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Thermomechanical Constitutive
Models of Shape Memory
Polymers and Their Composites
Shape memory polymers (SMPs) and SMP composites (SMPCs) have been widely
employed in several fields and exhibit excellent self-actuation, deformation, and self-
adaption. Establishing reasonable constitutive models is vital for understanding the
shape memory mechanism and expanding its applications. Moreover, the mechanical
response of SMPs under different conditions can be predicted, facilitating their precise
control. The internal mechanism for the shape memory behavior in most SMPs is thermal
actuation. This study reviews the theories of thermally actuated SMPs, rheological and
phase transition concept models, and models combining the rheology and phase transi-
tion concepts. Furthermore, the constitutive models of particulate-reinforced SMPCs,
carbon-fiber-reinforced SMPCs, and the buckling behavior of SMPCs are summarized.
This study is expected to help solve the remaining issues rapidly and contribute to the
establishment of rational constitutive models for SMPs and SMPCs.
[DOI: 10.1115/1.4056131]

Keywords: shape memory, constitutive model, thermomechanical, rheology, phase
transition

1 Introduction

As a class of stimulus-responsive materials, shape memory
polymers (SMPs) can switch between programed and permanent
states under appropriate external stimuli [1–6]. Shape memory
effect (SME) refers to the storage and recovery of deformation
under corresponding environmental stimulations [7]. The SME
can be actuated using various actuation methods; however, for
most of these methods, heat is the main actuator. The temperature
transition between the fixed phase, dominated by entropy, and the
reversible phase, dominated by internal energy, provides a basic
thermodynamic interpretation for the SME.

The trigger mechanisms of SME depend on the polymer sys-
tem. SMPs with physical crosslinking are typically called thermo-
plastic SMPs and are comprised of physically entangled and
crystallized molecular chains. For this type of SMP, the SME is
caused by the interaction between the hard and soft segments of
the macromolecule in the internal structure. When an external
load is applied, the hard chain segment is responsible for trans-
porting and transferring the load. Under the stimulation of an
external load, the hard chain segment gradually transforms into a
soft chain segment. The soft chain segment is responsible for

storing the deformation and releasing it under certain conditions
to achieve shape recovery.

Molecular chains in thermosetting SMP are entangled with
each other by chemical crosslinking, which primarily occurs as
covalent bonding between the macromolecular chains. For this
type of SMP, the fluidity of the molecular chain varies exponen-
tially owing to variations in temperature during the glass transi-
tion process, and the macroscopic manifestation is the SME. With
an increase in temperature, the fluidity of the molecular chains
gradually increases. The SMP reacts rapidly to the external load,
and the molecular network moves toward the decreasing configu-
ration entropy. However, with a decrease in temperature, the fluid-
ity of the molecular chain weakens gradually, resulting in a
delayed reaction to the external load. When the temperature drops
below the glass transition temperature (Tg), the fluidity of the
molecular chains gradually reaches their freezing point, and
achieving the equilibrium state under external load is difficult. At
the macroscopic level, the cooling process increases the stiffness
of the SMP, resulting in the storage of deformation.

The SME process is closely related to the applied loading and
temperature. To better understand the essence of the shape mem-
ory mechanism and optimize the processing of SMPs and SMP
composites (SMPCs), it is important to establish constitutive mod-
els to provide theoretical guidance [8,9]. Currently, there are three
methods to establish constitutive models for SMPs: the rheologi-
cal modeling method, models based on the phase transition
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concept, and a combination of the two models. For the rheological
modeling method, a viscosity coefficient is introduced to account
for time and temperature dependence, such that the model can
describe the mechanical behavior of creep, relaxation, and rate
dependence [10]. However, it cannot accurately describe the
SME, limiting its predictability. The models based on the phase
transition concept are more physically significant than the rheo-
logical models. It is assumed that SMPs are a type of composite
consisting of different phases, which can transition between each
other with temperature changes. This modeling method can rea-
sonably explain the storage and release mechanisms of deforma-
tion and can easily obtain the model parameters. However, owing
to specific assumptions, this modeling method is limited to the
framework of the thermoelastic theory and cannot explain time-
or temperature-related properties. These two modeling methods
can complement each other; therefore, the last modeling method
is a combination of the two.

