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Abstract Based on two sets of experimental data from the literature, one for vulcanized rubber and the other
for a thermoplastic elastomer, theYeohmodel was found to underestimate the stress during equibiaxial loading.
TheBidermanmodel, whose strain energy density function expression differs from that of theYeohmodel by an
additional term containing the second invariant, overestimates the stress in thementioned loadingmode leading
to severe inaccuracies. For improved predictions, this work proposes the modification of the Yeoh model in
which the residual strain energy density from equibiaxial loading is fitted to a term with dependence on the
second invariant and thereafter adding the term to the original expression. The model constants and predictions
were obtained by implementing the Levenberg–Marquardt algorithm and the Cauchy stress tensor equations,
respectively, in Python codes. Both the coefficient of determination and the relative errors were utilized to
quantify the accuracy of the model predictions. The modified model exhibited superior predictive capabilities
particularly in equibiaxial loading where it reduced the average relative error from 22.07 to 6.09 and 27.25 to
10.39% for vulcanized rubber and thermoplastic elastomer data, respectively. For complete behavior, i.e., the
average of the relative errors in the three loading modes, the modified version’s value was half that of the Yeoh
model. This demonstrated its suitability for predicting the multi-axial loading behavior of elastomer-based
engineering components.

1 Introduction

When subjected to loading conditions, elastomeric materials are known to exhibit a characteristically complex
mechanical behavior that involves both geometric and material nonlinearities in that extremely large shape
changes occur and the stress–strain relation is highly nonlinear. Importantly, the large nonlinear deformation
is ideally elastic meaning that it is recoverable upon the removal of the load. It is for this reason that materials
with such behavior are termed hyperelastic or Green elastic. In addition to the mechanical behavior men-
tioned, elastomeric materials are intrinsically resistant to abrasion, excellent thermal and electrical insulators,
and durable, thus find extensive applications in engineering industries such as aerospace and automotive [1].
Before the fabrication of an elastomeric component, a design process that necessitates a proper understanding
of the mechanical behavior of the material must be meticulously executed. The key to a successful design is
a constitutive model that accurately describes the stress–strain relation under various loading conditions. The
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tremendous advances in the computational capabilities of computers, the availability of finite element analy-
sis (FEA) programs, and the development of accurate constitutive models has enabled the three-dimensional
analysis of engineering components with complex geometry and loading conditions an easy task. Computa-
tional modeling is nowadays essential during the design of engineering components. As such, the research on
developing models that accurately predict the material behavior under any loading condition remains an active
and crucial undertaking for optimized engineering designs.

The nonlinear stress–strain relation renders Hooke’s law invalid in predicting the material’s response to
loading [2]. Therefore, the formulation of Cauchy stress expression for nonlinearly elastic materials is based
on a function that is commonly known as strain energy density (W ). It represents the work done per unit
volume of the material in the undeformed configuration to deform it to the current configuration [3]. The form
ofW is determined based on two different approaches, namely phenomenological and micromechanical. The
former employs continuum mechanics techniques that result in mathematical equations that are dependent on
strain invariants or principal stretches whereas the latter utilizes statistical mechanics to describe the material
response from the microstructure level. There have been attempts to develop hybrid models that utilize both of
the approachesmentioned [4]. In both cases, there are severalmathematical restrictions imposed onW that have
physical meanings, e.g., it should yield zero value at the undeformed state [5]. The phenomenological models
are more popular in the literature and for practical use thanks to their model parameters that are easily obtained
by fitting experimental data. Classical phenomenological-based models that are frequently referenced in the
literature and are incorporated into some of the finite element programs include neo-Hookean [6], Mooney-
Rivlin [7], Yeoh [8, 9], Ogden [10], and Gent [11]. On the other hand, well-known micromechanical-based
models include eight-chain by Arruda and Boyce [12], and the extended tube model [13]. It is worth noting
that the neo-Hookean model can be derived from both approaches. More recent models include Carroll [14],
Anssari-Benam and Bucchi [15], Yaya and Bechir [16], Mansouri and Darijani [17], Khajehsaeid et al. [18],
Zhao et al. [19], Kaoye et al. [20], and Külcü [21]. For engineers to make informed decisions on the right
models to use in their designs, some authors have presented the comparative performance of various models.
These include the work of Marckmann and Verron [22] who did a comparison study on twenty hyperelastic
models based on how each could reproduce two sets of classical experimental data, the recent work of Fujikawa
et al. [23] wherein the performances of four models were compared with a focus on their predictive capabilities
in multi-axial loading when model parameters are obtained from a single test, and an earlier work by Seibert
and Schöche [24].

