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A B S T R A C T   

The microbuckling mechanics of unidirectional fiber-reinforced shape memory polymer composite (SMPC) with 
low fiber volume fraction were investigated, and the mechanical models were formulated considering the 
attenuation of shear strain in the resin matrix near the buckled fibers. We deduced the analytical expression of 
the attenuation function and the key parameters during the microbuckling process of SMPC, including the critical 
buckling wavelength and strain. The values determined by finite element analysis verified the accuracy of the 
above theoretical predictions. The nonlinear stress–strain relationship during the post-buckling process was also 
investigated. Additionally, the classical elastic–viscoelastic correspondence principle was established to deter-
mine the dynamic buckling behaviors of SMPC at different temperatures. The viscoelastic parameters of shape 
memory polymer (SMP) were obtained from the isothermal stress relaxation experiments, and then the variation 
of buckling wavelength with time at different temperatures was evaluated.   

1. Introduction 

The shape memory polymer (SMP) is a kind of smart material that 
can change its shape in response to external stimuli, including light, 
electricity, heat, magnetism, moisture, and pH [1–5]. The SMP can be 
deformed from the initial shape to the deformed shape, and the 
deformed shape can be fixed; under certain external stimuli, the SMP 
will reversibly recover from the deformed shape to its initial shape 
[6–10]. The shape memory process of SMP is a deformation cycle of 
“initial state- shape fixed state-shape recovery state”. Compared with the 
shape memory alloy (SMA), the SMP has advantages as a kind of smart 
material, such as lightweight, low density, large deformation capacity, 
easy adjustment of the glass transition temperature (Tg), low cost, good 
processability, and so on [11,12]. However, the shortcoming of low 
modulus and strength of SMP limit its applications in spacecraft [13]. 
So, continuous fiber reinforced shape memory polymer composite 
(SMPC) is manufactured to overcome the above obstacles. Because of 
the high specific strength, modulus and unique shape memory perfor-
mance, SMPCs are widely used in aerospace applications, such as space 
deployable hinges, trusses and antennas, etc., some of which have even 
been designed as the load-carrying components [14–18] to bearing the 

axial compressive loads. Therefore, the compressive behaviors of SMPC 
structures have become a key problem to be solved urgently. 

Some achievements have been made in the research about 
compressive buckling behaviors of laminated plates. It is found out that 
the microbuckling of fibers in the compressive processes of laminated 
plates will lead to the ultimate failure of composite materials [19–21]. 
As early as 1960, Dow and Gruntfest proposed the fiber microbuckling 
mechanisms [22,23], and they firstly linked the longitudinal compres-
sive strength of composite materials to the instability of fibers. On this 
basis, Rosen considered the fiber as a rigid slender cylinder embedded in 
the ideal elastic resin matrix, and pioneered a prediction model for the 
longitudinal compressive strength of the continuous fiber-reinforced 
polymer composites based on the microbuckling of fibers [24]. He 
proposed that the continuous fibers arranged in parallel would buckle 
under the compressive load, and two buckling modes might occur in the 
transverse direction (extension mode and shear mode), as shown in 
Fig. 1. The extension mode model showed the influence of the elastic 
moduli of resin and fiber on the longitudinal compressive buckling 
loads, but the predicted values were much higher than that of the 
experimental values [25]. In the meantime, the effect of the resin’s shear 
modulus on the composite’s longitudinal compressive buckling loads 
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was considered in the shear mode model, but the related material 
properties of the fibers were ignored, which was unreasonable. Subse-
quently, based on the properties of fibers, Lo and Chim modified Rosen’s 
model [26], where the influence of the tensile modulus and in-plane 
shear modulus of the composite material on the longitudinal compres-
sive performance was considered. Based on the theory of local buckling 
failure of fiber, they used Timoshenko’s short beam theory [26] to 
analyze the stress of a single-fiber element. Xu and Reifsnider modeled 
the fiber as a short cylinder embedded in the ideal elastic resin matrix, 
and homogenized the fiber and resin based on the beam-on-elastic 
foundation model [27]. Lo and Chim thought that due to the limita-
tion of the composite manufacturing process, there would be a small 
deviation angle between the directions of fiber alignment and the load, 
which was called the initial deviation angle of the fiber. The Lo-Chim 
model showed that fiber would exert large transverse shear stress on 
the resin matrix even with a very small initial deviation angle, resulting 
in a decrease in the in-plane shear modulus of the composite, which 
would lead to a significant reduction in the longitudinal compressive 
buckling load of the composite [28–30]. Campbell considered the 
buckling performances of single-fiber or multi-filament fibers in a square 
elastic matrix, and proposed a two-dimensional pure shear buckling 
model [31]. The calculated value of the buckling wavelength was in 
good agreement with the experiment result, but the critical buckling 
stress and strain were not reasonable. 

The above buckling models were all based on the one-dimensional 
beam model or two-dimensional plane model. They all assumed that 
the shear strains were uniform around the buckled fibers, without 

considering the attenuation of strain in the matrix, which will result in 
deviations in the calculation results [32]. In addition, the matrix resins 
were considered as linear elastic materials, and the influence of tem-
perature and viscoelasticity of resins were not considered. However, 
different from traditional fiber-reinforced polymer composites, the fiber 
volume fraction of SMPC is always low to take full advantage of the 
shape memory properties of SMP. As a result, the distance between fi-
bers in SMPC is larger, which makes the attenuation of strain in the resin 
matrix must be considered. Besides, as a typical kind of temperature- 
sensitive and viscoelastic material, the mechanical properties of SMP 
have strong temperature and time dependences. With the increase of 
temperature, the resin matrix of SMPC will gradually change from the 
glassy state to the rubbery state, and Young’s modulus ratio of fiber to 
resin will increase by two orders of magnitude; the relaxation modulus 
of SMP will gradually decrease with time, and the rate of descent is also 
temperature-dependent. Therefore, the microbuckling behaviors have a 
great difference between SMPC and traditional composites. The micro-
buckling wavelength and amplitude of SMPC will vary not only with the 
temperature, but also with time. 

The main purpose of this paper is to study the microbuckling be-
haviors of SMPC with low fiber volume fractions. The attenuation effect 
of shear strain in matrix and the viscoelasticity of SMP are both 
considered in this paper, which can play a key role in the study of 
compressive microbuckling behaviors of unidirectional fiber-reinforced 
SMPCs with low fiber volume fractions. The structure of this paper is 
arranged as follows: 

In the first part, the energy method is used to study the compressive 

Fig. 1. Different microbuckling modes of continuous fiber-reinforced composites under compressive loading (a) extension mode, (b) shear mode.  

