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A B S T R A C T   

In this work, a novel micromechanics-based thermo-viscoelastic constitutive model for shape memory polymer 
composites (SMPCs) is proposed and applied to four-dimensional (4D) printed SMPCs. The multi-branch 
constitutive model is used to simulate the time- and temperature-dependent mechanical behavior of the shape 
memory polymer matrix. According to the elastic–viscoelastic correspondence principle, the equivalent visco
elastic stiffness tensor of the composite is obtained in the micromechanics framework of energy-based effective 
strain theory and the Mori-Tanaka homogenization scheme, in which a two-parameter interfacial damage model 
is adopted to consider the displacement discontinuity and traction continuity conditions at the interface between 
the inclusion and the matrix. The numerical integration scheme for the three-dimensional (3D) viscoelastic 
constitutive model of SMPCs is presented, and the finite element application is implemented by the user material 
subroutine UMAT of ABAQUS. After identifying the model parameters with experimental data, the tensile stress- 
strain curves and stress relaxation phenomena of 4D printed unidirectional SMPCs are successfully described by 
theoretical simulations. Besides, theoretical simulations also adequately predict the shape memory behavior of 
4D printed composites and complex members.   

1. Introduction 

Thermotropic shape memory polymers (SMPs) are a kind of active 
materials that can sense external temperature changes and produce an 
autonomous deformation response, which are characterized by large 
deformability, variable stiffness and shape memory effects (Biswas et al., 
2021; Elliott et al., 2020; King et al., 2021; Zeng et al., 2021). To 
facilitate the application of SMPs in practical engineering, systematic 
theoretical frameworks have been established to predict the thermo
mechanical behavior and shape memory effects of SMPs (Yu et al., 2012, 
2014a; Fang et al., 2018; Gu et al., 2017, 2020; Liu et al., 2006; Nguyen 
et al., 2008; Qi et al., 2008; Zhao et al., 2020). For example, Liu et al. 
(2006) firstly developed a constitutive model of SMPs inspired by phase 
evolution theory, which assumes that SMP is composed of “active phase” 
and “frozen phase” and introduces internal variables such as storage 

strain. Nguyen et al. (2008) proposed a thermo-viscoelastic model 
combining structural relaxation and stress relaxation based on visco
elastic theory, which can describe the dependence of SMPs on both 
strain rate and temperature change rate. Yu et al. (2012) innovatively 
proposed a multi-branch model similar to the generalized Maxwell 
model to quantitatively analyze the multiple shape memory effects of 
SMPs and the underlying physical mechanisms for the associated energy 
storage and release, providing a novel paradigm for theoretical 
modeling of SMPs. Gu et al. (2017) developed a thermodynamic 
constitutive model incorporating structural and stress relaxation based 
on an internal state variable modeling approach, which is highly valu
able and provides new insights into the development of finite defor
mation theory for SMPs. 

Shape memory polymer composites (SMPCs) blend SMPs and other 
reinforcing phases such as carbon nanotubes, metal micro- 
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nanoparticles, chopped fibers or long fibers to improve the mechanical 
properties of SMPs. Moreover, the emerging four-dimension (4D) 
printing technology provides a convenient, short-cycle and low-cost 
solution for the manufacturing and structural customization of SMPCs 
(Zeng et al., 2022). As a result, SMPCs possess the potential to serve as 
structural and functional materials for engineering applications such as 
space deployable structures, bio-devices, smart robotics and flexible 
electronics due to their excellent mechanical properties, rapid custom
izability and exceptional shape memory effects (Xia et al., 2021). 
However, the anisotropy of composites has prompted researchers to seek 
new modeling approaches to describe the anisotropic thermodynamic 
behavior of SMPCs (Ge et al., 2016; Gu et al., 2019; Mao et al., 2015; Tan 
et al., 2014). Combining the composite bridge model and the phase 
evolution theory of SMPs, Tan et al. (2014) developed a constitutive 
model of SMPCs under small deformation. Ge et al. (2016) constructed a 
thermodynamic constitutive framework based on the phase evolution 
principle to describe the large deformation thermodynamic behavior of 
three-dimension (3D) printed anisotropic composites, but the constitu
tive framework did not consider the effect of loading rate. Gu et al. 
(2019) established a thermo-viscoelastic model for unidirectional 
SMPCs using an internal state variable modeling approach, which can be 
applied in a finite deformation range. 

In the constitutive models of SMPCs presented above, the contribu
tions of the reinforcing phases to the thermodynamic properties of 
SMPCs are considered simply by the volume averaging method, failing 
to model the interactions and interfacial effects between the matrix and 

the reinforcing phases. In view of this, several equivalent constitutive 
models of SMPCs based on micromechanics have been preliminarily 
proposed (Hassanzadeh-Aghdam et al., 2019; Jarali et al., 2018; Su 
et al., 2020; Zhao et al., 2019). Jarali et al. (2018) extended Eshelby’s 
equivalent inclusion theory to multiphase SMPCs, and combined the 
simple one-dimensional phase transition model of SMPs to obtain the 
constitutive model of SMPCs under small deformation. Zhao et al. 
(2019) combined the generalized Maxwell model of SMPs with the 
Mori-Tannaka scheme to establish a micromechanical model for 
multi-walled carbon nanotube-reinforced SMPCs. To further develop the 
model, Xin et al. (2021) proposed a gradient interface model to consider 
the interfacial effects between the reinforcing phases and the SMP ma
trix. Despite these advances, a systematic micromechanical framework 
for SMPCs is still lacking here, which incorporates the thermal visco
elasticity of SMPs, the imperfection of the interface and the multiphase 
reinforcement effect. Moreover, finite element implementation of 
micromechanical constitutive models for SMPCs is rarely reported. 