The loading subjected to an engineering component in practical application is complex and involves multi-
axial deformation modes. Therefore, the experimental data from three individual loading modes, namely
uniaxial tension, equibiaxial extension, and pure shear, are normally utilized in benchmarking the predictive
capabilities of new models. A reliable model that can describe the response under general deformation should
be able to accurately predict the experimental behavior in each of the mentioned loading modes. Furthermore,
it should require only a single set of model constants and should apply to a wide variety of materials. It is
more desirable if the single set of parameters can be determined from a single set of experimental data such as
uniaxial tension loading. This reduces the number of experiments required to calibrate the model as opposed
to models requiring the simultaneous fitting of experimental data from different loading modes. It is quite
challenging to realize a model with all the mentioned characteristics. As such, researchers are continuously
motivated to develop new models or modify the existing ones for improved performances. For instance, the
eight-chain model [12] describes the uniaxial and pure shear loadings very well but is known to unsatisfactorily
predict the equibiaxial tension. Hossain et al. [25] presented modified versions of this model that have better
predictions in EB. The Gent model [11] is a modified version of the neo-Hookean model [6] and it performs
somewhat better than the latter. Hohenberger et al. [26] modified the Yeoh model to capture the large strain
nonlinearities in highly filled elastomers. The recent work by Melly et al. [27] modified the Carroll model [14]
so that itsW vanishes at the reference configuration and includes a compressibility term. Their resultant model
was advantageous in that material parameters could be obtained in a single fitting, recorded better predictive
performance, and could be implemented in a finite element program. One of the complex nonlinear features
of the stress–strain behavior of elastomeric materials is the strain-stiffening effect whereby the stress rapidly
increases at the strain limit. For realistic finite element simulations of elastomeric component deformation and
damage, the constitutive equation should not only capture the strain-stiffening effect but also bound the strain
energy so that it does not grow to infinity, and the stress should also be bounded to asymptotically vanish with
increasing strain up to failure. The authors [28, 29] proposed direct, explicit, and straightforward approaches
to formulate the W expression that matches the experimental data, describes the strain-stiffening effect, and
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bounds the strain energy so that it never grows to infinity. In their subsequent work [30], the authors included
the capability of the model to estimate errors in any deformation mode.

The relative advantages of the Yeoh model [9] include a simply expressed W , few material parameters,
a single set of model constants are required for all deformation modes, the constants are obtained by fitting
only the uniaxial tension data, and works well for a variety of materials under large deformation range.
Consequently, it is frequently employed in analyzing the response of hyperelastic materials. Gajewski et al.
[31] simulated the behavior of elastomeric bearings under loading conditions by utilizing the Yeoh model in
an FE program. Renaud et al. [32] applied the Yeoh model in an FE program to study the large deformation of
a hyperelastic body under contact/impact loadings. Recently, Jaramillo [33] found the Yeoh model to better
predict the behavior of biological tissue (Annulus Fibrosus). The very recent work of Forsat [34] studied
the suitability of several hyperelastic models including the Yeoh model in modeling the nonlinear vibration
of hyperelastic beams. Despite the numerous advantages and wide applicability, Yeoh’s model prediction in
equibiaxial tension is to relatively lower accuracy and may deviate significantly for different materials. As
such, it may predict inaccurately in the case of multi-axial loading. This behavior is not a surprise as the W
expression for the Yeoh model is only dependent on the first invariant. W expressions with sole dependence
on the first invariant have been found to unsatisfactorily predict equibiaxial tension loading behavior [35]. It
has been proven that the inclusion of the second invariant leads to more accurate predictions specifically in
the equibiaxial tension [36].

In this work, theW expression for the Yeoh model is modified for enhanced predictions particularly in the
equibiaxial loading mode by adding a single term involving the second invariant. The process of adding the
term follows the work of Carroll [14] in which the W expression is derived by following systematic steps of
fitting the strain energy density of the residual stress to an equation that is dependent on either the first or the
second invariant. In this case, the residual stress is the difference between the predicted and the experimental
stress data in a specific loading mode. Firstly, based on the classical experimental data of Treloar [37] (8% S
vulcanized rubber) and the recent data due to Zhao [38] (Entec Enflex S4035A thermoplastic elastomer, TPE),
the Biderman [39] and the Yeoh models are demonstrated to inaccurately capture the behavior in equibiaxial
loading. The difference between theW expressions for the two models is that the former contains an additional
term that is dependent on the second invariant. Secondly, the strain energy density of the residual stress in
equibiaxial tension is calculated and then fitted to a term involving the second invariant. TheW expression for
the Yeoh model is then modified by adding the term. Lastly, the predictive capabilities of the modified version
are then compared with those of the original version.