Fig. 2. The two-dimensional model of single-fiber reinforced SMPC (the blue line represents the fiber, while the pink dot lines represent the deformation of resin (a) 
single-fiber reinforced SMPC under axial compressive load, (b) the microbuckling state of single-fiber reinforced SMPC, (c) the local coordinate system. 
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critical buckling and post-buckling behaviors of fiber reinforced linear 
elastic polymer composite. Single-fiber and multi-fiber reinforced 
composites are modeled respectively, and the key parameters during the 
whole nonlinear buckling process are analyzed. The classical elas-
tic–viscoelastic correspondence principle is then established to solve the 
evolvement rule of the microbuckling wavelength of single-fiber rein-
forced SMPC with temperature and time. In the second part, the finite 
element method is used to model the single-fiber and multi-fiber rein-
forced composites to verify the accuracy of the proposed buckling the-
ory. In the last part, the effects of fiber diameter, fiber volume fraction, 
temperature and Poisson’s ratio of resin matrix on the critical buckling 
strain and nonlinear buckling stress–strain response are investigated. 
The time-dependent buckling wavelength can be determined by visco-
elastic microbuckling model. 

2. Theoretical analysis 

The 2D compressive buckling model is established in this article to 
study the compressive microbuckling behavior of unidirectional fiber- 
reinforced SMPC. Single-fiber and multi-fiber reinforced composites 
are modeled respectively, and the viscoelasticity of the resin matrix is 
also taken into consideration. 

2.1. Microbuckling mechanics of single-fiber reinforced SMPC 

The microbuckling behaviors of single-fiber reinforced SMPC un-
dergoing compressive deformation are firstly conducted, and the cor-
responding two-dimensional model is established as shown in Fig. 2. 
Assuming that a single fiber is embedded in an infinite resin matrix, 
where fiber is assumed to be beam element and resin is assumed to be 
shell element. The longitudinal displacement on one end is constrained 
and subjected to the axial compressive force at the other end, resulting in 
the microbuckling of the fiber. It should be noted that if the fiber is 
modeled with a circular cross-section, the strain distribution of the resin 
matrix around the fiber will be uneven, which will make this problem 
difficult to be solved. Therefore, to simplify the calculation, the influ-
ence of the shape of the fiber’s cross-section will not be considered 
hereafter. In the following of this paper, the cross-section of the fiber is 
equivalent to a square section with a side length d, where d is the 
equivalent diameter of the fiber, and has the following relationship with 
the actual radius r of the fiber. 

d2 = πr2# (1) 

In the local coordinate system as shown in Fig. 2(c), the fiber 
buckling deformation is assumed to have the following expression: 

y = Af cos
(πx

λ

)
# (2) 

where λ and Af are the half-wavelength and amplitude of the buckled 
fiber, respectively. 

The macroscopic strain of the composite plate along the x-axial in the 
compressive process can be calculated as. 

ε =
1
2λ

∫ λ

0

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(dx)2
+ (dy)2

√

− dx
)

dx ≈
1
2λ

∫ λ

0

(
dy
dx

)2

dx =
π2

4λ2Af
2# (3) 

Therefore, it can be considered that the buckling amplitude Af is a 
function of the half-wavelength λ and the macroscopic compressive 
strain ε, i.e. 

Af =
2
π λ

̅̅̅
ε

√
# (4) 

Assuming that the fiber is incompressible, so only the bending strain 
energy of the fiber need to be considered. The strain energy of a fiber 
with the length of λ under small deformation is. 

Uf ,s =
EI
2

∫ λ

0

(
∂2y
∂x2

)2

dx =
π2Ef If

λ
ε# (5) 

The average strain energy over per unit length range of the buckled 
fiber is. 

Uf =
Uf ,s

λ
=

π2Ef If

λ2 ε# (6) 

where Ef and If are the longitudinal Young’s modulus and the 
moment of inertia of the fiber, and If = d4/12. 

It is assumed that the fiber and resin matrix are tightly bonded, so the 
deformation of the resin at the joint place has the same expression with 
fiber, i.e. 

y|y=0 = Af cos
(πx

λ

)
# (7) 

While SMP is a typical temperature-sensitive material, whose 
modulus changes dramatically with temperature. The modulus of resin 
matrix will be much lower than that of fiber at relatively high temper-
atures (around the glass transition temperature, Tg). Just like dropping a 
stone into water, the farther away from the stone, the smaller the ripples 
in the water will be. Therefore, the displacement of resin matrix will be 
inhomogeneous along the y-direction, which will attenuate with the 
increase of the distance between fiber and resin. As shown in Fig. 2(b), at 
a sufficient distance from the fiber, the resin will hardly deform, which 
can also be observed in the following finite element analysis (Fig. 6). So, 
the attenuation function χ(|y| ) is introduced in this article to describe 
this phenomenon, where |y| is the perpendicular distance from a point in 
the matrix resin to the surface of the fiber. χ(|y| ) satisfies the following 
two boundary conditions. 

χ(0) = 1# (8)  

χ(∞) = 0# (9) 

Then, the displacements of the matrix resin at any point are. 

u = εx + const# (10)  

v = Af χ(|y| )cos
(πx

λ

)
# (11)  

w = 0# (12) 

As for the two-dimensional system shown in Fig. 2, only the upper 
matrix is considered, i.e., y > 0. It is assumed that const = 0, the 
displacement of the matrix resin can be expressed as. 

[ u v ] =
[

εx
2
̅̅̅
ε

√
λ

π χ(y)cos
(πx

λ

) ]

# (13) 

So, the strain of matrix resin is. 

ε =

⎡

⎢
⎢
⎢
⎢
⎣

ε −
̅̅̅
ε

√
χ(y)sin

(πx
λ

)

−
̅̅̅
ε

√
χ(y)sin

(πx
λ

) 2
̅̅̅
ε

√
λcos

( πx
λ

)
χ ′

(y)

π

⎤

⎥
⎥
⎥
⎥
⎦
# (14) 

In this paper, the resin matrix is simulated as the shear-lag model and 
only the shear deformation is considered, so the strain energy density of 
the matrix resin is. 

ψ =
G
2

(

ε − 1
3

trε
)

:

(

ε − 1
3

trε
)

# (15) 

The 1
3 trε term is ignored, so the strain energy density of the matrix 

resin can be expressed as. 

ψ =
G
2

ε : ε = Uxx + Uyy + Uxy =
G
2

ε2
xx +

G
2

ε2
yy + Gε2

xy# (16) 
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Uxx =
G
2

ε2# (17)  

Uyy =
2λ2G

π2 χ ′

(y)2cos2
(πx

λ

)
ε# (18)  

Uxy = Gχ(y)2sin2
(πx

λ

)
ε# (19) 

where G = Em/2(1 + v) is the shear modulus of the resin, v is the 
Poisson’s ratio of the resin, Uxx, Uxy and Uyy are the strain energy density 
components of the resin. 

Define ψ0 = Uyy + Uxy, which represents the effect of buckled fiber 
on the strain energy density of matrix, excluding the uniform strain 
energy density of the matrix Uxx. 

The uniform strain energy per unit length of the matrix is. 

Uxx = Uxxd(b − d) =
G
2

ε2d(b − d)# (20) 

where b is the overall width of SMPC. 
Assuming that the attenuation function is an exponential function 

(the rationality of this hypotheses will be subsequently verified by FEA). 

χ(y) = e− ky# (21) 

The strain energy density ψ0 is integrated over per unit length range 
of the buckled fiber. 