Typically, by adding particles or fibers to the SMP matrix, the
modulus and recovery force are improved. At present, the research
of SMPC mainly focuses on material preparation, performance
testing, and structural design, with limited theoretical research.
However, to achieve intelligent and precise control of SMPC-
based structures, it is important to suggest a reasonable theory to
predict the mechanical response. For SMPCs, in addition to the
thermodynamic properties of the matrix, the interaction between
the fiber matrix and fiber should also be considered. Therefore,
the thermodynamic constitutive and buckling models of SMPCs
are more complex than those of SMPs.

This study integrates different modeling methods and discusses
the representative constitutive models of SMPs and SMPCs. We
review the theories of thermally actuated SMP from the rheologi-
cal models, models based on the phase transition concept to the
models combined with rheology and phase transition concept in
Secs. 2–4. Furthermore, the constitutive models of the particulate-
reinforced SMPCs, carbon-fiber-reinforced SMPCs, and buckling
behavior of SMPCs are summarized in Sec. 5. Finally, in Sec. 6,
we highlight the challenges in this field and provide an outlook on
existing challenges and promising trends.

2 Rheological Model of Shape Memory Polymers

The schematics of rheological models typically contain several
springs and dashpot elements, and different combinations repre-
sent the different main mechanical behaviors of the SMPs. This
can clearly describe the underlying physical mechanism of SMPs
in the amorphous state.

2.1 Basic Viscoelastic Model. Early studies employed the
modified linear viscoelastic model to represent the thermody-
namic behavior of SMPs. By introducing a sliding element into
the standard linear solid (SLS) model, Tobushi et al. [11] pro-
posed a four-element model for SMPs to describe the strain stor-
age and release effect. This model was the starting point for the
rheological model of SMPs, and significant effort has been made
on this basis. Subsequently, Lin et al. [12] proposed a linear model
for a polyurethane-based SMP, which consisted of two parallel
Maxwell branches: one for the reversible phase and the other for the
fixed phase. However, the model did not consider stress recovery
and could not accurately predict the SME. Tobushi et al. [13] modi-
fied an earlier model and established a nonlinear model by introduc-
ing a nonlinear term. This model can be used to predict different
thermodynamic behaviors within a 20% strain. A schematic of the
model is listed in Table 1a, where es represents residual strain.

Abrahamson et al. (Table 1b) [14] and Morshedian et al.
[15,16] established a constitutive model for SMPs employing a
series model of the Kelvin and viscous elements. Bonner et al.
[17] developed a Kelvin–Voigt-based theory and investigated the
relationship between recovery time, recovery stress, and the fabri-
cation process. However, only the stress relaxation behavior of
the SMP was considered in this model. By introducing the

modified Maxwell–Weichert model, Heuchel et al. [18] proposed
a constitutive model and predicted the stress relaxation of SMPs
(Table 1c). Based on Tobushi’s model, Li et al. [19] established a
rheological method for low-strain conditions (Table 1d). The
model effectively simulated the stress–strain-temperature relation-
ship in the free and constrained recovery processes as follows:

rþ l Tð Þ
E1 Tð Þ þ E2 Tð Þð Þ

dr
dt
¼ l Tð Þ

1þ E1 Tð Þ=E2 Tð Þ
� � de

dt
� a

dT

dt

� �

þ 1

1=E1 Tð Þ þ 1=E2 Tð Þ
� � e� a T � T0ð Þð Þ (1)

where E1 and E2 denote the elastic moduli of the two spring
branches, respectively, a the coefficient of thermal expansion, and
l the material parameter. This model type is simple to establish;
however, the physical meanings of the model parameters are not
sufficiently clear. In addition, it is challenging to describe a three-
dimensional (3D) problem and the SME under a complex mechan-
ical environment.