2 Basic equations

2.1 Description of large deformation

In large deformation theory, the coordinates of a material point in the undeformed and deformed configurations
are representedbyX andx, respectively.ThedeformationgradientFdescribes the transformationof thematerial
point from the undeformed to the deformed configuration and is written in index notation as Fi j � ∂xi

/
∂X j

where i, j � 1, 2, 3. The left and the right Cauchy–Green deformation tensors which are given by B � F ·FT

and C � FT · F, respectively, measure the geometric changes that occur due to deformation [40]. The polar
decomposition theorem enables the decomposition of F into a product of pure rotation and symmetric positive-
definite tensors as shown in Eq. (1).

F � R · U � V · R, (1)

where R is the orthogonal
(
R−1 � RT

)
rotation tensor whereas U and V are the right and left stretch tensors,

respectively. Both V and U have the same eigenvalues but different eigenvectors as they are expressed in
the deformed and undeformed configurations, respectively. The eigenvalues are principal stretches of the
deformation and are denoted as λ1, λ2, and λ3. From the principal stretches, the strain invariants of B and C
are obtained as shown in Eq. (2):

I1 � λ21 + λ22 + λ23,

I2 � λ21λ
2
2 + λ22λ

2
3 + λ23λ

2
1,

I3 � λ21λ
2
2λ

2
3.

(2)
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The determinant of F, known as the Jacobian determinant J � det(F) � λ1λ2λ2 � √
I3, describes the

volume ratio V
/
V0. A common assumption for elastomeric materials is that no volume change occurs during

deformation, i.e., they are incompressible. This means that J � I3 � 1. Consequently, an invariant-based
phenomenologicalmodelwith incompressibility assumption hasW as a function of the first two invariants given
in Eq. (2). While it has the advantage of simplifying the model equations, the assumption is an approximation
of the material behavior. To capture the practical response, the W must include a volumetric term that is
dependent on J . Compressibility consideration is highly significant particularly in hydrostatic deformations
where volume changes range between 10 and 20% of the initial volume [41]. It is also important for the
convergence of finite element simulations should the model be implemented in a finite element program. As
such, formulations in this work will include the compressibility term.

To include a compressibility term in W expression, it is necessary to multiplicatively decompose F into
dilatational and distortional components which are responsible for volume and shape changes, respectively.
The relationship between dilatational and distortional parts of F and B is given in Eq. (3),

F � J (1/3)F∗,

B∗ � F∗ · (
F∗)T � J (−2/3)B.

(3)

The superscript * in Eq. (3) denotes the distortional part.
The W expression for a compressible model consists of two parts, one contributing to shape change and

the other to volume change. The former is dependent on the distortional parts of the first two invariants which
are obtained according to Eq. (4) whereas the latter is dependent on J :

(4)
I1 � J (2/3) I ∗

1 ,

I2 � J (4/3) I ∗
2 .

2.2 Cauchy stress tensor

A general invariant-basedW expression with compressibility term is dependent on the first two invariants and
the volume ratio W � W (I1, I2, J ). The first Piola–Kirchhoff stress tensor P is given as the partial derivative
ofW w.r.t each component of F, P � ∂W

/
∂F . By applying the chain rule of differentiation, the general form

of P is shown in Eq. (5),

P � ∂W

∂ I1

∂ I1
∂F

+
∂W

∂ I2

∂ I2
∂F

+
∂W

∂ J

∂ J

∂F
. (5)

The relation between Cauchy stress tensor σ and P is given as σ � (1/J )PFT . By substituting P with its
expression given in Eq. (5), we obtain the general expression of the Cauchy stress tensor given in Eq. (6):

σ � 1

J

(
∂W

∂ I1

∂ I1
∂F

+
∂W

∂ I2

∂ I2
∂F

+
∂W

∂ J

∂ J

∂F

)
FT . (6)

The derivatives of I1, I2, and J w.r.t F are given in Eq. (7),

∂ I1
∂F

� 2F,
∂ I2
∂F

� 2I1F − 2FFTF,
∂ J

∂F
� JF−T . (7)

Substituting the derivatives in Eq. (7) into Eq. (6), we obtain the σ expression given in Eq. (8),

σ � 1

J

(
∂W

∂ I1
2FFT +

∂W

∂ I2
2I1FFT − ∂W

∂ I2
2FFTFFT +

∂W

∂ J
JF−TFT

)
. (8)

Noting that B � FFT and that F−TFT � I, Eq. (8) can further be simplified to get the expression in Eq. (9),

σ � 2

J

(
∂W

∂ I1
+ I1

∂W

∂ I2

)
B − 2

J

∂W

∂ I2
B2 +

∂W

∂ J
I, (9)

where I is the identity tensor.
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Again, W with compressibility assumption has to be written in terms of the volume ratio and distortional
parts of the invariants as W � W

