently, it is crucial to 
determine the optimum order for a polynomial model. It was found to 
have a negligible effect on the pure shear loading and the optimum value 

(wherein the uniaxial and equibiaxial predictions for both moderate and 
large deformation were to a relatively higher accuracy) was established 
to be 3. With the ability to describe the moderate and large deformation 
response of various elastomeric materials whilst requiring fitting by only 
the uniaxial extension data as demonstrated in this work, the proposed 
model is suitable for application in the design of elastomeric 
components. 
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