In this study, a micromechanical thermo-viscoelastic constitutive 
model of multiphase SMPCs based on energy-based effective strain 
theory and the Mori-Tanaka homogenization scheme is proposed and 
applied in 4D printed composites, where the thermodynamic properties 
of the SMP matrix are described by a multi-branch model. The outline of 
the paper is as follows. In Section 2, details of the micromechanical 
modeling of SMPCs are presented, where interfacial imperfection and 
thermal viscoelasticity of the matrix are taken into account. In Section 3, 
the numerical integration scheme for the proposed 3D model is 

Fig. 1. A micromechanical equivalent model for the inclusion problem with imperfect interface. a) Schematic of the interface spring model. b) Multi-branch 
viscoelastic model of SMP matrix. c) The global coordinate system (O-X1X2X3) and the local coordinate system (O-x1x2x3) for an elliptical inclusion. 
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developed and finite element simulations are implemented by the user 
material subroutine UMAT of ABAQUS. In Section 4, 4D printed com
posites are fabricated and corresponding experiments are performed to 
characterize their thermodynamic properties. In Section 5, thermody
namic experimental data are applied for parameter identification and 
model validation. In Section 6, some conclusions are given. 

2. Micromechanical modeling 

A viscoelastic constitutive model based on micromechanics is 
derived for SMPCs composed of SMP matrix and elliptical inclusions. 
Firstly, assuming that both the matrix and inclusions are elastic mate
rials, the interfacial imperfection is considered based on the modified 
Eshelby’s inclusion principle. Secondly, the energy-based effective 
strain theory and Mori-Tanaka method are combined to obtain the 
equivalent elastic stiffness tensor of unidirectional composites. Finally, 
considering the thermo-viscoelastic characteristics of the matrix under 
the small strain assumption, the macro-viscoelastic properties of the 
composites are obtained according to the elastic–viscoelastic corre
spondence principle. 

2.1. Modified Eshelby inclusion problem 

For multiphase composites composed of the matrix and multiple 
inclusions, we assume that the interface between each type of inclusion 
and the matrix is imperfect. As shown in Fig. 1a, the imperfect interface 
is simulated as a linear spring layer with no thickness, which has 
continuous traction but discontinuous displacement field, and the 
discontinuity conditions can be expressed as (Bennett et al., 2018) 

⟦σ⟧ ⋅ n= [σ(S+) − σ(S− )] ⋅ n= 0 (1a)  

⟦u⟧=u(S+) − u(S− ) =η ⋅ σ ⋅ n (1b)  

where S and n denote the interface and its outward unit normal vector, 
and the superscripts + and - denote the positive and negative sides, 
respectively. ⟦σ⟧ is the traction difference between the positive and 
negative sides of the interface, and ⟦u⟧ is the interface displacement 
jump. η is a second-order tensor representing the compliance of the 
interface spring, assuming it is symmetric and positive definite. η→ 0 
indicates perfect bonding, while η→∞ indicates complete debonding. 
Assume that the components of the interface compliance tensor follow 
the form: 

ηij = αδij + (β − α)ninj (2)  

where α and β denote the tangential and normal compliance of the 
interface, respectively. Considering the inclusion with imperfect inter
face in the infinite domain, following the work of Qu (1993), the integral 
form of the perturbed strain field caused by the r-th type of inclusion is 
obtained as 

ε*
r (x)=

∫

V ′
Γ∞(x − x′

) : ℂ0 : ε**
r (x′

)dv′

+

∫

S′
Γ∞(x − x′

) : ℂ0 : ⟦ur(x
′

)⟧⊗ nds′

−

∫

S′
∇s

xg∞(x − x′

) ⋅ ⟦σ(x′

)⟧ ⋅ nds
′

(3)  

where ε*
r is the perturbed strain in the inclusion relative to the medium, 

and ε**
r is the eigenstrain in the inclusion. ℂ0 is the elastic stiffness tensor 

of the homogeneous medium. V is the volume domain of the inclusion, 
which contains the imperfect interface S. Γ∞(x − x′

) is a fourth-order 
tensor associated with the medium and is defined as follows (Bennett 
et al., 2018) 

Γ∞(x − x′

) =∇s
x∇

s
x′ g

∞(x − x′

) (4)  

where g∞(x − x′

) is the second-order Green’s function. The detailed 

derivation of Eq. (3) is presented in Supplementary material S1. 
Now assuming that the eigenstrain in the inclusion is uniformly 

distributed and applying Eq. (1a), the perturbed strain ε*
r averaged over 

the inclusion volume Vr is given by: 

ε*
r =

1
Vr

∫

Vr

∫

Vr
′
Γ∞(x − x′

) : ℂ0 : ε**
r dvr

′ dvr

+
1
Vr

∫

Vr

∫

S′
Γ∞(x − x′

) : ℂ0 : ⟦ur(x
′

)⟧⊗nds
′

dvr

(5) 

The fourth-order interior polarization tensor ℙr is introduced 

ℙr =

∫

Vr

Γ∞(x − x′

)dvr for x′

∈ Vr (6) 

Permute the integration order of the first integral term in Eq. (5) to 
obtain 

ε*
r =Sr : ε**

r +
1
Vr

∫

Vr

∫

S′
Γ∞(x − x′

) : ℂ0 : ⟦ur(x
′

)⟧⊗nds
′ dvr (7)  

where Sr = ℙr : ℂ0, Sr is fourth-order interior-point Eshelby tensor. 
In the framework of the spring interface model described by Eq. (1), 

the second integral term in Eq. (7) can be simplified by a series of 
conversions according to the method proposed by Dinzart and Sabar 
(2017): 

1
Vr

∫

Vr

∫

S′
Γ∞(x − x′

) : ℂ0 : ⟦ur(x
′

)⟧⊗nds
′ dvr =(Sr − I) : ℝr : ℂr : εr (8)  

where εr is the strain averaged over the inclusion volume Vr. I is the 
fourth-order identity tensor. ℂr is the elastic stiffness tensor of the r-th 
type of inclusion. The fourth-order tensor ℝr describes the comprehen
sive influence of the interface parameters and the configuration of the 
inclusion, which is defined as (Dinzart and Sabar, 2017) 

ℝr
ijmn =

1
4Vr

∫

S

(
ηimnjnn + ηjmninn + ηinnjnm + ηjnninm

)
(9) 

Applying Eq. (8) in Eq. (7) gives 

ε*
r =Sr : ε**

r + (Sr − I) : ℝr : ℂr : εr (10)  

2.2. Micromechanics framework 

The strain energy in the composite is determined by the sum of the 
strain energy of the matrix and the multiphase inclusions (Saadat et al., 
2015) 
∫

V
σT

eq : εeqdv=
∫

V0

σT
0 : ε0dV0 +

∑N

r=1

∫

Vr

σT
r : εrdvr (11)  

where σeq and εeq are the equivalent stress tensor and equivalent strain 
tensor in the composite, respectively. σ0 and ε0 are the stress tensor and 
strain tensor in the matrix, respectively. σr and εr are respectively the 
stress tensor and strain tensor in the r-th type of inclusion. V, V0 and Vr 
are the total volume of the composite, the volume of the matrix, and the 
volume of the r-th type of inclusion, respectively. 