(
I ∗
1 , I ∗

2 , J
)
. For this reason, we substitute Eq. (4) into Eq. (9) and apply the

chain rule of differentiation thus yielding the expression in Eq. (10),

σ � 2

J

(
∂W

∂ I ∗
1

∂ I ∗
1

∂ I1
+ J (2/3) I ∗

1
∂W

∂ I ∗
2

∂ I ∗
2

∂ I2

)
B − 2

J

∂W

∂ I ∗
2

∂ I ∗
2

∂ I2
B2 +

(
∂W

∂ I ∗
1

∂ I ∗
1

∂ J
+

∂W

∂ I ∗
2

∂ I ∗
2

∂ J
+

∂W

∂ J

)
I. (10)

Simplifying the expression in Eq. (10) requires the derivatives given in Eq. (11).

∂ I ∗
1

∂ I1
� J (−2/3),

∂ I ∗
1

∂ J
� −2I ∗

1

3J
,

∂ I ∗
2

∂ I2
� J (−4/3),

∂ I ∗
2

∂ J
� −4I ∗

2

3J
.

(11)

Finally, substituting Eq. (11) into Eq. (10) and noting that B∗ � J (−2/3)B yields the Cauchy stress tensor
expression for arbitrary loading of elastomeric materials considering compressibility given in Eq. (12) [42],

σ � 2

J

(
∂W

∂ I ∗
1
+ I ∗

1
∂W

∂ I ∗
2

)
B∗ − 2

J

∂W

∂ I ∗
2

(
B∗)2 +

(
∂W

∂ J
− 2I ∗

1

3J

∂W

∂ I ∗
1

− 4I ∗
2

3J

∂W

∂ I ∗
2

)
I. (12)

As Eq. (12) is for arbitrary loading, the response in a specific loading mode is determined by F. The F
expressions for each loading mode are given in Eq. (13),

FUT �
⎡

⎢
⎣

λ 0 0
0 1√

λ
0

0 0 1√
λ

⎤

⎥
⎦, FEB �

⎡

⎣
λ 0 0
0 λ 0
0 0 1

λ2

⎤

⎦, FPS �
⎡

⎣
λ 0 0
0 1 0
0 0 1

λ

⎤

⎦, (13)

where the subscripts UT, EB, and PS represent uniaxial tension, equibiaxial extension, and pure shear, respec-
tively.

3 Strain energy density functions

Many forms of W expressions including that of the Yeoh model emanate from the generalized Rivlin’s model
which is also known as the polynomial model. This Section introduces the polynomial model and two of the
models that are derived from it.

3.1 Generalized Rivlin model

Rivlin and Saunders [43] proposed a form of W that is a double sum infinite power series of the first and the
second invariants as shown in Eq. (14),

W �
N∑

i�0

N∑

j�0

Ci j (I1 − 3)i (I2 − 3) j , (14)

where Ci j are the model constants and C00 � 0 to obey the mathematical restriction that the strain energy
should be zero at the unstrained state. If N � 3, then the terms of W are obtained as shown in Eq. (15),

W � C10(I1 − 3) + C01(I2 − 3) + C11(I1 − 3)(I2 − 3) + C20(I1 − 3)2 + C02(I2 − 3)2 + C21(I1 − 3)2(I2 − 3)

+ C12(I1 − 3)1(I2 − 3)2 + C22(I1 − 3)2(I2 − 3)2 + C30(I1 − 3)3 + C03(I2 − 3)3 + C31(I1 − 3)3(I2 − 3)

+ C13(I1 − 3)(I2 − 3)3 + C32(I1 − 3)3(I2 − 3)2 + C23(I1 − 3)2(I2 − 3)3 + C33(I1 − 3)3(I2 − 3)3

. (15)

This polynomial model is rarely used since obtaining themodel constants is a complicated task especially at
a large number of terms. Consequently, other forms ofW are obtained by truncating the polynomialmodel to the
first few terms. For instance, taking only the first term of Eq. (15) results in the neo-Hookean modelW � C10
(I1 − 3) whereas taking the first two terms results in the Mooney–Rivlin model W � C10(I1 − 3) + C01
(I2 − 3). Of interest in this work are the forms of W obtained from Eq. (14) by neglecting the contribution of
some terms. These are known as reduced polynomial models and are presented in the next Section.
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3.2 Reduced polynomial models

As the merits of compressible hyperelastic models are already stated, we will include the volumetric term
Wv (see Eq. (16)) in the W expressions. The term is most commonly used in the literature and meets the
mathematical restrictions laid down for the volumetric part that includesWv(1) � 0, W

′
v(1) � 0, W

′′
v (1) � K

[44] to ensure that the strain energy and the stress are zero at the reference configuration and to ensure
compatibility with the classical linear elasticity,

Wv � K

2
(J − 1)2, (16)

where K is the bulk modulus.