Um0 = 2
d
λ

∫ ∞

0

∫ λ

0
ψ0dxdy = 4G

(
kλ2

2π2 +
1
4k

)

εd# (22) 

So, the strain energy per unit length of the whole system can be 
calculated as. 

U = Uxx + Um0 + Uf =
G
2

d(b − d)ε2 +

(
π2Ef If

λ2 +
2kλ2G

π2 d +
G
k

d
)

ε#

(23) 

The coefficient of the attenuation function can be conducted through 
the principle of minimum strain energy. 

∂U
∂k

= 0# (24)  

k =
π̅̅
̅

2
√

λ
# (25) 

It can be seen from Eq. (25) and Eq. (21) that with the decrease of the 
half-wavelength of the fiber, the attenuation rate of strain in resin matrix 
will become faster. 

Substitute Eq. (25) into Eq. (23) derive the following expression. 

U =
G
2

d(b − d)ε2 + 2
(

π2Ef If

2λ2 +

̅̅̅
2

√
λG

π d
)

ε# (26) 

Similarly, the half-wavelength can be calculated according to the 
principle of minimum strain energy. 

∂U
∂λ

= 0# (27)  

λ =
π̅
̅̅
26

√

̅̅̅̅̅̅̅̅
Ef If

μd
3

√

≈ 1.54d

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Ef (1 + v)
Em

3

√

# (28) 

It is worth noting that the above buckling analysis is a linear buckling 
analysis, and only basic information about the critical buckling wave-
length can be obtained. However, the critical buckling state of the 
composite cannot be observed in the experiment. We can only observe 
that the mechanical equilibrium path (load–displacement curve) of the 
composite material will bifurcate when buckling. After the bifurcation 
point, the material will not completely lose its load carrying capacity, 
but partially recover its bearing capacity and enter the secondary 
equilibrium path. Therefore, the mechanical behavior of the composite 
material in the whole process of buckling may be highly nonlinear. As a 
consequence, if we want to obtain the mechanical response of the 
composite material in the whole buckling process, we must study its 
nonlinear buckling behavior, that is, the post-buckling behavior. 

It is emphasized again that since the small deformation assumption is 
considered in this paper, the buckling wavelength can be regarded as 
unchanged during the whole nonlinear buckling process, then the crit-
ical buckling strain of this single-fiber reinforced SMPC can be deduced 
from this assumption. The pre-buckling state is represented by a 
subscript “0′′, while the post-buckling state is represented by a subscript 
“1”. 

In the pre-buckling state, no buckling deformation occurs in the 
fiber, so the strain energy of the SMPC (per unit length) can be expressed 
as. 

U0 =
1
2
Eeε0

2bd# (29) 

where. 

Ee =
d
b

Ef +

(

1 −
d
b

)

Em# (30) 

is the equivalent modulus of the single-fiber reinforced composite. 
In the post-buckling state, the strain energy of the SMPC (per unit 

length) can be expressed as. 

U1 =
G
2

d(b − d)ε1
2 + 2

(
π2Ef If

2λ2 +

̅̅̅
2

√
λG

π d
)

ε1# (31) 

So, the critical buckling strain εcritical can be calculated as U0 = U1 and 
ε0 = ε1 = εcritical, i.e. 

1
2
Eeεcritical

2bd =
G
2

d(b − d)εcritical
2 + 2

(
π2Ef If

2λ2 +

̅̅̅
2

√
λG

π d
)

εcritical# (32)  

εcritical =
4

(Ee + G)bd − Gd2

(
π2Ef If

2λ2 +

̅̅̅
2

√
λG

π d
)

# (33) 

Then, the stress–strain response of the single-fiber reinforced com-
posite material in the whole post-buckling process can be calculated. 
The partial derivative of the strain energy density before and after 
buckling with respect to strain is equal to the stress in the whole 
nonlinear buckling process, i.e. 

σ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂U0

db∂ε, ε ≤ εcritical

∂U1

bd∂ε, ε > εcritical

# (34)  

Fig. 3. The two-dimensional model of multi-fiber reinforced SMPC.  
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σ =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[
d
b

Ef +

(

1 −
d
b

)

Em

]

ε, ε ≤ εcritical

G
(

1 −
d
b

)

ε + 2
(

π2Ef If

2dbλ2 +

̅̅̅
2

√
λG

πb

)

, ε > εcritical

# (35) 

It can be seen that the stress is a piecewise function in the whole 
nonlinear buckling process, and the strain corresponding to bifurcation 
point is the critical buckling strain εcritical. 

2.2. Microbuckling mechanics of multi-fiber reinforced SMPC 

The uniaxial compressive buckling behavior of a single-fiber rein-
forced SMPC was discussed in the above section. It can be seen that the 
buckling wavelength of the fiber is only related to the basic mechanical 
properties of the fiber and resin. The uniaxial compressive buckling 
behavior of uniformly distributed multi-fiber reinforced SMPC is dis-
cussed and analyzed below. The two-dimensional model is established 
as shown in Fig. 3. Assuming that fibers are evenly distributed in the 
resin matrix, the equivalent diameter of the fiber is d, and the distance 
between the central axes of adjacent fibers is L. The volume fraction of 
the fibers can be expressed as Vf = d/L. 

It can be seen from the figure that the ordinates of the initial posi-
tions of fibers’ central axes are. 

yf = ⋯, − 2L, − L, 0, L, 2L,⋯# (36) 

As the fibers in the two-dimensional model are arranged periodically 
along the y-axis, so we can represent the resin in the whole model by the 
resin between two adjacent fibers, i.e., − d/2 < y < L − d/2. In addition, 
the microbuckling process is a small deformation process, and the resin 
matrix is the same with that of the single-fiber reinforced SMPC, so the 
attenuation function will not change. 

The superposition principle is firstly used to calculate the effect of 
fibers at yf = ⋯, − 2L, − L,0 on the strain at a point ym = y of the matrix 
resin. It should be noted that the linear superposition method is directly 
used in this article to calculate the strain energy of the matrix, without 
considering the obstruction of strain energy propagation by adjacent 
fibers. The resulting strain energy will be greater than the actual value, 
especially when the fiber volume fraction is high. Therefore, the 
calculation method and strain energy superposition assumption adopted 
in this paper are only applicable to the SMPC with fiber volume fraction 
less than 5 %. 

As for the fiber at yf = 0, the distance from the upper surface of the 
fiber to the point ym = y is. 

h = y −
d
2
# (37) 

So, the strains can be calculated as. 

ε0
yy = −

̅̅̅
ε

√
χ
(

y −
d
2

)

sin
(πx

λ

)
# (38)  

ε0
xy =

2
̅̅̅
ε

√
λ

π χ ′

(

y −
d
2

)

cos
(πx

λ

)
# (39) 

In a similar way, as for the fibers at yf = − nL(n > 0), the distance 
from the upper surface of the fibers to this point is. 

h = y + nL −
d
2
# (40) 

The strains can be calculated as. 