Herein, we define the effective stress 〈σk〉 = 〈σk
ij〉ei ⊗ ej and effective 

strain 〈εk〉 = 〈εk
ij〉ei ⊗ ej (k = eq, 0, 1, …, N) for the composite and all 

constituent phases so that the following equation holds 
∫

Vk

σT
k : εkdvk =

∫

Vk

(ℂk : εk)
T
: εkdvk =(ℂk : 〈εk〉) : 〈εT

k 〉Vk (12) 

Subsequently, Eq. (11) can be expressed as 

(
ℂeq : 〈εeq〉

)
: 〈εT

eq〉V =(ℂ0 : 〈ε0〉) : 〈εT
0 〉V0 +

∑N

r=1
(ℂr : 〈εr〉) : 〈εT

r 〉Vr (13) 

The effective stress of the composite is 
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〈σeq〉= ξ0〈σ0〉 +
∑N

r=1
ξr〈σr〉 (14)  

where ξ0 = V0
V and ξr =

Vr
V are the volume fractions of the homogeneous 

matrix and the r-th type of inclusion, respectively, and ξ0 +
∑N

r=1ξr = 1. 
The Mori-Tanaka scheme is extended to express the effective strain 

tensors of the matrix and each inclusion as (Liu and Bian, 2019) 

〈ε0〉= 〈εeq〉 +
∑N

j=1
〈ε̃j〉 (15a)  

〈εr〉= 〈εeq〉 +
∑N

j=1
〈ε̃j〉 + 〈ε*

r 〉 (15b)  

where 〈ε̃j〉 is the effective perturbed strain tensor superimposed on the 
equivalent strain due to the existence of the corresponding inclusion. 〈 
ε*

r 〉 is the effective perturbed strain tensor in each inclusion relative to 
the matrix. 

According to Eshelby’s equivalence principle, here is (Zhang et al., 
2020) 

ℂr : 〈εr〉=ℂ0 :
(
〈εr〉 − ε**

r

)
(16) 

Then the volume average strain is replaced by the effective strain in 
Eq. (10). 

〈ε*
r 〉=Sr : ε**

r + (Sr − I) : ℝr : ℂr : 〈εr〉 (17) 

Using Eq. (15) and Eq. (16) in Eq. (17) then gives 

〈εr〉=
[
I + Sr : ℂ− 1

0 : (ℂr − ℂ0) + (I − Sr) : ℝr : ℂr
]− 1

: 〈ε0〉 (18) 

The fourth-order strain concentration tensor Ar is defined: Ar =

[I + Sr : ℂ− 1
0 : (ℂr − ℂ0) + (I − Sr) : ℝr : ℂr]

− 1. Note that 〈σeq〉 =

ℂeq : 〈εeq〉, the effective strain tensors in each phase are obtained by 
combining Eqs. (14) and (18) 

〈εr〉=Tr : ℂeq : 〈εeq〉 (19)  

where Tr is the fourth-order transformation tensor, which is expressed 
as: Tr = Ar : (ξ0ℂ0 : A0 +

∑N
j=1ξjℂj

: Aj)
− 1, where A0 = I. Substituting 

Eq. (19) into Eq. (13) gives 

ℂeq = ξ0
(
T0 : ℂeq

)T
: ℂ0 :

(
T0 : ℂeq

)
+
∑N

r=1
ξr
(
Tr : ℂeq

)T
: ℂr :

(
Tr : ℂeq

)

(20) 

Since both ℂr and Ar are symmetric tensors, the equivalent stiffness 
of the multiphase composite can be obtained from Eq. (20) 

ℂeq =

[

ξ0T0 : ℂ0 : T0 +
∑N

r=1
ξrTr : ℂr : Tr

]− 1

(21)  

2.3. Effective viscoelastic stiffness 

The constitutive relationship for isotropic linear viscoelastic matrix 
in the time domain is given as (Barbero, 2013) 

σ(t)=
∫ t

0
λ(t − τ)I ⊗ I : ε̇(τ)dτ +

∫ t

0
2μ(t − τ)I : ε̇(τ)dτ (22)  

where σ(t) and ε(t) are the stress tensor and strain tensor, respectively, 
and the point above the strain tensor represents the differentiation with 
respect to time. I and I are the second- and fourth-order identity tensors. 
λ(t) and μ(t) are the viscoelastic Lamé constants, which are denoted as 

λ(t)=
v(t)E(t)

[1 + v(t)][1 − 2v(t)]
, μ(t)= E(t)

2[1 + v(t)]
(23a,b)  

where E(t) denotes the stress relaxation modulus and v(t) denotes the 
Poisson’s ratio. 

To develop a small strain constitutive model, the rheological model 
composed of a hyperelastic spring and multiple parallel Maxwell ele
ments shown in Fig. 1b is applied to model the viscoelastic behavior of 
the SMP matrix, whose stress relaxation modulus in the time domain is 
given by (Yu et al., 2014b) 

E(t)=E∞ +
∑N

k=1
Ekexp

(

−
t
τk

)

(24)  

where E∞ is the equilibrium modulus, Ek is the relaxation modulus, and 
τk is the relaxation time. 

The Laplace transform of a function f(t) in the time domain (t- 
domain) maps to the Laplace domain (s-domain) as f̂ (s). The Laplace 
transform is defined as L[f(t)] = f̂ (s) =

∫∞
0 f(t)e− stdt, where s is a com

plex variable in the Laplace domain. Subsequently, Eq. (22) can be 
expressed in the Laplace domain as 

σ̂(s)= sλ̂(s)I ⊗ I : ε̂(s) + 2sμ̂(s)I : ε̂(s) = sℂ̂0(s) : ε̂(s) (25) 

For simplicity, the Poisson’s ratio of the matrix is assumed to remain 
constant here, i.e., v(t) = v. 