3.2.1 Biderman

Biderman [39] neglected the contribution of the terms containing (I2 − 3) except for the first term and con-
sidered the terms with (I1 − 3) to the third-order thus obtaining the W expression given in Eq. (17),

W � C10
(
I ∗
1 − 3

)
+ C20

(
I ∗
1 − 3

)2 + C30
(
I ∗
1 − 3

)3 + C01
(
I ∗
2 − 3

)
+
K

2
(J − 1)2. (17)

The derivatives necessary for obtaining the Cauchy stress tensor are given in Eq. (18):

∂W

∂ I ∗
1

� C10 + 2C20
(
I ∗
1 − 3

)
+ 3C30

(
I ∗
1 − 3

)2
,

∂W

∂ I ∗
2

� C01,

∂W

∂ J
� K (J − 1).

(18)

The Cauchy stress tensor expression for the Biderman model is obtained by substituting Eqs. (18) into Eq.
(12) and is given by Eq. (19),

σ � 2

J

[
C10 + 2C20

(
I ∗
1 − 3

)
+ 3C30

(
I ∗
1 − 3

)2 + I ∗
1C01

]
B∗ − 2

J
C01

(
B∗)2

+

[
K (J − 1) − 2I ∗

1

3J

(
C10 + 2C20

(
I ∗
1 − 3

)
+ 3C30

(
I ∗
1 − 3

)2) − 4I ∗
2

3J
C01

]
I. (19)

3.2.2 Yeoh

Yeoh [9] completely neglected the contributions of the terms with (I2 − 3) and considered the (I1 − 3) terms
up to the third order. From the general polynomial expression stated in Eq. (14), j � 0 and N � 3 resulting
in the W expression for the Yeoh model as shown in Eq. (20):

W � C10
(
I ∗
1 − 3

)
+ C20

(
I ∗
1 − 3

)2 + C30
(
I ∗
1 − 3

)3 +
K

2
(J − 1)2. (20)

The derivatives are given as:

∂W

∂ I ∗
1

� C10 + 2C20
(
I ∗
1 − 3

)
+ 3C30

(
I ∗
1 − 3

)2
,

∂W

∂ I ∗
2

� 0,

∂W

∂ J
� K (J − 1).

(21)

Using Eq. (21) in Eq. (12) results in Yeoh’s model Cauchy stress tensor expression for arbitrary loading
as shown in Eq. (22),

σ � 2

J

[
C10 + 2C20

(
I∗1 − 3

)
+ 3C30

(
I∗1 − 3

)2]B∗ +

[
K (J − 1) − 2I∗1

3J

(
C10 + 2C20

(
I∗1 − 3

)
+ 3C30

(
I∗1 − 3

)2)
]
I. (22)
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Fig. 1 The stress–strain and their corresponding W -strain plots of the experimental data utilized in this work. a The classical
Treloar’s [37] data for 8% S vulcanized rubber and b Zhao’s [38] data for TPE

4 Model constants

The determination of model constants is the most important and delicate undertaking in phenomenological
model development [45]. Establishing the model constants involves fitting the model’s W expression to the
strain energy/unit volume data which is obtained by calculating the area under the nominal stress–strain curve.
While most models in the literature require data from different loading modes to be simultaneously fitted to
get the best set of parameters, only data from the uniaxial tension loading are sufficient for our work. The
relation between strain energy density and the strain is highly nonlinear and, therefore, nonlinear least-squares
techniques are utilized for fitting and obtaining the model constants. The Levenberg–Marquardt algorithm
(LMA) [46, 47] is the most popular nonlinear least-squares method for obtaining the model constants of
hyperelastic models due to its robustness. This work utilizes the LMA method to determine the constants for
the reduced polynomial models presented in Sect. 3.2.

As mentioned, two sets of experimental data from the literature were used. The first is the classical Treloar
[37] data which has been the standard data in determining the predictability of newmodels whereas the second
set of data was due to Zhao [38] which is of a TPE. The stress–strain plots of the experimental data and their
corresponding W -strain plots are given in Fig. 1. From the stress–strain curves in Fig. 1, it is shown that the
material undergoes large deformation particularly in the uniaxial tension loading (close to 700% engineering
strains). The physical meaning of this behavior can be deduced by considering the microstructure of polymeric
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Table 1 Model constants