ε− n
yy = −

̅̅̅
ε

√
χ
(

y + nL −
d
2

)

sin
(πx

λ

)
# (41)  

ε− n
xy =

2
̅̅̅
ε

√
λ

π χ ′

(

y + nL −
d
2

)

cos
(πx

λ

)
# (42) 

Therefore, it can be deducted that the influence of all fibers at yf ≤ 0 
on strains at this position are. 

εlower
yy =

∑0

n=− ∞
εn

yy =

̅̅̅
ε

√
e

π(d− 2y)
2
̅̅
2

√
λ

e
πL̅̅
2

√
λ − 1

sin
(πx

λ

)
# (43)  

εlower
xy =

∑0

n=− ∞
εn

xy =
̅̅̅
2

√
̅̅̅
ε

√
e

π(d− 2y)
2
̅̅
2

√
λ

e
πL̅̅
2

√
λ − 1

cos
(πx

λ

)
# (44) 

Then, as for the fibers at yf = nL(n > 0), the distance from the lower 
surface of the fibers to this point is. 

h = nL − y −
d
2
# (45) 

The strains can be calculated as. 

ε0
yy = −

̅̅̅
ε

√
χ
(

nL − y −
d
2

)

sin
(πx

λ

)
# (46)  

ε0
xy =

2
̅̅̅
ε

√
λ

π χ′

(

nL − y −
d
2

)

cos
(πx

λ

)
# (47) 

So, it can be deducted that. 

εupper
yy =

∑∞

n=1
εn

yy = −

̅̅̅
ε

√
e

π(d+2y)
2
̅̅
2

√
λ

e
πL̅̅
2

√
λ − 1

sin
(πx

λ

)
# (48)  

εupper
xy =

∑∞

n=1
εn

xy = −
̅̅̅
2

√
̅̅̅
ε

√
e

π(d+2y)
2
̅̅
2

√
λ

e
πL̅̅
2

√
λ − 1

cos
(πx

λ

)
# (49) 

Therefore, the strain at − d/2 < y < L − d/2 can be calculated 
through the superposition principle. 

εyy = εlower
yy + εupper

yy =

̅̅̅
ε

√

e
πL̅̅
2

√
λ − 1

[
e

π(d− 2y)
2
̅̅
2

√
λ − e

π(d+2y)
2
̅̅
2

√
λ

]
sin
(πx

λ

)
# (50)  

εxy = εlower
xy + εupper

xy = −
̅̅̅
2

√
̅̅̅
ε

√

e
πL̅̅
2

√
λ − 1

[
e

π(d− 2y)
2
̅̅
2

√
λ − e

π(d+2y)
2
̅̅
2

√
λ

]
cos
(πx

λ

)
# (51) 

ψ0 and Um0 can be expressed as. 

ψ0 = Uyy + Uxy =
G
2

ε2
yy + 2 ×

G
2

ε2
xy  

=
G
4

e
π(d− 2y)̅̅

2
√

λ

(

3cos
(

2πx
λ

)

+ 5
)(

e
̅̅
2

√
πy

λ − 1
e

πL̅̅
2

√
λ − 1

)2

ε# (52)   

Um0 = d
1
λ

∫ L− d/2

d/2

∫ λ

0
ψ0dxdy

=
5dG

8π
(

e
πL̅̅
2

√
λ − 1

)2

(
4πde

πd̅̅
2

√
λ −

̅̅̅
2

√
λe
̅̅
2

√
πd

λ −
̅̅̅
2

√
λe
̅̅
2

√
π(d− L)

λ − 4πLe
πd̅̅
2

√
λ +

̅̅̅
2

√
λ +

̅̅̅
2

√
λe
̅̅
2

√
πL

λ

)
ε#

(53)   
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The whole strain energy per unit length of the composite is U =

Uxx + Um0 + Uf , where Uxx = Gε2d(L − d)/2, Uf = π2Ef If ε/λ2. 
The half-wavelength can be calculated according to the principle of 

minimum strain energy (numerical solution). 

∂U
∂λ

= 0# (54) 

The material parameters are normalized as dimensionless parame-
ters, i.e. 

α =
Ef If

Gd4 =
(1 + v)Ef

6Em
, β =

λ
d
,ϕ =

d
L
= Vf# (55) 

The whole strain energy can be expressed as. 

U =
(1 − ϕ)Gd2

2ϕ
ε2 +

Gd2

8π ζε# (56) 

where.   

ζ is a dimensionless parameter which is related to the shear strain 
energy of resin matrix and the bending strain energy of fibers. It should 
be noted that ζ is only related to the material parameters and fiber 
volume fraction. 

Similar to the single-fiber reinforced composite, the strain energy of 
the multi-fiber reinforced SMPC in the pre-buckling state (per unit 
length) can be expressed as. 

U0 =
1
2
Eeε2dL# (58) 

where Ee = Vf Ef +
(
1 − Vf

)
Em is the equivalent modulus of composite. 

In the post-buckling state, the strain energy of the SMPC (per unit 
length) can be expressed as. 

U1 =
G
2ϕ

ε2d2(1 − ϕ) +
d2G
8π ζε# (59) 

So, the critical buckling strain εcritical can be calculated as U0 = U1, i. 
e. 

1
2ϕ

Eeε2d2 =
G
2ϕ

ε2d2(1 − ϕ) +
d2G
8π ζε# (60)  

εcritical =
G

4π[Ee − G(1 − ϕ) ]
ϕζ# (61) 

The stress–strain response can be calculated as. 

σ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂U0

dL∂ε, ε ≤ εcritical

∂U1

dL∂ε, ε > εcritical

# (62)  

σ =

⎧
⎪⎪⎨

⎪⎪⎩

[
Vf Ef +

(
1 − Vf

)
Em
]
ε, ε ≤ εcritical

(
1 − Vf

)
Gε + G

8π ζVf , ε > εcritical

# (63)  

2.3. Considering the viscoelasticity of SMP 

The resins are assumed to be linear elastic materials in the above 
calculation process, without considering the viscoelasticity of SMPs. 
However, as a typical shape memory material, the modulus of SMP has 
strong temperature and time dependence. The corresponding critical 
buckling and post-buckling behaviors of SMPC will vary not only with 
temperature but also with time. So, the viscoelasticity of SMP should 
also be taken into consideration. In this part, the SMP is assumed to be 
isotropic, linear viscoelastic, and the Poisson’s ratio is assumed to be 
invariable with the change of temperature. Under isothermal conditions, 
the influence of thermal expansion coefficient can be ignored, so the 
corresponding viscoelastic constitutive relation of the composite mate-
rials is. 

τxy(t) =
1

2(1 + v)

∫ t

− ∞
μ(t − τ)

∂γxy(τ)
∂τ dτ# (64) 

where μ(t) is the viscoelastic relaxation modulus. The glassy modulus 
μ(0) = μ0, and rubbery modulus μ(∞) = μ∞, correspondingly. The 

Laplace transform of Eq. (64) is. 

τxy(s) =
1

2(1 + vr)
sμ(s)γxy(s)# (65) 

where s is the transform variable, and a bar over a variable desig-
nates its Laplace transform. 