Considering the elastic–viscoelastic correspondence principle, based 
on Eq. (21), the equivalent stiffness of a multiphase composite in the 
Laplacian domain is expressed as 

sℂ̂eq(s)= s

[

ξ0 T̂0(s) : ℂ̂0(s) : T̂0(s) +
∑N

r=1
ξr T̂r(s) : ℂ̂r(s) : T̂r(s)

]− 1

(26) 

The effective stiffness of the viscoelastic composite in the time 
domain is subsequently obtained by the inverse Laplace transform: 

ℂeq(t)= L− 1[ℂ̂eq(s)
]

(27) 

For the composite with the inclusion direction aligned with the 
overall coordinate system, the analysis is performed in the local coor
dinate system O-x1x2x3, whose axis x1 coincides with the rotation axis of 
the inclusion. However, the influence of the inclusion orientation on the 
equivalent properties of the composite should be considered in practice. 
In the spherical coordinate system O-X1X2X3 as shown in Fig. 1c, the 
spatial distribution of the inclusion is described by two Euler angles θ 
and φ. The equivalent viscoelastic stiffness tensor of the composite in the 
global coordinate system is expressed as 

ℂ
→

eq(t) =L : ℂeq(t):L− 1 (28)  

where L is the coordinate transformation tensor. 
Since the SMP matrix is considered as a thermo-rheologically simple 

material, its viscoelastic behavior follows the time-temperature super
position principle (TTSP). The relaxation time of the k-th nonequilib
rium branch at temperature T is denoted as 

τk = αT(T)τ0
k (29)  

where αT(T) is the TTSP shift factor and τ0
k is the relaxation time of the k- 

th nonequilibrium branch at the reference temperature. At temperatures 
around or above Ts, the TTSP shift factor αT(T) is calculated by the 
Williams-Landel-Ferry (WLF) equation (Mao et al., 2019) 

log αT(T)= −
C1(T − Tr)

C2 + (T − Tr)
(30)  

where C1 and C2 are material constants. When the temperature is below 
Ts, αT(T) follows Arrhenius type behavior (Mao et al., 2019) 

ln αT(T)= −
AFc

kb

(
1
T
−

1
Tg

)

(31) 
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where A and Fc and are material constants, kb is Boltzmann’s constant. 
Here, Ts is calculated by equating αT(T) in Eqs. (30) and (31). It is worth 
noting that the unit of temperature T and Tr in Eq. (30) is ◦C, while the 
unit of temperature T and Tg in Eq. (31) is the thermodynamic temper
ature unit K. 

3. Finite element implementation 

To implement the finite element analysis of the viscoelastic relaxa
tion phenomenon and shape memory behavior of SMPCs, the user 

material subroutine UMAT of ABAQUS was written in Fortran language, 
which followed the numerical integration scheme presented below. 

In the Voigt notation, the equivalence between the components ℂijkl 

of the fourth-order tensor ℂ and the components CIJ of the 6 × 6 matrix C 
is ℂijkl = CIJ. Thus, the equivalent viscoelastic stiffness tensor ℂeq(t) of 
the composite obtained from Eq. (27) can be expressed as a 6 × 6 
stiffness matrix, whose components have the following form 

Ceq
IJ (t) =Ceq

IJ,∞ +
∑N

k=1
Ceq

IJ,kexp
(

−
t

αT τ0
k

)

(32)  

where Ceq
IJ,∞ and Ceq

IJ,k are the equilibrium stiffness coefficient and the k-th 
relaxation stiffness coefficient, respectively. 

For the linear viscoelastic composite, the stress-strain relationship at 
any time t is given by the Boltzmann superposition integral (Zobeiry 
et al., 2016) 

σI(t)=
∫ t

0
Ceq

IJ (t − τ) dεJ

dτ dτ (33)  

where σI and εJ are the components of the stress tensor and strain tensor 
when the Voigt notation is used, respectively. 

The current state of the viscoelastic composite depends not only on 
the current value of the relaxation stiffness matrix but also on the 
loading history. Therefore, Eq. (33) must be evaluated at each increment 
of the finite element analysis. The method proposed by (Zocher et al., 
1997; Gomez-Delrio and Kwok, 2020) is applied to acquire the incre
mental form of Eq. (33) as follows 

σI(tn+1)= σI(tn) + ΔσI(tn+1) (34)  

where σI(tn+1) is the stress of a specific element at the current time 
increment. tn+1 and tn are the current time and the time before the 
increment occurs, respectively. ΔσI(tn+1) denotes the incremental 
change in stress of each element over the current time step, which is 
calculated as follows 

ΔσI(tn+1)=C*
IJ(tn+1)[ΔεJ(tn+1) − μJΔT(tn+1)] − ΔσR

I (tn) (35)  

where μJ is the coefficient of thermal expansion (CTE) and ΔT is the 
temperature increment. ΔεJ(tn+1) is the change in strain between the 
previous and current increment, which is assumed to vary linearly with 
time. CIJ

*(tn+1) and ΔσR
I (tn) can be written as (Gomez-Delrio and Kwok, 

2020) 

C*
IJ(tn+1)=Ceq

IJ,∞ +
1

Δtn+1

∑N

k=1
αT τ0

kCeq
IJ,k

[

1 − exp
(

−
Δtn+1

αT τ0
k

)]

(36)  

ΔσR
I (tn)=

∑N

k=1

[

1 − exp
(
− Δtn

αT τ0
k

)]
∑6

J=1
ΦIJ,k(tn) (37)  

where ΦIJ is a vector of length N that will be stored for use in the next 
increment, and whose components can be expressed as 

Table 1 
Material parameters for the carbon fiber (Liu et al., 2013).  

Longitudinal modulus 
Ef1 (GPa) 

Transverse modulus 
Ef2 (GPa) 

Shear modulus 
Gf12 (GPa) 

Poisson’s ratio, vf12 Poisson’s ratio, vf23 Longitudinal CTE, μf1 (K− 1) Transverse CTE, μf2 (K− 1) 

220.69 13.79 8.97 0.2 0.25 − 4.1 × 10− 7 5.6 × 10− 6  

Fig. 2. a) CTE curve and b) uniaxial tensile curve at 293 K of SMP matrix.  