Experimental data

Model Treloar [37] (8% S rubber) Zhao [38] (TPE) R2

Biderman C10 � 144989.85, C20 � −551.50,

C30 � 29.94, C01 � 39734.81

C10 � 92364.74, C20 � −252.56,

C30 � 19.35, C01 � 32137.98
0.9999

Yeoh C10 � 164907.76, C20 � −955.64,

C30 � 33.76

C10 � 108479.43, C20 � −579.83,

C30 � 22.45
0.9999

materials. As put by Flory [48], polymericmaterials exhibit high deformability and recoverability because their
micro-molecular structure consists of long polymeric chains that are joined together into a three-dimensional
network. Under an external load, the chains alter their arrangements and extensions. The large increase in
stress at high deformation witnessed in the uniaxial tension stress–strain curves is due to the strain-induced
crystallization which greatly increases the strength of the polymer. It is observed that the behavioral difference
between the two materials is that TPE records lower stress levels.

The LMA was implemented in Python code. To determine how well the model was fitted, the coefficient
of determination

(
R2

)
whose expression is given in Eq. (23) was employed to compare the predicted and the

experimental data. It is worth noting that R2 value close to unity implies a perfect fit,

R2 � 1 −
∑n

i�1 (ei − pi )2
∑n

i�1 (ei − em)2
. (23)

The n, ei , pi , and em in Eq. (23) represent the number of data points, experimental data at a point i , predicted
data at a point i , and the mean of the experimental data, respectively.

The model constants obtained are given in Table 1. The K values were obtained from literature as 1.5×109

and 1.2 × 109 for vulcanized rubber and TPE, respectively.

5 Model predictions

The predictions of the Biderman and Yeoh models presented in Sect. 3.2 were computed by implementing
their Cauchy stress tensor expressions given in Eqs. (19) and (22), respectively, in Python codes. The code
execution followed the algorithm given in Table 2.

The comparison of the model predictions with experimental data in the three loading modes for both
vulcanized rubber and TPE is presented in this Section. As shown in Fig. 2a, both the Biderman and the Yeoh

Table 2 Algorithm for computing the model predictions in a Python code
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Fig. 2 Comparisons of the model predictions with experimental data for a uniaxial tension, and b equibiaxial tension loading.
On the left (i) is Treloar’s data for vulcanized rubber whereas on the right (ii) is Zhao’s data for TPE

model predict the uniaxial tension behavior of vulcanized rubber and the TPE excellently with R2 values of
over 0.99. However, the behavior prediction in equibiaxial loading is of lower accuracy and highly distinctive
between the two models. As shown in Fig. 2b, the Biderman model overestimates the stress which increases
with strains leading to a negative R2 of − 14.64 and − 18.19 for vulcanized rubber and TPE, respectively,
meaning that the average of the predicted value highly deviates from the average values of the experimental
data. On the other hand, Yeoh’s model accuracy is acceptable for both materials as the R2 value is about 0.87
even though it underestimates the stress.

In pure shear loading (see Fig. 3), bothmodels predict excellentlywithR2 values of over 0.96. TheBiderman
model performs better than theYeohmodel for both vulcanized rubber and TPEmaterials with the latter slightly
underestimating the stress. These results show that themain challenge with themodels is predicting equibiaxial
tension behavior. Even though the Biderman model has a term containing the second invariant, its predictions
in the said loading are far worse than those of the Yeoh model. The suggested modification to improve both
models’ prediction is proposed in the next Section.

6 Proposed modification

From the model predictions presented in the previous Section, it is demonstrated that the Biderman model
performs excellently in predicting the uniaxial tension and pure shear loading but overestimates the stress in
equibiaxial loading so much that the R2 value is negative. On the other hand, the Yeoh model does well albeit
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Fig. 3 Pure shear loading stress–strain plots of the model predictions and the experimental data for a vulcanized rubber and
b TPE

Fig. 4 The plots of a residual stress data points against the strain, and b the residual strain energy density against the strain

to relatively lower accuracy in equibiaxial loading as it underestimates the stress. The difference between
the W expressions for Biderman and Yeoh models is that the former has an additional term containing the
second invariant. In this Section, we propose the modification of Yeoh’s W expression by adding a term that
is dependent on the second invariant. It is the same as modifying the Biderman model by replacing the term
containing the second invariant.

Inspired by Carroll’s [14] systematic method of obtaining the W expression, we start by noting that the
residual stress in equibiaxial loading is highly significant. If σ eb is the experimental stress data for equibiaxial
extension loading and σ pred is the predicted data of the same loading by the Yeoh model, then the residual
stress is given by σres � σeb − σpred. The second step is to calculate the strain energy density of the residual
stress Wres (the area under the residual stress–strain curve). The plots of the residual stress data points and the
strain energy density against the strain are given in Fig. 4.