Diani et al. [20] determined that the crosslinked molecular net-
work of SMPs could be deformed like an elastomer above its Tg

when the deformation is primarily driven by entropy change. The
mechanical behavior of SMPs in the glassy state is mainly driven
by internal energy. Combined with the finite deformation theory
and SLS model, the authors developed the first 3D finite deforma-
tion constitutive model

W ¼ U Feð Þ � g0T F�ð Þ

rg ¼ Er

6

T

Th
FeFeT � pI entropy� stressð Þ

rU ¼ Le ln Veð Þ½ � ðinternal energy� stress
�

8>>>>><
>>>>>:

(2)

where g0 denotes the entropy and depends on the global deforma-
tion gradient. The internal energy is a function of the viscous
deformation, F� , p denotes a Lagrange multiplier dependent on
boundary conditions, Er and Le denote the Young’s modulus and
fourth-order elastic constant tensor of SMPs, and T and I denote
the temperature and unit tensor, respectively. This model
can effectively predict the residual strain during the
thermal–mechanical cycle. However, during constrained recovery,
the stress-temperature theory curve differs significantly from that
of the experimental results.

Wong et al. [21] proposed a one-dimensional (1D) constitutive
model for SMPs that consisted of a spring, dashpot, and rubbery
element (Table 1e) and characterized the isothermal recovery pro-
cess during the thermal–mechanical cycle. The Arruda–Boyce
eight-chain model was employed to describe the mechanical prop-
erties of the rubbery state. The Eyring model was employed to
predict the thermodynamic behavior of the viscoplastic element.
In addition to changes in the viscoelastic physical parameters and
structural relaxation effects, Ghosh et al. [22] suggested that the
hysteresis effect of the yield stress was another key factor affect-
ing the thermodynamic properties of SMPs. Therefore, a four-
element viscoelastic model including a friction element was pro-
posed (Table 1f). Kelvin and spring elements were used to repre-
sent the stress responses above and below the Tg, respectively.
The friction element was parallel to the Kelvin element to
describe the storage and release of the strain, where e, E, g, and k
denote the strain, spring stiffness, viscosity, and friction coeffi-
cient, respectively, and p and e denote the plasticity and elasticity,
respectively. This model does not consider the structural relaxa-
tion mechanism but describes the shape recovery process of SMPs
by establishing various phenomenological constitutive relations of
friction elements. Subsequently, Ghosh et al. [23] extended this
theory to 3D. Based on the same theoretical model framework,
Ghosh et al. [24] extended the model to a finite deformation range.
The dynamic equation can be expressed as
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T ¼ CG ee � a h � hh

� �
I

� �
stress equation

Dve ¼
1

gG

kAdev;sym

ve k � k

� �
A

dev;sym

ve

kAdev;sym

ve k
flow equation

(3)

where T denotes the nondimensional stress, Dve denotes the
viscoelastic flow rate, h is the state variable, gG represent the non-
dimensional viscosity, k is a variable relates to temperature and
stress, CG is the isotropic glassy stiffness matrices, a is the coeffi-
cient of thermal expansion, and Ave is the thermodynamic driving
force.

By connecting the SLS model in series to the storage and ther-
mal strain elements, Balogun et al. [25,26] proposed a 1D visco-
elastic model considering binding factors and further extended it
to the 3D model (Table 1g). The 1D expression of this constitutive
model can be expressed as

_e ¼ _r

E Tð Þ þ
r

l Tð Þ þ
e

k Tð Þ þ
_eth þ _eS (4)

where E, l, and k denote the elastic modulus, viscosity, and delay
time, respectively, and _eth and _eS denote the storage and thermal
strain rates, respectively.

Chen et al. [27] proposed a rheological theory for SMPs based
on the deformation gradient decomposition framework. They con-
sidered the thermodynamic coupling effect and nonlinear viscous
flow law. The Mooney–Rivlin and Hencky models were employed
to describe the mechanical behavior of the rubbery and glassy
phases, respectively (Table 1h). The stress of each branch can be
expressed as

r ¼ rA þ rB þ pI

rA ¼
2

J
C10 þ I1C01ð ÞBM �

2

J
C01B

2

M

rB ¼
2lB

J
Re

B lnUe
Bð ÞRet

B

8>>>>><
>>>>>:

(5)

where p ¼ 3k lnJ
J

, J ¼ detðFMÞ, and rA and rB denote the stress of
the rubbery and glassy phases, respectively.