ΦIJ,k(tn)=ΦIJ,k(tn− 1)exp
(
− Δtn

αT τ0
k

)

+ αT τ0
kCeq

IJ,k

[
ΔεJ(tn) − μJΔT(tn)

Δtn

][

1 − exp
(
− Δtn

αT τ0
k

)]

(38)   
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The Jacobian matrix (or tangent stiffness) is a 6 × 6 matrix, which is 
defined as the derivative of the stress at the current time step with 
respect to the current strain, i.e. (Yapa Hamillage et al., 2022) 

J =
∂σI(tn+1)

∂εJ(tn+1)
=Ceq

IJ,∞ +
1

Δtn+1

∑N

k=1
αT τ0

kCeq
IJ,k

[

1 − exp
(

−
Δtn+1

αT τ0
k

)]

(39)  

4. Materials and experiments 

4.1. Material and sample preparations 

When the ratio of the semi-axial lengths of the x1 axis to the x2 axis, i. 
e., the aspect ratio, is infinitely large, elliptical inclusions with equal 
semi-axial lengths along the x2 and x3 axes tend to be cylindrical in
clusions. Thus, long carbon fibers can be considered as elliptical in
clusions with infinitely large aspect ratios. In this study, 4D printed 
unidirectional continuous fiber-reinforced SMPCs were used to verify 
the ability of the proposed micromechanical model to predict the stress 
relaxation and shape memory effect of SMPCs. The matrix material is a 
polylactic acid (PLA)-based SMP with a Tg of 336 K (Zhang et al., 2018). 
The inclusion phase is Toray T300-1000 carbon fiber, and its mechanical 
parameters are presented in Table 1. Unidirectional fiber-reinforced 
SMPC specimens with different fiber lay-up angles (θ = 0◦, 30◦, 45◦, 
60◦ and 90◦) were fabricated by using a continuous fiber-reinforced 
composite 3D printer (Combot-200), and the fiber volume fraction of 
all specimens was 12%. The printing parameters for all specimens were 
set as: nozzle temperature of 493 K, printing speed of 100 mm/min, 
layer thickness of 0.3 mm, nozzle diameter of 1 mm and substrate 

temperature of 333 K. 

4.2. CTE measurements 

Thermo-mechanical analysis (TMA) of PLA-based SMP was per
formed on a thermo-mechanical Analyzer (TMAQ400/Q400EM) to ac
quire the CTE of the matrix. Square SMP specimens with dimensions of 
5.8 × 5.8 × 5.8 mm were fabricated by 3D printing. A specimen was first 
heated from 298 K to 363 K at 2 K/min and held at 363 K for 10 min. The 
specimen was then cooled down to 273 K at 2 K/min and held at 273 K 
for 10 min. The specimen was finally reheated to 363 K at 2 K/min. 
Fig. 2a shows the CTE measurement during heating from 293 K to 353 K, 
from which the average CTE of the matrix can be obtained as μm =

0.0001/K. The curve for cooling from 353 K to 293 K exhibits a similar 
result, which is not presented here for clarity. 

4.3. Uniaxial tensile tests 

The uniaxial tensile tests of PLA-based SMP and 4D printed unidi
rectional SMPCs were carried out using a Zwick/Roell universal testing 
machine with a temperature-controlled chamber. The tensile tests of 
SMP specimens were performed following the standard ASTM D638. The 
specimens are dumbbell-shaped with a dimension of 115 × 6 × 2 mm. 
4D printed SMPC specimens with θ = 0◦, 30◦, 45◦, 60◦ and 90◦ were 
uniaxially stretched, where θ is the angle between the fiber direction and 
the loading direction. All specimens with a gauge length of 45 mm were 
stretched at 293 K with a strain rate of 0.001 s− 1. Fig. 2b presents the 
tensile stress-strain curve of the SMP specimen, from which the modulus 
of elasticity of the matrix can be obtained as Em = 1.3 GPa. 

Fig. 3. Stress relaxation tests on SMP matrix. a) The stress relaxation curves of the SMP matrix from 303 K to 343 K with an interval of 5 K. b) The stress relaxation 
master curve at 323 K obtained by the TTSP. c) Experimental and theoretically fitted shift factors versus temperature. d) Theoretical fitting of the stress relaxation 
master curve. 
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Table 2 
The model parameters obtained from experimental measurements.  

Parameter Tr(K) C1 C2 (◦C) -AFc/kb(K) Ts(K) μ1(K− 1) μ2(K− 1) 

Value 323 12.9 39.0 24,829 318.2 3.7 × 10− 6 1.2 × 10− 4 

Parameter τ1 τ2 τ3 τ4 τ5 τ6  

Value 0.1 1 10 100 1000 10,000  
Parameter E1 E2 E3 E4 E5 E6 E0 

Value (MPa) 224.8 455.7 432.5 97.1 15.1 3.8 3.9  

Fig. 4. The effect of two interfacial damage parameters on the equivalent stiffness coefficients of the composite for a fixed fiber volume fraction ξf = 12%.  
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4.4. Stress relaxation tests 

To acquire viscoelastic parameters of the matrix, the isothermal 
tensile stress relaxation tests of PLA-based SMP specimens were con
ducted on the ZWICK-010 universal testing machine according to the 
standard ASTM D638. Tensile stress relaxation tests at various temper
atures (293 K–343 K with an interval of 5 K) were performed. The 
relaxation tests were completed in three steps. First, the samples were 
kept at the test temperature for 15 min to achieve thermal equilibrium. 
Then the samples were stretched by 0.022 (Engineering strain) with a 
strain rate of 0.001 s− 1. Finally, the deformation was held for 30 min and 
the stress decay was recorded. Fig. 3a gives the evolution curves of the 

Fig. 5. Equivalent stiffness coefficients of the composite versus fiber volume fraction when varying the tangential interfacial parameter α.  

Table 3 
Viscoelastic stiffness coefficients of 4D printed unidirectional SMPCs at a fiber 
volume fraction of ξf = 12%.  

K ∞ 1 2 3 4 5 6 

τk – 0.1 1 10 100 1000 10,000 
Ceq

11,k 26,489 377.2 697.5 655.2 146.3 22.7 5.7 

Ceq
12,k 6.2 352.9 675.3 667.0 153.4 23.9 6.0 

Ceq
22,k 10.2 573.8 1101.3 1093.9 252.6 39.4 9.9 

Ceq
23,k 6.5 369.9 707.6 697.2 160.0 24.9 6.3 

Ceq
66,k 2.0 106.0 205.8 209.4 49.3 7.7 1.9  
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relaxed modulus of the SMP matrix with time obtained from experi
ments at different temperatures. Similar to the relaxation test procedure 
for PLA-based SMP specimens, 4D printed SMPC specimens with θ =
30◦, 45◦, 60◦ and 90◦ were subjected to stress relaxation tests at 293 K 
and 323 K. The maximum loading strain was set to 0.011 restricted by 
the low elongation at break of the composite. 