The third and the most important step is the fitting of the residual strain energy density plotted in Fig. 4b
into a term that is dependent on the second invariant. After a rigorous fitting process, the expression in Eq. (24)
was found to perfectly fit the residual strain energy data with R2 value of 0.9961 as shown in Fig. 5.

Wres � D
(√

I2 − √
3
)

(24)

where D is the model constant.
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Fig. 5 Comparison of the calculated and predicted residual strain energy density

Table 3 Constants for the modified Yeoh model

Experimental data Constants R2

Treloar [37] C10 � 150725.24,C20 � −592.34,C30 � 30.17, D � 117771.78 0.9999
Zhao [38] C10 � 97083.51,C20 � −287.64,C30 � 19.56, D � 94592.19 0.9999

Having obtained the term that describes the residual strain energy density, the next step is to add the term
to the original Yeoh model W expression given in Eq. (20) to obtain the modified version shown in Eq. (25),

W � C10
(
I ∗
1 − 3

)
+ C20

(
I ∗
1 − 3

)2 + C30
(
I ∗
1 − 3

)3 + D
(√

I ∗
2 − √

3
)
+
K

2
(J − 1)2, (25)

where C10,C20,C30, and D are the model constants. The derivatives of Eq. (25) w.r.t I ∗
1 , I ∗

2 , and J are given
in Eq. (26),

∂W

∂ I ∗
1

� C10 + 2C20
(
I ∗
1 − 3

)
+ 3C30

(
I ∗
1 − 3

)2
,

∂W

∂ I ∗
2

� D

2
√
I ∗
2

,

∂W

∂ J
� K (J − 1).

(26)

By substituting the derivatives in Eq. (26) into Eq. (12), we obtain the modified Yeoh’s model Cauchy
stress tensor expression (see Eq. (27)) for arbitrary loading of elastomeric materials,

σ � 2

J

[

C10 + 2C20
(
I ∗
1 − 3

)
+ 3C30

(
I ∗
1 − 3

)2 +
I ∗
1 D

2
√
I ∗
2

]

B∗ − D

J
√
I ∗
2

(
B∗)2

+

[

K (J − 1) − 2I ∗
1

3J

(
C10 + 2C20

(
I ∗
1 − 3

)
+ 3C30

(
I ∗
1 − 3

)2) − 2I ∗
2

3J

D
√
I ∗
2

]

I

. (27)

The model constants for the modified version given in Table 3 were obtained by fitting its W expression
given in Eq. (25) to the uniaxial tension data of the two sets of experimental data used for this work.

7 Results and discussion

The performances of the original and the modified Yeoh model (this work) in reproducing the experimental
data for 8% S vulcanized rubber and thermoplastic elastomer (TPE) obtained from Treloar [37] and Zhao [38],
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Fig. 6 Comparisons of the uniaxial tension experimental data and model predictions and their corresponding plots of percentage
relative error in each data point for a 8% S vulcanized rubber and b TPE

respectively, are presented. Apart from the coefficient of determination R2 given in Eq. (23), the percentage
relative error δ, whose expression is given in Eq. (28), is also used to quantify the predictive capabilities of
the models. After presenting the engineering stress–strain plots for each loading mode accompanied by their
corresponding R2 values and δ-strain plots, the overall behavior for each model is presented (the average of
R2 and δ) as

δ �
(∣

∣σexp − σpred
∣
∣

σexp

)

× 100 (28)

where σexp and σpred are the experimental and model-predicted stresses, respectively.

7.1 Uniaxial tension

The models exhibited excellent and comparable predictions in uniaxial tension loading mode. As shown in
Fig. 6 (a, i) and (b, i), the models reproduced the experimental data accurately with R2 values of over 0.99, and
their similar behavior makes it difficult to differentiate the curves. However, the plots of percentage relative
error in each strain data point as shown in Fig. 6(a, ii) and (b, ii) demonstrate that this work’s model records
lower relative errors.
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Fig. 7 Comparisons of model predictions and experimental data for equibiaxial extension loading and their corresponding plots
of percentage relative error for a 8% vulcanized rubber and b TPE

7.2 Equibiaxial extension

Remarkable improvements in equibiaxial extension loading predictive capabilities were demonstrated by this
work’s model. As shown in Fig. 7(a, i) and (b, i) for 8% vulcanized rubber and TPE, respectively, the Yeoh
model underestimates the stress leading to a relatively lower R2 value of 0.87 whereas this work’s model
accurately describes the behavior with R2 value of 0.99. The percentage relative error plots in Fig. 7(a, ii) and
(b, ii) further illustrate more clearly the predictive superiority of this work’s model. The Yeoh model is shown
to record higher relative errors as opposed to this work’s model.