Table 1 summarizes the schematics of the basic viscoelastic
models mentioned above.

2.2 Multibranch Viscoelastic Model. In the viscoelastic
model, the fluidity of the polymer chain is directly related to the
viscosity or relaxation time. Multibranch models have more
advantages in capturing multiple relaxation processes in polymer
systems. By considering two types of time- and temperature-
related mechanisms, Nguyen et al. [28] proposed a theory that
includes viscoelastic effects with structural and stress relaxations
and viscoplastic flow induced by stress. Structural relaxation was
used to describe the time-dependent evolution of SMPs from the
nonequilibrium to equilibrium states, where the virtual tempera-
ture concept was introduced to represent the nonequilibrium
effect. A constitutive model suitable for thermally induced amor-
phous SMPs was established by introducing the nonlinear
Adams–Gibbs and Eyring viscoelastic models. The effective vis-
cosity coefficient can be expressed as

g ¼ g0

Q

T

s

sy
exp

C1

0:433

C2 T � Tfð Þ þ T Tf � Tref
g

� �
T C2 þ T � Tref

g

� �
0
B@

1
CA

2
64

3
75

sinh
Q

T

s

sy

� �� 	�1

(6)

where g0 denotes the viscosity coefficient at the reference temper-
ature Tref

g ; Tf is the fictive temperature; Q is the activation energy

parameter; s is the flowing stress; sy is the isothermal shear stiff-
ness to characterize the yield behavior of SMP; C1 and C2 are two
parameters of the Williams–Landel–Ferry equation.

The viscosity equation describes viscosity as a function of time
and temperature, which plays a key role in describing the SME.
Furthermore, the viscous flow law can be expressed as

_cv ¼ syffiffiffi
2
p

g0

T

Q
exp

C1

0:433

C2 T � Tfð Þ þ T Tf � Tref
g

� �
T C2 þ T � Tref

g

� �
0
B@

1
CA

2
64

3
75

sinh
Q

T

s

sy

� �� 	
(7)

However, it cannot describe the viscoplastic yield and fluid
behavior at low temperatures. To address these problems, Xiao
et al. [29] focused on viscous flow and yield behaviors below the
Tg and established a coupled thermodynamic framework
(Table 2a). The expression for the total stress is as follows:

r ¼ 1

J

lN

3

Tf

T0

kL

keff

L�1 keff

kL

 !
bM �

1

3
IM1

1

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Seq

þ
XN

k¼1

1

J
lneq

k bk �
1

3
Ie

1k1

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Sneq

þ 1

2J
j J2

M � 1
� �

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
P

1 (8)

where Seq, Sneq, and P denote the stress contributions of the equi-
librium, nonequilibrium, and volumetric components, respec-
tively. The equilibrium component was described by the
Arruda–Boyce eight-chain model, and the nonequilibrium stress
response was described by the Neo-Hookean model.

Buckley et al. [30] confirmed the significance of the visco-
elastic relaxation spectrum using a genetic integral. Diani et al.
[31] employed the generalized Maxwell model (GMM) to repre-
sent the discrete spectrum of relaxation time and the
Williams–Landel–Ferry equation to describe the equivalence rela-
tionship between relaxation time and temperature. By introducing
the Neo-Hookean model to describe the large deformation behav-
ior, the model was extended to a finite deformation range. Twelve
pairs of GMM parameters were obtained by a nonlinear fitting of
the storage modulus and frequency curve. Arrieta et al. [32] suc-
cessfully extended this modeling method to represent the free and
constrained recovery under axial tension and high-strain condi-
tions. Based on the viscoelastic and time–temperature equivalence
principles, the shape memory behavior was predicted.