4.5. Shape memory cycle tests 

Tensile shape memory cycle tests on 4D printed SMPC specimens 
with θ = 60◦ were performed on the ZWICK-010 universal testing ma
chine. The specimen size was 85 × 20 × 1.6 mm and the loading gauge 
length was 45 mm. The shape memory cycle test was divided into five 
steps as follows. Step 1 (S1): The specimen was stretched to a prescribed 
strain (0.044) at 343 K. Step 2 (S2): The temperature was lowered to 
299 K at a cooling rate of 2 K/min while maintaining the prescribed 
strain. Step 3 (S3): The load was removed while maintaining the tem
perature at 299 K. Step 4 (S4): The temperature was raised to 353 K at a 
heating rate of 4 K/min while keeping zero load. Step 5 (S5): The 

temperature was kept at 353 K for 10 min. It should be pointed out that 
the actual cooling and heating rates were not constant due to the limi
tations of the temperature-controlled chamber used in the tests. 

In addition, the free shape recovery test of a cross-shaped 4D printed 
SMPC member was carried out to demonstrate the ability of the devel
oped model to predict the free shape recovery of complex composite 
structures. In this SMPC member, the fibers were laid at an angle of 45◦. 
The experimental procedure is as follows. Firstly, the four free branches 
of the member were rotated at a certain angle to obtain an inwardly 
rolled temporary shape at a temperature of 343 K. Then the temperature 
was lowered to 299 K to fix the temporary shape. Finally, the member 
was placed in a hot water bath at 343 K and the free shape recovery 
process was observed. 

5. Verification and discussion 

5.1. Model parameter identification 

The experimental measurements of the stress relaxation curves for 
SMP specimens shown in Fig. 3a were used to identify the shift factors 
and viscoelastic parameters of the matrix. The stress relaxation master 
curve at 323 K in Fig. 3b was constructed by shifting the stress relaxation 
curves at different temperatures along the logarithmic time axis based 
on the TTSP. The experimental values of the shift factor at various 
temperatures given in Fig. 3c were determined by the amount of 
translation of the corresponding stress relaxation curve along the loga
rithmic time axis. Eqs. (30) and (31) were used to fit the experimental 
measurements of shift factor to acquire fitted parameters such as C1, C2 
and -AFc/kb. Based on the pre-selected relaxation times τ1 = 0.1 s, τ2 = 1 
s, τ3 = 10 s, τ4 = 100 s, τ5 = 1000 s and τ6 = 10,000 s, the equilibrium 
modulus E0 and the relaxation modulus Ek (k = 1, 2, …, 6) of the matrix 
were obtained by fitting the stress relaxation master curve at 323 K using 
Eq. (24). The fitted curve is shown in Fig. 3d. 

The proposed model takes into account the effect of thermal 
expansion in the finite element implementation, so the equivalent CTE 
of the composite must be determined in advance. The longitudinal CTE 
of the unidirectional composite is obtained by mixing rule (Gu et al., 
2019) 

μ1 =
Emξmμm + Ef 1ξf μf 1

Emξm + Ef 1ξf
(40)  

where ξm and ξf are the volume fraction of matrix and fiber, respectively. 
The transverse CTE of the unidirectional composite is 

μ2 = μm(1+ vm)ξm + μf 2
(
1+ vf

)
ξf − μ1

(
vmξm + vf ξf

)
(41) 

The finalized model parameters are shown in Table 2. 
The unidirectional fiber-reinforced composite is considered as a 

transversely isotropic material whose fourth-order stiffness tensor can 
be written in a Walpole’s form with six parameters to simplify the tensor 
operations. The detailed operation rules of the Walpole’s tensor are 
given in Supplementary material S2. The fourth-order Eshelby tensor S 

and the interface-related fourth-order tensor ℝ need to be determined in 
advance before solving for the equivalent viscoelastic stiffness of the 
composite. For cylindrical fiber inclusions, the component of the fourth- 
order Eshelby tensor S is (Pyo and Lee, 2010) 

Sijkl = S(1)
IK δijδkl + S(2)

IJ
(
δikδjl + δilδjk

)
(42)  

where the specific expressions for S(1)
IK and S(2)

IJ are given in Supple
mentary material S3. The component of the fourth-order tensor ℝ is 
obtained by substituting Eq. (2) into Eq. (9) (Rao and Dai, 2017) 

ℝijkl = αℍijkl + (β − α)ℚijkl (43) 

For the cylindrical inclusion with a radius of a, the specific expres
sions for ℍijkl and ℚijkl are given in Supplementary material S3. 

Fig. 6. Theoretical simulations and experimental measurements of uniaxial 
tensile curves of 4D printed SMPCs with fiber lay-up angle θ = 0◦ at 293 K. 

Fig. 7. Theoretical simulations and experimental measurements of uniaxial 
tensile results of 4D printed SMPCs at 293 K for different fiber lay-up angles θ. 
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5.2. Parametric analysis 

Taking the X1 axis (the local coordinate system O-x1x2x3 coincides 
with the global coordinate system O-X1X2X3) as the symmetry axis of the 
cylindrical fiber inclusion, there are only five independent components 
in the equivalent stiffness matrix CIJ of the transversely isotropic com
posite, which are C11, C12, C22, C23 and C66. Besides, the non- 
independent stiffness coefficient C44 can be calculated as 
C44=(C22–C23)/2. Fig. 4 presents the coupling effect of the interfacial 
damage parameters α and β on the equivalent stiffness coefficient of the 
viscoelastic composite at the moment t = 0 under a fixed fiber volume 
fraction ξf = 12%, where both the horizontal axis (β) and the vertical 
axis (α) are presented in a logarithmic scale. It can be found that only the 
normal interfacial parameter β affects C11 and C12. Conversely, for the 
stiffness coefficient C66, only the tangential interfacial parameter α af
fects it. The equivalent stiffness coefficients depend on the magnitude of 
the interfacial parameter, and they decrease with increasing interfacial 
damage, as expected. Moreover, when the values of the interfacial pa
rameters are in the range of 10− 15 m/Pa to 10− 13 m/Pa, slight parameter 
fluctuations will cause significant changes in the equivalent stiffness 
coefficients of the composite. For the stiffness coefficients C22, C23 and 
C44, the complex coupling effects of the two interfacial parameters are 
observed. The effect of the interfacial parameter α on the stiffness co
efficients C22 and C23 is smaller compared to the interfacial parameter β. 