Similarly, since the wavelength of the fiber also varies with time, the 
Laplace transform of the fiber waveform is. 

y(s) = Acos
(

πx
λ(s)

)

# (66) 

Substituting Eq. (65) and Eq. (66) into Eq. (26) and Eq. (27), the 
corresponding half-wavelength of the fiber can be obtained through the 
similar energy minimum principle. 

λ(s) =
̅̅̅
26

√
π

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Ef If (1 + v)

sμ(s)d
3

√

= m

̅̅̅̅̅̅̅̅̅̅
1

sμ(s)
3

√

# (67) 

where. 

Fig. 4. The generalized Maxwell model of the viscoelastic resin.  

ζ =
8π3α

β2 +

5
(

4πe
π̅̅
2

√
β(ϕ − 1) −

̅̅̅
2

√
e
̅̅
2

√
π

β βϕ −
̅̅̅
2

√
βϕe

̅̅
2

√
π(ϕ− 1)
βϕ +

̅̅̅
2

√
βϕe

̅̅
2

√
π

βϕ +
̅̅̅
2

√
βϕ
)

ϕ
(

e
π̅̅
2

√
βϕ − 1

)2 # (57)   
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m =
̅̅̅
26

√
π
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Ef If (1 + v)

d
3

√

# (68) 

Let D(t) = dλ/dt, the corresponding Laplace transform is. 

D(s) = sλ(s) − λ0# (69) 

where λ0 is the initial buckling half-wavelength. Substituting Eq. (69) 
into Eq. (67), D(s) can be expressed as. 

D(s) =
m3

μ(s)λ
− 2
(s) − λ0# (70) 

The inverse Laplace transform of Eq. (70) leads to an integra-
l–differential equation governing the growth of the perturbation, and 
the numerical methods are taken hereinafter. 

As shown in Fig. 4, according the generalized Maxwell model, the 
viscoelastic relaxation modulus μ(t) can be expressed as. 

μ(t) = μ∞ +
∑

i
μiexp( − pit)# (71) 

where pi is the relaxation parameter of one branch, and pi = μi/ηi. 
The Laplace transform of μ(t) is. 

μ(s) = μ∞

s
+
∑

i

μi

s + pi
# (72) 

Only the first two terms of Eq. (72) are used, so it can be rewritten as. 

μ(s) = μ∞

s
+

μ1

s + p1
# (73)  

μ1 = μ0 − μ∞ 

The parameters μ1, μ∞ and p1 at different temperatures can be ob-
tained by the following isothermal stress relaxation experiments of SMP. 
So, by substituting Eq. (73) into Eq. (70), the numerical solution of D(t)
can be easily obtained by inverse Laplace transform. From this, the 
variation rate of buckling wavelength with time of single-fiber rein-
forced SMPC at different temperatures can be calculated. It is worth 

Fig. 5. Shear stress contour of single-CF reinforced composite at 100◦C from the FEA result (deformation scale 1:10) (a) the shear stress contour, (b) a close-up plot 
of the shear stress distribution near the fiber. 

Fig. 6. Theoretical and FEA results of the attenuation ratio of displacement in 
resin matrix in the y-direction (single-CF reinforced composite at 100 ◦C in the 
critical buckling state). 

Table 1 
Parameters of the FEA model of single-fiber reinforced composite.  

Material Element Cross profile Young’s Modulus 
(GPa) 

Poisson’s 
ratio 

Epoxy CPS4R Plane stress 
thickness 
(The same with 
fiber) 

Change with 
temperatures  

0.3 

CNF B21 62μm × 62μm 
rectangular 

5  0.5 

CF B21 6.2μm × 6.2μm 
rectangular 

230  0.5  
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noting that the variation trend of buckling half-wavelength of fiber with 
time λ(t) at different temperatures can also be obtained by simple nu-
merical integration of D(t). The evolutions of buckling wavelength at 
different temperatures are shown in Section 4.3. 

3. Verification of the theoretical analysis 

The accuracy of the theoretical models will be verified by the com-
mercial finite element software Abaqus 6.14. The FEA is used to model 
the single-fiber and multi-fiber reinforced composites to verify the 
reliability of the attenuation function. Then, the critical buckling 
wavelength calculated theoretically is compared with the FEA and 
literature results to verify the accuracy of the proposed theory. 

3.1. Single-fiber reinforced composite 

Firstly, the finite element model of the single-fiber reinforced com-
posite is established. As can be seen in Fig. 5, the shear stress of the resin 
matrix near the buckled fiber is extremely high and the value fluctuates 
periodically. Although the buckling wavelength of the fiber does not 
change in the whole model, its amplitude will attenuate at the ends of 
the model, so the periodic boundary conditions (PBC) are not applicable 
to critical buckling analysis. Therefore, the axial dimension of the model 
must be long enough to include sufficient microbuckling waves to ensure 
the accuracy of FEA. In addition, the width of the model should be much 
larger than the equivalent diameter of the fiber to eliminate the influ-
ence of boundary constraints. Taking the above factors into 

consideration, the overall size of the model should be 20mm× 2mm. 
Other parameters of the finite element model are shown in Table 1, in 
which the modulus of resin will change with the temperature, and the 
specific values are shown in Table S1 (Supplemental File). As shown in 
Section S2.1 (Supplemental File), the moduli of SMP at different tem-
peratures are determined through the isothermal compression experi-
ments, and it is assumed that the modulus of fiber does not vary with 
temperature. 

The critical buckling behaviors of the single carbon fiber (CF, T300 
carbon fiber, Toray Industries, Inc, Japan) and single carbon nanofiber 
(CNF, TNF 400, Chengdu Organic Chemicals Co., ltd, China) reinforced 
composites at different temperatures are simulated by FEA after the 
dimensions and material parameters of the finite element models are 
determined. The linear perturbation-buckling analysis step is used to 
determine the critical buckling wavelength, and the subspace algorithm 
is adopted to guarantee the accuracy. 

First of all, the feasibility and accuracy of the attenuation function 
χ(y) should be verified. Fig. 6 shows the comparison of theoretical and 
simulation results of the attenuation ratio of displacement in the resin 
matrix. It can be seen from the y-directional displacement contour that 
the displacement of resin will decay with the increase of y. Then, a co-
ordinate system oxy is established on one wave peak of the fiber, and the 
attenuation ratio of the resin’s displacement in the y-direction at x = 0 is 
calculated through the finite element displacement contours. The com-
parison with the theoretical results is also shown in this figure, it can be 
seen that the finite element results are in good agreement with the 
theoretical results. It can also be seen from Fig. 6 that the displacement 
of resin will decay with the increase of y, which will even gradually 
approach 0 when y > 0.5mm. So, if the displacement-attenuation of the 
resin is not taken into account, the results may not be affected much 
when the space between adjacent fibers is relatively small; while with 
the increase of the distance between adjacent fibers, the results will be 
more and more inaccurate. That is to say, when the fiber volume fraction 
is small, the attenuation of strain in the resin must be taken into 
consideration. 