Anand et al. [33,34] developed finite deformation theories for
thermoplastic SMPs. However, this type of model can only
describe the mechanical behavior of SMPs below the Tg, signifi-
cantly limiting its application. Srivastava et al. [35,36] established
a thermoviscoelastic model of SMPs that coupled the heat transfer
and generation effects in plastic deformation. In this study, the
intermolecular resistance of the glassy state was represented by a
Maxwell model, and an SLS model was employed to simulate the
molecular network resistance (Table 2b). However, this study did
not describe the relaxation mechanism. The relationships between
the shear modulus, Poisson’s ratio, and temperature were pre-
sented using a phenomenological theory. The model accurately
described the rate- and temperature-dependent behaviors. How-
ever, it contains 45 parameters, the determination of which is
tedious.

Referring to Nguyen’s model, Li et al. [37] proposed a theory
to simulate the thermal–mechanical process and obtain a tempo-
rary morphology below the Tg. The Narayanaswamy–Moynihan
model was used to characterize the structural relaxation, and the
dependence of the structure and stress relaxation time on the tem-
perature was obtained. There are 17 parameters in this model, all
of which were obtained from standard thermodynamic
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experiments. Notably, unlike the previous SME, the temporary
configuration of the SMP was obtained in the glassy state.

Westbrook et al. [38] developed a multibranch model to capture
the SME (Table 2c). Two groups of nonequilibrium branches rep-
resenting the glassy and rubbery states were introduced to
describe the different relaxation modes, significantly reducing the
material parameters. The influence of additional nonequilibrium
rubbery branches on the overall prediction effect is discussed
under different thermal and mechanical loading history conditions

r ¼ req þ rg þ
Xm

i¼1

ri
r ¼

nkBT

3JM

ffiffiffiffi
N
p

kchain

L�1 kchainffiffiffiffi
N
p

� �
B
0 þ rg

þK JM � 1ð ÞIþ
Xm

i¼1

1

Ji
e

Li
eðTÞ:Ei

e

� 
(9)

where N is crosslinking density, kB is Boltzmann constant, and T
is temperature.

Yu et al. [39] proposed a 1D low-strain genetic integral model
combined with a discrete relaxation time spectrum and simulated
multiple SMEs. Subsequently, Yu et al. [40,41] constructed a 3D
large-deformation constitutive model. Multirelaxation processes
introduced multiple Maxwell elements, as shown in Table 2d, and
investigated the determination method of material parameters
through a series of experiments.

Sweeney et al. [42] proposed a viscoelastic model for SMPs by
introducing three Maxwell element branches, in which the spring
elements were expressed by the Neo-Hookean equation, and the
dashpot elements were described by the Eyring equation. Ge et al.
[43] proposed another model for predicting the free recovery of

SMPs. In addition to predicting the SME, it can characterize the
rate dependence and relaxation behavior. Gu et al. [44] estab-
lished a multibranch thermoviscoelastic model for SMP foams,
which divided the deformation into the SMPs and elastic glass
microspheres (Table 2e). The structural relaxation behavior above
the Tg is described using the Adams–Gibbs model. The multire-
laxation process was described using the modified Eying viscous
flow law. Table 2 summarizes the schematics of the multibranch
viscoelastic model.

2.3 Fractional Viscoelastic Constitutive Models. Visco-
elastic theory is an earlier and more commonly used method for
describing the mechanical behavior of SMPs. Using this method,
SMPs are regarded as a combination of springs, dashpots, and
sliders, and series or parallel viscoelastic models are used to
describe their thermodynamic properties. However, this type of
model involves several parameters. Fractional viscoelastic consti-
tutive models can describe the complex viscoelastic relationship
that is difficult to describe in integer calculus, and the model
parameters are less than in integer calculus; therefore, they have
been widely employed to model the constitutive relationship of
viscoelastic materials.

Several types of constitutive models for SMPs exhibit power-
law relaxation behavior. Typically, the evolution of the relaxation
modulus with time is described by the Prony series. Increasing the
terms of the Prony series can improve the accuracy of the model;
however, it also causes problems for subsequent calculations.
Combined with the rheological theory, the fractional viscoelastic
constitutive model can significantly decrease the number of mate-
rial parameters. Currently, the description of the relaxation or
complex moduli of SMPs typically employs the differential

Table 1 Summary of the schematics of the basic viscoelastic model

Schematics References Schematics References

a [13] b [14]

c [18] d [15,19]

e [21] f [22]

g [25] h [20,27]

: spring element; : dashpot element; k: microslip parameter; E: elastic modulus; g: material damping
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equation of an integer derivative, which is typically the serial and
parallel form of the Kelvin or Maxwell models.