7.3 Pure shear

By observation of the stress–strain plots shown in Fig. 8(a, i) and (b, i), it is shown that both Yeoh and this
work’s model posted accurate predictions in pure shear loading. The predictions are comparable though this
work’s model is slightly more accurate with R2 value of 0.98 compared to 0.96 for the Yeoh model. According
to the relative error plots given in Fig. 8 (a, ii) and (b, ii), the advantage of this work’s model is evident as it
recorded relatively lower errors.
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Fig. 8 The engineering stress–strain plots ofmodel predictions and experimental data in pure shear loading and their corresponding
relative error-strain plots for a 8% vulcanized rubber and b TPE

7.4 Overall behavior

As the practical loads on elastomeric components are complex and involve multi-axial loading conditions, it
is crucial to understand the overall behavior of the model in predicting the mechanical response. In this case,
the overall behavior signifies the capability of the model to accurately describe the response in the case of
multi-axial loading. To quantify this, the average R2 and δ values for the three loading modes are obtained for
each model.

The average relative errors in each loadingmode are presented in Fig. 9, wherein this work’smodel is shown
to record significantly lower errors particularly in the equibiaxial loading mode. The errors in uniaxial tension
predictions are completely acceptable (both models were found to reproduce this loading mode excellently)
as they are below 5%. This work’s model performs better particularly in Zhao’s data where the average error
is 2.59% compared to Yeoh’s model 4.153%. The predictive strength of this work’s model is demonstrated in
its ability to accurately describe the equibiaxial loading thereby reducing average relative errors from 22.07 to
6.09 and from 27.25 to 10.29% for data due to Treloar and Zhao, respectively.

For each model, the overall R2 and relative error values were obtained by an average of the values in
each loading mode. As shown in Fig. 10a, this work’s model exhibits an excellent overall behavior with an
overall R2 of 0.99 as opposed to Yeoh’s model 0.94. The overall behavior in terms of the relative errors is
shown in Fig. 10b where the errors recorded by the Yeoh model are roughly twice those of this work’s model.
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Fig. 9 The average relative errors in each loading mode for data due to Treloar [37] (8% vulcanized rubber) and Zhao [38] (TPE)

Fig. 10 The models’ overall a R2 and b percentage relative error

The improvement in the predictive capabilities is attributed to the inclusion of the term containing the second
invariant in the W expression of the Yeoh model.

8 Conclusions

A hyperelastic model that can be utilized to reliably describe the mechanical response of engineering com-
ponents under practical loading conditions should be able to accurately reproduce the experimental data in
uniaxial tension, equibiaxial extension, and pure shear loading modes. Furthermore, the models formulated
via the phenomenological approach should require a single set of model constants that are obtained by fitting
the model’s W expression to experimental data from a single loading mode, e.g., uniaxial tension.

The relatively lower predictive performance of the Yeohmodel in the equibiaxial loadingmode is attributed
to the lack of dependence on the second invariant in its W expression. The overall performance of the Yeoh
model in the case of multi-axial loading conditions can be improved by adding a term containing the second
invariant to its originalW expression. The difference between theW expressions for theYeoh and the Biderman
models is that the latter has an additional term containing the second invariant. However, the Biderman model
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overestimates the stress in the equibiaxial mode so much that the coefficient of determination yields a negative
value. As such, the addition of the term with the second invariant should follow a specific method.

This work has demonstrated that notable improvements, particularly in the equibiaxial loading mode,
are achieved when a systematic approach is followed in determining the form of the term with the second
invariant. The residual stress in equibiaxial loading (the difference between the experimental and the Yeoh
model predicted stress) is highly significant. The residual strain energy density is calculated (the area under
the residual stress–strain curve) and fitted to a term that is dependent on the second invariant. Finally, the
term is added to the originalW expression resulting in a modified version. The Cauchy stress tensor equations
derived from the W expressions were implemented in Python codes, and the performance of the original and
the modified versions were compared based on two sets of experimental data obtained from the literature, the
classical data of 8% S vulcanized rubber and the recent data of a thermoplastic elastomer. The two different
sets of experimental data were chosen purposely to test the models’ capabilities to predict the behavior of
different materials.

The modification led to excellent predictive capabilities in all the loading modes. For instance, the relative
errors in the modified version’s equibiaxial tension loading predictions were just a third of those for the
original version. Overall, the relative errors for the modified version were half as many as for the original
version. Thus, the modified version is highly suitable for the accurate prediction of the multi-axial loading
behavior of elastomeric materials. While the accuracy in predictions for vulcanized rubber and thermoplastic
elastomer was comparable, the latter posted comparatively higher relative errors. Future work should focus on
checking the suitability of the modified model to more elastomeric materials and soft tissues.
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