The equivalent stiffness coefficients of the composite also depend on 
the fiber volume fraction for a specific interfacial damage parameter. 
Fig. 5 presents the predictions of the proposed model for the equivalent 
stiffness coefficients of the composite with specific tangential interfacial 

parameters α and different fiber volume fractions. To simplify the 
analysis, only the cases of α = 10− 15 m/Pa, 10− 14 m/Pa and 10− 13 m/Pa 
are presented here, and the normal interfacial parameter is set to β = 0. 
Fig. 5a and b shows that the interfacial parameter α has no impact on the 
stiffness coefficients C11 and C12, which is consistent with the previous 
analysis. Fig. 5c–f exhibit the effects of the interfacial parameter α and 
fiber volume fraction on the stiffness coefficients C22, C23, C44 and C66, 
respectively. The restricted domain is bounded by α = 0 (no damage at 
the interface) and α = 1 (tangential stiffness of the interface approaches 
0). It can be observed from Fig. 5e and f that in the small interfacial 
damage regime (when α is small, e.g., α ≤ 10− 14 m/Pa), the equivalent 
stiffness coefficients C44 and C66 increase as the fiber volume fraction 
increases. However, as the interfacial damage increases (e.g., at α =
10− 13 m/Pa), the equivalent stiffness coefficients C44 and C66 of the 
composite decrease as the fiber volume fraction increases, which is 
attributed to the extreme weakening of the load transfer between the 
fibers and the matrix due to increased interfacial damage. 

5.3. Uniaxial tension and stress relaxation 

In this section, based on the proposed micromechanical model, the 
uniaxial tensile and stress relaxation behavior of 4D printed SMPCs with 
various fiber lay-up angles (θ = 0◦, 30◦, 45◦, 60◦ and 90◦) at a fixed fiber 
volume fraction ξf = 12% and interfacial parameter α = 10− 15 m/Pa 
were simulated. All simulations were run in the commercial finite 
element software ABAQUS, and the proposed thermo-viscoelastic model 
was implemented through the UMAT subroutine. In the simulation, the 
quadratic hexahedral element C3D20R with reduced integration was 

Fig. 8. Theoretical simulations and experimental measurements of the stress relaxation behavior of 4D printed SMPCs with a) θ = 30◦, b) θ = 45◦, c) θ = 60◦ and d) θ 
= 90◦ at different temperatures. 
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Fig. 9. Theoretical simulations of shape memory cycles for 4D printed SMPCs with various fiber lay-up angles. a) Time-temperature profile during shape memory 
cycles. b) Time-strain curves. c) Time-stress curves. Simulated deformed shapes and strain distribution clouds for the composites with d) θ = 30◦, e) θ = 45◦, f) θ =
60◦ and g) θ = 90◦ during shape memory cycles. 

Fig. 10. Theoretical simulation and experimental measurement of the shape memory cycle for 4D printed composite with θ = 60◦.  
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adopted, and the effect of different fiber lay-up angles was considered by 
defining a local coordinate system with an angle θ in the OX1X2 plane 
with the global coordinate system. 

From the finite element implementation process described in Section 
3, the viscoelastic stiffness coefficients Ceq

IJ,∞ and Ceq
IJ,k of 4D printed 

SMPCs must be determined in advance, and the determined values are 
presented in Table 3. It is noteworthy that the interfacial effects between 
filaments, which are prone to occur in 3D printing processes represented 
by fused filament fabrication (FFF), are not included in the current 
discussion. However, since two interfacial damage parameters are 
incorporated, the proposed model can effectively simulate the interfa
cial effects between filaments if each filament is considered as a slender 
inclusion. 

Fig. 6 presents the comparison between the uniaxial tensile experi
ment and the theoretical simulation of 4D printed SMPCs with θ = 0◦, 
where the black dashed line represents the theoretical simulation. The 
theoretical simulation overestimates the stiffness of the composite, and 
this overestimation is attributed to the presence of fractures and dis
tortions in the fiber bundles as well as matrix voids and interfacial de
fects caused by the 3D printing process. Here, we introduce a defect 
correction factor γ such that Ceq

IJ = γCeq
IJ , where Ceq

IJ is the corrected 
stiffness coefficient and 0 < γ ≤ 1 (γ = 1 means uncorrected). The red 
curve in Fig. 6 denotes the simulation of the engineering stress-strain 
curve for a correction factor γ = 0.7, which is in good agreement with 
the experiment. Therefore, the subsequent property predictions of 4D 
printed SMPCs with different fiber lay-up angles are obtained with a 
correction factor γ = 0.7. 

Fig. 7 shows the comparison between theoretical simulations and 
experimental measurements of the tensile stress-strain curves of 4D 
printed SMPCs with various fiber lay-up angles at 293 K, from which it 
can be observed that the theoretical simulations agree well with the 

experiments in the three cases of θ = 30◦, 45◦ and 60◦. However, Fig. 7 
shows that the modified model with γ = 0.7 still overestimates the 
stiffness of 4D printed SMPCs at θ = 90◦, which is attributed to the 
inherent defect caused by 3D printing process, i.e., poor transverse 
bonding of the components. 

Stress relaxation is a typical mechanical phenomenon of viscoelastic 
polymers and their composites. Fig. 8 exhibits the comparison between 
the theoretical simulations and experimental measurements of the 
evolution curves of the stress relaxation modulus over time for 4D 
printed SMPCs with various θ at different temperatures. The proposed 
model demonstrates the satisfactory predictive capability for the relax
ation behavior of 4D printed SMPCs. The modulus decays rapidly at the 
beginning of the relaxation period, and this decay gradually decreases 
with time. After a long time, the modulus converges to an equilibrium 
value. The proposed model exhibits a more accurate prediction of the 
equilibrium modulus after long-term relaxation compared to the initial 
relaxation modulus. This is probably attributed to the uncontrolled 
disturbances on the relaxation behavior of the specimen caused by the 
experimental fixture and environment at the beginning of relaxation. 