The Mises-stress contours of pure fiber and single CF and CNF rein-
forced composite at different temperatures are shown in Appendix A. As 
can be seen from Fig. A, the critical buckling modes of pure CF and CNF 
are both Euler buckling modes, indicating that the strain energy of a 
buckled ideal elastic beam is always minimum in Euler buckling mode. 
When the fiber is embedded in the resin matrix, the critical buckling 
mode of the fiber will transform into sinusoidal due to the existence of 
shear strain energy in the resin matrix. And with the increase of tem-
perature, the critical buckling wavelength of fiber will increase with the 
decrease of the modulus of resin matrix. Fig. 7 shows the wavelength of a 
single-CF reinforced SMPC at 100 ◦C as a function of Em. It can be seen 
that with the increase of Em, the critical buckling wavelength will 
decrease, but the decreasing rate will gradually slow down. The theo-
retical critical buckling wavelength proposal in this paper is in good 
agreement with the FEA results. However, the critical buckling wave-
length calculated in this paper is larger than that obtained from Darby 
et al. [33], who also took into account the decay of strain in the resin 
matrix, and the critical buckling half-wavelength was calculated by. 

λc = πr

̅̅̅̅̅̅̅̅̅̅̅̅

Ef
2

8GEm

8

√

# (74) 

It can also be seen from Fig. 7 that the deviation between the critical 
buckling wavelengths calculated in this paper and proposed by Darby 
will increase with the decrease of Em. So, the attenuation function pro-
posed in this paper is more accurate when describing the attenuation 
phenomenon of strain in resin matrix, especially when Em is small. 
Table 2 shows the critical buckling wavelengths of single-fiber 

Fig. 7. The critical buckling wavelength of single-CF reinforced composite at 
100 ◦C as a function of Em obtained from theoretical analysis, FEA and litera-
ture [33]. 

Table 2 
The critical buckling wavelength of single-fiber reinforced composite from 
theoretical analysis and literatures [20,33,34].  

Diameter 
of fiber  

(um) 

Young’s 
modulus 
of fiber  

(GPa) 

Shear 
modulus 
of matrix  

(MPa) 

Experimental 
wavelength 
(mm) 

Theoretical 
wavelength  

(mm) 

Darby 
[33]  

(mm) 

7 230  18.46 0.27 ± 0.13 
[20]  

0.35  0.16 

50 5.6  0.043 5.4 ± 0.2[34]  5.5  2.04  
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reinforced composite from theoretical analysis and literatures. It can be 
seen that the experimental buckling wavelengths of single-fiber rein-
forced composite obtained from literatures fit well with the theoretical 
results. Therefore, the rationality and accuracy of the attenuation 
function χ(y) proposed in this paper are verified. 

Then the nonlinear buckling process of single-CF reinforced com-
posites under uniaxial compression is simulated by FEA. In this paper, 
the pseudo-dynamic method is used for analysis, and the brief intro-
duction is described as follows: Firstly, the first-order buckling mode of 

the single-CF reinforced composite obtained from the above linear 
buckling analysis is multiplied by a scaling factor δ as the initial 
imperfection; Then, the initial imperfection is introduced into a perfect 
composite by modifying the coordinates of nodes using the inp. file of 
Abaqus; Finally, the Non-linear Riks Method is used for the following 
nonlinear buckling (post-buckling) analysis. The axial compressive 
displacement contours of single-CF reinforced composites (under the 
same compressive displacement at 100 ◦C) calculated by the Static Non- 
Linear Riks Method are shown in Fig. 8. Fig. 8(a) shows the 

Fig. 8. The axial compressive displacement contours of single-CF reinforced composites calculated by Static Non-Linear Riks Method under the same compressive 
displacement at 100 ◦C (a) without initial imperfection, (b) with initial buckling mode-shape imperfection. 

Fig. 9. The stress–strain curve of single-CF reinforced composites at 100 ◦C (a) FEA results and theoretical results at 100 ◦C, (b) FEA and theoretical results with 
different Em. 

Fig. 10. The critical buckling modes (the Mises-stress contours) of multi-CF reinforced composite with the same fiber volume fraction Vf = 10% at 100 ◦C (a) 2 
fibers, (b) 4fibers, (c) 8fibers, (d) 12 fibers, (e) 16fibers, (f) 20fibers. 
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displacement contour where no initial imperfection is introduced, and it 
can be seen that no buckling deformation occurs in the fiber. Only when 
the initial buckling mode-shape imperfection is introduced, it is possible 
for the fiber to produce post-buckling deformation in the following 
Static Non-Linear Riks analysis, which can be seen in Fig. 8(b). 

It can also be seen from Fig. 9(a) that if no initial imperfection is 
introduced, the stress of the single-CF reinforced composite under uni-
axial compression will increase linearly with the strain, indicating that 
the fiber will not buckle, which is obviously inconsistent with the 
theoretical analysis results in this paper. With the introduction of the 
initial imperfection, we observe that the material deforms linearly 
before the strain reaches the critical buckling strain εcritical. Once the 
strain reaches εcritical, the fiber will buckle and its tangent modulus will 
decrease rapidly, so the composite will lose part of its load-bearing ca-
pacity. It can be seen that the tangent modulus of the material obtained 
by the theoretical and finite element results in the whole nonlinear 
buckling process is basically the same, whether before and after buck-
ling. In addition, it can also be seen from Fig. 9(b) that with the change 

of Em, the tangent moduli (before and after buckling) of the composite 
obtained by FEA and theoretical results are always the same. However, 
because imperfections are introduced in the Non-linear Riks analysis 
initially, the fiber will have premature buckling deformation, leading to 
the inaccuracy of the εcritical calculated by FEA, which will be smaller 
than that of the theoretical result. But we can see that the variation trend 
of εcritical obtained from FEA and theoretical analysis is the same with 
different Em, indicating that the theoretical calculation method of post- 
buckling process in this paper is feasible and accurate. It is worth noting 
that the scaling factor in this section is equal to 1 % of the thickness of 
the shell, i.e., δ = 6.2× e− 5. 

3.2. Multi-fiber reinforced composite 

When more fibers are embedded in the resin matrix, the buckling 
behavior will change. Therefore, before simulating the buckling be-
haviors of multi-fiber reinforced SMPC, the dimension parameters of the 
FEA model should firstly be determined. On the one hand, when 
establishing the finite element model, the fibers should theoretically 
cover the whole model completely. However, this will lead to the 
outermost fibers being too close to the boundary of the model, and the 
existence of boundary conditions will lead to inaccurate results, so the 
fibers should be as close to the center of the model as possible. On the 
other hand, when the fibers are too close to the center of the model, the 
excess resin outside the outermost fibers may also affect the deformation 
of the fibers. Therefore, before modeling multi-fiber reinforced com-
posites, the optimal width of pure resin outside the outermost fibers in 
FEA model should be studied firstly to make the simulation results as 
accurate as possible. 