5.4. Shape memory behavior 

Fig. 9 presents theoretical simulations of shape memory cycles for 4D 
printed SMPCs with fiber lay-up angles θ of 30◦, 45◦, 60◦ and 90◦. The 
temperature loading during the simulation is divided into five steps, 
following the time-temperature profile shown in Fig. 9a. Fig. 9b exhibits 
the time-strain profiles recorded during shape memory cycles, from 
which the typical strain free recovery process can be observed in the 
time interval from 1500 s to 2500 s, which demonstrates the effective
ness of the model in predicting the free shape recovery of SMPCs. Fig. 9c 
presents the time-stress curves of 4D printed SMPCs during shape 

Fig. 11. The original shape, temporary shape and recovered shape of 4D printed cross-shaped SMPC member obtained by experiment and theoretical simulation 
during the shape memory cycle. 
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memory cycles. In step 1 (S1), the maximum stresses for composites with 
θ = 30◦, 45◦, 60◦, and 90◦ are 0.46 MPa, 0.20 MPa, 0.16 MPa, and 0.18 
MPa, respectively. Obviously, the reinforcement effect of carbon fibers 
on the composite with θ = 30◦ is the most significant. In step 2 (S2), the 
thermal contraction due to the decrease in temperature under the 
restrictive boundary conditions causes an increase in stress, and this 
trend of stress increase becomes more pronounced as the temperature 
decreases. In addition, the composite with θ = 30◦ exhibits the least 
stress increase in step 2, which is attributed to the negative CTE of the 
carbon fiber in the longitudinal direction. 

Fig. 9d–g respectively give the simulated deformed shapes of the 
composite with θ = 30◦, 45◦, 60◦ and 90◦ during shape memory cycles. 
The three states, namely State 1, State 2 and State 3, correspond to the 
moments marked in Fig. 9b. The local strain distribution in the specimen 
is directly related to the fiber lay-up angle as can be seen from strain 
clouds. For example, in Fig. 9d, it can be observed that the strain dis
tribution of the composite specimen with θ = 30◦ during loading pre
sents a strip of approximately 30◦ from the tensile direction. 

Fig. 10 shows the comparison between theoretical simulation and 
experiment of the shape memory cycle for 4D printed composite with θ 
= 60◦. In the cooling phase (S2), the temperature change with time 
almost decays exponentially limited by the temperature-controlled 
chamber. The theoretical simulations can effectively predict the 
changing trend of stress and strain in the shape memory cycle. Of course, 
it can be found that one of the drawbacks of the proposed model is that 
the strain at the end of the shape memory cycle approaches zero (the 
shape recovery rate is close to 100%), which is not consistent with the 
experimental results. In the shape memory cycle test, the strain applied 
to the SMPC specimen in phase S1 was not fully recovered in phases S4 
and S5, and this phenomenon was mainly attributed to the irreversible 
plastic deformation of the specimen. Besides, since the recovery force of 
the specimen during the shape recovery process was very low, 

interactions such as friction between the fixture and the specimen would 
also affect the strain recovery. Therefore, the current model still needs to 
be improved in subsequent work to consider the plastic behavior of 
SMPCs, but it is not discussed in this article. 

A 4D printed cross-shaped SMPC member was used to validate the 
ability of the proposed model to predict the shape memory behavior of 
complex composite structures. The original shape and dimensions of the 
member are shown in Fig. 11, and the fiber lay-up angle θ is 45◦. At a 
temperature of 343 K, the four free branches of the cross-shaped member 
were rotated by a certain angle to obtain an inwardly rolled temporary 
shape, which was fixed by reducing the temperature. Then, the member 
with the temporary shape was placed in the environment of 343 K, 
which was able to return to a recovered shape close to the original shape. 

Fig. 12 presents the experimental and simulated free recovery pro
cess of 4D printed cross-shaped SMPC member, from which a good 
agreement between the experimental and simulated deformations can 
be observed. Thus, it can be confirmed that the proposed model can 
effectively predict the shape memory behavior of complex composite 
components. The experimental and simulated shape recovery processes 
of 4D printed cross-shaped SMPC member are detailed in Supplementary 
Video S1 and Supplementary Video S2, respectively. 

Supplementary data related to this article can be found at https:// 
doi.org/10.1016/j.mechmat.2022.104301. 

6. Conclusions 

Although several constitutive models of SMPCs based on viscoelastic 
theory and thermodynamic free energy decomposition have been 
developed, there is still no constitutive model of multiphase SMPCs from 
the perspective of micromechanics has been proposed. In this work, we 
derived the equivalent stiffness tensor of the multiphase composite 
within a micromechanics framework based on Eshelby’s equivalent 

Fig. 12. Experiments and theoretical simulations for the free shape recovery process of 4D printed cross-shaped SMPC member.  
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inclusion theory and Mori-Tanaka homogenization method, and the 
viscoelasticity of the SMP matrix was considered by the elastic- 
viscoelastic correspondence principle. A two-parameter interfacial 
spring model was employed to describe the interfacial damage between 
the inclusions and the matrix, and the effect of interfacial parameters 
and inclusion volume fraction on the initial equivalent stiffness co
efficients of the unidirectional composite was analyzed. 

The proposed viscoelastic model for SMPCs was implemented in the 
commercial finite element software ABAQUS through the UMAT sub
routine. 4D printed fiber-reinforced SMPCs were used to validate the 
proposed model. Stress relaxation tests of PLA-based SMPs at multiple 
temperatures were conducted to determine the model parameters. 
Moreover, a series of tests including uniaxial tension, stress relaxation 
and shape memory cycling for 4D printed SMPCs with various fiber lay- 
up angles were performed and compared with theoretical simulations. 
The results indicate that the theoretical model is able to effectively 
predict the uniaxial tensile curves, stress relaxation phenomena and 
shape memory behavior of 4D printed SMPCs. Therefore, the theoretical 
framework and finite element implementation scheme presented in this 
paper may be useful for new mechanical research on viscoelastic com
posites including but not limited to 4D printing. 
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