The research object of this paper is unidirectional multi-fiber rein-
forced SMPC with the fiber volume fraction of less than 5 %. When the 
fiber volume fraction becomes higher, the effect of outermost resin 
width on the simulation results will be more severe, So, an “worst” sit-
uation should be studied to ensure the accuracy of the subsequent 
simulation results. As a result, we simulate the buckling behaviors of 
unidirectional multi-fiber reinforced composite with a fiber volume 
fraction of 10 %. As the number of fibers increases, the distance between 
the adjacent fibers remains constant, so the fiber volume fraction can be 
regarded as unchanged, and the width of pure resin outside the outer-
most fibers will decrease simultaneously. The mesh size will also not 
change as the number of fibers increases. 

As can be seen from Fig. 10 and Fig. 11, with the increase of the 
number of fibers in the model, the width of pure resin outside the 
outermost fibers will decrease, and its buckling wavelength will increase 
significantly, up to 85.7 %, indicating that the width of pure resin 
outside the outermost fibers in the model does have a great influence on 
the simulation results. It can be seen from Fig. 11 that the slope of the 
wavelength curve is decreasing gradually with the increase of the 
number of fibers, and the buckling wavelength will gradually approach a 
stable value when the width of pure resin outside the outermost fibers is 
about 0.5 mm. It indicates that the result calculated by this model has 
already approached the accurate value. Continually increasing the 
number of fibers will only increase the calculation cost, but will not 
improve the accuracy of the results. In addition, if the fibers are too close 
to the model’s boundary, they may also be affected by the boundary 
constraint conditions of the model. Therefore, in the subsequent simu-
lation of multi-fiber reinforced composites, the width of the outermost 
resin is selected as 0.5 mm, and the fiber volume fractions are 1 %, 1.66 
%, 2 %, 2.5 %, 4 % and 5 %, respectively. The fiber is carbon fiber, and 
the resin is shape memory epoxy resin at 100 ◦C, whose modulus is 7.2 
MPa. For the accuracy of simulation, there should be at least four meshes 
between adjacent fibers, and the dimension of the whole model does not 
change with the change of fiber volume fractions. 

Fig. 11. The critical buckling wavelength of the CF reinforced composite with 
Vf = 10% at 100 ◦C as a function of the number of fibers and its slope curve. 

Fig. 12. The critical buckling wavelength of CF-reinforced composite at 100 ◦C 
as a function of Vf obtained from theoretical analysis, FEA and literature [31] 
and the corresponding typical critical buckling modes (the Mises- 
stress contours). 
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Fig. 12 shows the first-order critical buckling modes and wave-
lengths of composites at 100 ◦C with different fiber volume fractions. It 
can be seen that the critical buckling wavelength will increase signifi-
cantly with the increase of fiber volume fraction. As shown in Fig. 12, 
compared with the calculation results of Campbell et al. [31], the 
theoretical calculation results proposed in this paper are in better 
agreement with the FEA results. Thus, the theoretical model in this 
article can describe the buckling behaviors of unidirectional multi-fiber 
reinforced composite with low fiber volume fraction well. 

4. Analysis of key parameters 

4.1. Parameter study of single-fiber reinforced composite 

Ef and Em are important factors affecting the buckling behaviors of 
composites, which is not only reflected in the critical buckling strain, but 

also affects the nonlinear buckling behaviors. In addition, it can be seen 
from the theoretical results that the εcritical of single-fiber reinforced 
composites is not only related to the mechanical properties of fiber and 
resin, but also related to the fiber’s equivalent diameter d. Therefore, the 
first step is to find out the influence of modulus ratios of fiber and resin 
Ef/Em and the fiber’s equivalent diameter d on εcritical. It can be seen from 
Fig. 13(a) that when d and v remain unchanged, εcritical will decrease with 
the increase of Ef/Em. It indicates that the “softer” the resin is, the fiber is 
more prone to buckling, because the fiber will gain less deformation 
resistance from the matrix. It can also be seen from Fig. 13(b) that when 
Ef/Em remains constant, εcritical will increase rapidly with the increase of 
d and then approaches a stable value. This bifurcation point will not 
change with v, which remains stable at about 8um. In addition, εcritical 
will decrease with the increase of v from 0 to 0.5, indicating that the 
incompressibility of the resin will reduce the critical buckling strain of 
the composite. 

Fig. 13. The critical buckling strain of single-CF reinforced composite through theoretical calculation (a) εcritical as a function of Ef/Em when d remains 6.2um, (b) 
εcritical as a function of d when Ef/Em remains 23000. 

Fig. 14. The tangent stiffness reduction coefficient η of single-CF reinforced composite through theoretical calculation (a) η as a function of d when Ef/Em remains 
23000, (b) η as a function of Ef/Em when d remains 6.2um. 
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It is worth noting that the tangent modulus of composite will 
decrease rapidly when microbuckling of fiber occurs, so the tangent 
stiffness attenuation coefficient η is introduced in this article to quantify 
this phenomenon, where η is equal to the ratio of the tangent modulus of 
composite after and before buckling. The lower the η is, the attenuation 
of tangent modulus of composite during buckling will be severer. It can 
be seen from Fig. 14(a) that when Ef/Em remains constant at 23000, as d 
increases from 1um to 100um, the η will decrease significantly, even 
drop to 1 % of the initial value. As can be seen in Fig. 14(b), with the 
increase of Ef/Em from 1000 to 23000, η will also decrease significantly. 
These phenomena indicate that the larger the fiber’s diameter is or the 
softer the resin is, the more obvious the tangent stiffness attenuation of 
the composite will occur after buckling. In addition, η will decrease 
slightly with the increase of v from 0 to 0.5, indicating that the incom-
pressibility of the resin matrix will reduce the tangent stiffness attenu-
ation coefficient of the composite after buckling. 

4.2. Parameter study of multi-fiber reinforced composite 

From the microbuckling analysis of multi-fiber reinforced composite, 
we derived the formula of the dimensionless parameter ζ, critical 
buckling strain εcritical and tangent stiffness reduction coefficient η in 
relation to Ef/Em and Vf in Eq (57), (61) and (63). These prominent 
features of such multi-fiber reinforced composite will be analyzed 
hereafter. As can be seen in Eq (57), the dimensionless parameter ζ can 
reflect the variation rates of Um0 and Uf with ε to some extent, which is 
related to Vf and the mechanical properties of resin matrix and fiber. The 
influence of Ef/Em and Vf on ζ can be analyzed by calculating the value 
of ζ in the critical buckling state. It can be seen in Fig. 15 that the 
dimensionless parameter ζ will increase with the increase of Ef/Em. 
However, with the increase of Vf , ζ will not increase or decrease 
monotonically, but has a maximal value at a certain Vf . And with the 

Fig. 15. The dimensionless parameter ζ of multi-fiber reinforced composite in critical buckling state through theoretical calculation (a) The dimensionless parameter 
ζ as a function of Ef/Em when Vf remains 3%, (b) The dimensionless parameter ζ as a function of Vf when Ef/Em remains 23000. 

Fig. 16. The critical buckling strain εcritical of multi-fiber reinforced composite through theoretical calculation (a) εcritical as a function of Ef/Em when Vf remains 3%, 
(b) εcritical as a function of Vf when Ef/Em remains 23000. 
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Fig. 17. The tangent stiffness reduction coefficient η of multi-fiber reinforced composite through theoretical calculation (a) η as a function of Ef/Em when Vf remains 
3%, (b) η as a function of Vf when Ef/Em remains 23000. 

Fig. 18. The evolution of buckling wavelength with time at different temperatures (a) the rate of variation of buckling wavelength as a function of time, (b) the ratio 
of variation of buckling wavelength as a function of time. 

H. Zhao et al.                                                                                                                                                                                                                                    



Composite Structures 297 (2022) 115975

14

increase of v from 0 to 0.5, the corresponding Vf at the bifurcation points 
will decrease slightly. It is worth noting that ζ will increase with the 
increase of v, that is, the incompressibility of the resin matrix will lead to 
the increase of the rates of variation of Um0 and Uf with respect to ε. 

In order to describe the whole process of the nonlinear buckling 
behaviors of multi-fiber reinforced composite more intuitively, we need 
to study the critical buckling strain εcritical and the tangent stiffness 
attenuation coefficient η. It can be seen in Fig. 16(a) that εcritical will 
decrease significantly with the increase of Ef/Em, indicating that the 
composite is more prone to undergo compressive buckling deformation 
when the resin matrix is “softer”, which is obvious and easy to under-
stand. However, with the increase of Vf , the variation trend of εcritical is 
different from the monotonically increasing trend of critical buckling 
wavelength, which will have a maximal value at a certain Vf as shown in 
Fig. 16(b). The main reasons for this phenomenon are as follows: 

In the case of extremely sparse fibers (Vf < 2%), with the increase of 
Vf , the distance of adjacent fibers will decrease consequently, and the 
buckling deformation of fibers embedded in the resin matrix will be 
“hindered” by the adjacent fibers, so the εcritical will increase as a 
consequence. However, as the fiber volume fraction continues to in-
crease (Vf > 2%), a continuous “zone” structure will be formed among 
fibers, which can be regarded as a whole section. As a result, the “hin-
dered” effect between adjacent fibers will gradually decrease, so does 
the critical buckling strain. It can also be seen that when v increases from 
0 to 0.5, the corresponding Vf at the bifurcation points will decrease 
slightly, indicating that the incompressibility of the resin matrix will 
make the “zone” structure among fibers easier to be formed, so that the 
εcritical will be smaller. 

It can also be seen from Fig. 17 that with the increase of Ef/Em and Vf , 
the tangent stiffness reduction coefficient η of the multi-fiber reinforced 
composite will decrease, indicating that the “softer” the resin is or the 
“denser” the fiber is, the more obvious stiffness degradation will occur 
on the composite after buckling. When v increases from 0 to 0.5, the η 
will decrease slightly, that is the incompressibility of the resin matrix 
will aggravate the stiffness degradation of composite after buckling. 

4.3. Parameter study of viscoelastic composite 

After obtaining the μ∞, μ1 and p1 of shape memory epoxy resin at 
different temperatures from the isothermal stress relaxation experiments 
as shown in Section S2.2 (Supplemental File), the corresponding 
changing rate and changing ratio of buckling wavelength of single-fiber 
reinforced SMPC at different temperatures can be calculated. In this 
paper, D(t) = dλ/dt is used to describe the changing rate of the buckling 
half-wavelength λ(t), and k(t) is used to describe the changing ratio of 
λ(t), where. 

k(t) =
λ(t) − λ(0)

λ(0)
# (75) 

The curves of D(t) − t and k(t) − t of single CF and CNF reinforced 
SMPCs at different temperatures are shown in Fig. 18. As can be seen in 
Fig. 18(a), D(t) will firstly increase over time and then rapidly converge 
to 0. It means that the buckling wavelength will increase rapidly with 
time and then converge to a stable value, which can also be seen in 
Fig. 18(b). Besides, the D(t) of single-CF reinforced SMPC is lower than 
that of single-CNF reinforced SMPC at the same temperature, resulting 
in the increasing amount of buckling wavelength of single-CF reinforced 
SMPC lower than that of single-CNF reinforced SMPC. However, the 
type of fiber does not affect the convergence time, which is only related 
to temperature. The convergence time of D(t) will be shorter at high 
temperature, so that λ(t) will reach a stable state earlier. 

5. Conclusion 

This paper developed the microbuckling mechanical models of 
single-fiber and multi-fiber reinforced SMPC under pure compressive 
deformation. The critical buckling and post-buckling behaviors of uni-
directional fiber-reinforced SMPC with low fiber volume fraction were 
investigated. We determined the strain energy expression of the SMPC 
thermodynamic system with the assumption of small deformation and 
the superposition principle. The attenuation of shear strain in the resin 
matrix was also taken into consideration. Based on the least-energy 
principle, we derived the attenuation function χ(y) and key parame-
ters in the compressive deformation process of single-fiber and multi- 
fiber reinforced SMPC, including the critical buckling half-wavelength 
λ, critical buckling strain εcritical. The stress–strain response and the 
tangent stiffness reduction coefficient η during the post-buckling process 
were also calculated. 

The attenuation function and critical buckling half-wavelength pro-
posed in this paper were in good agreement with the results from FEA 
and literatures. It was found that: (a) With the decrease of the wave-
length of fiber, the attenuation rate of displacement in resin matrix 
would become faster. (b) With the increase of resin’s modulus, λ would 
decrease, but the decreasing rate would gradually slow down; while the 
λ would increase significantly with the increase of fiber’s volume frac-
tion or diameter. (c) εcritical would decrease with the decrease of resin’s 
modulus, while εcritical would increase rapidly with the increase of fiber’s 
diameter and then approach a stable value; with the increase of fiber’s 
volume fraction, εcritical would not increase monotonically, but have a 
maximal value at a certain Vf ; besides, the incompressibility of the resin 
would reduce the critical buckling strain of the SMPC. (d) The larger the 
fiber’s diameter or volume fraction was, or the softer the resin was, the 
more obvious the tangent stiffness attenuation of the composite would 
occur after buckling; the incompressibility of the resin matrix would also 
reduce η of the composite after buckling. 

The classical elastic–viscoelastic correspondence principle was then 
established to solve the evolvement rule of the microbuckling wave-
length of single-CF and CNF reinforced SMPC with temperature and 
time. It was found that the buckling wavelength would increase rapidly 
with time and then converge to a stable value, and the increasing 
amount of buckling wavelength of single-CF reinforced SMPC was lower 
than that of single-CNF reinforced SMPC. However, the type of fiber did 
not affect the convergence time, which was only related to temperature. 
The convergence time would be shorter at high temperature, so that λ 
will reach a stable state earlier. 
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Appendix A 

The Mises-stress contours of pure fiber and single-CF and CNF rein-
forced composites at different temperatures are shown in Fig. A1. 
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Appendix B. Supplementary material 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.compstruct.2022.115975. 
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