The first fractional derivative model was proposed by Nguyen
et al. [45], as shown in Fig. 1, and the discrete spectrum was
obtained by fitting the main curve of the storage modulus. Only
two parameters were used in this model to describe the complex
viscoelastic relationship, significantly decreasing the number of
parameters.

Attempting to describe complex viscoelastic behaviors with
fewer parameters, Fang et al. [46] employed the fractional-order
Zener-type model to predict the mechanical response of SMPs.
Combined with the SLS model, Li et al. [47] investigated the
thermal–mechanical process of SMPs using the same method. Pan
et al. [48] systematically investigated the thermodynamic behav-
ior of SMPs by establishing a fractional viscoelastic model
(Fig. 2). The entire model consisted of two fractional Maxwell

Table 2 Summary of the schematics of the multibranch viscoelastic model

Schematics References

a Xiao et al. [29]

b Srivastava et al. [36]

c Westbrook et al. [38]

d Yu [40]

e Gu et al. [44]

: spring element; : dashpot element; E: elastic modulus; g, s: material damping; TEC: thermal expansion
component.
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branches, a Hookean element branch, and a thermal expansion
element branch, which can be expressed as

rM tð Þ ¼ req tð Þ þ
Xm

i¼1

ri tð Þ

¼ EeqeM tð Þ þ
X2

i¼1

Ei

ðt

t0

Eb �
t� nð Þ
si

� �b
 !

deM nð Þ
dn

dn

"

þEb �
t� t0

si

� �b
 !

ri t0ð Þ
#

(10)

where Eb denotes the Mitting–Leffler equation, s the relaxation
time, and b 2 ½0; 1�. When b ¼ 0, the spring-dashpot degenerates
into a simple spring model, and when b ¼ 1, the spring-dashpot
degenerates into a simple Newton-dashpot model. The spring-
dashpot element can characterize the properties of the material from
the solid to fluid states, and eliminate the restriction that a component
can only be a spring or a dashpot. This type of model can reflect the
nonlinear gradual change process in the viscoelastic problem, and the
model parameters have a clear physical significance.

Combining the GMM and Maxwell–Wiechert models, Zeng
et al. [49,50] constructed multirelaxation fractional thermoviscoe-
lastic models, which can accurately predict the temperature-
dependent free recovery process (Fig. 3). The fractional model
can describe the relaxation or complex modulus with multiple
orders of magnitude, or a wide range of frequency domains with
fewer material parameters. Moreover, it is easier to obtain analyti-
cal solutions using Fourier or Laplace transforms.

3 Constitutive Model Based on the Phase Transition

Concept

In this type of constitutive theory, SMPs are regarded as com-
posites consisting of different phases, and the temperature change
causes a variation in the volume ratio of each phase. This type of
model describes the deformation mechanism by introducing the
phase-transition concept from the perspective of entropy and
energy change. However, because there is no physical phase tran-
sition in amorphous polymers, the thermodynamic process
described by the phase-transition model is not a real process.
Therefore, constitutive models based on the phase transition con-
cept cannot clearly describe deformable storage owing to the
weakening of the molecular fluidity during cooling. Although the
physical meaning of the phase transition models is unclear, they
also provide an effective method for predicting the SME.

Liu et al. [51] first established phase transition models for the
3D slight deformation of epoxy-based SMPs through a series of
uniaxial experiments. Combined with the phase transition con-
cept, the authors considered that the molecular chain of the active
phase had a strong kinetic ability, and its deformation was
achieved by a change in entropy. The kinematic ability of the
molecular chains in the frozen phase was weak, and their defor-
mation was achieved by a change in the internal energy. With a
change in temperature, the SME was accompanied by a change in
the volume fraction of the phases. Based on the uniform stress
assumption, the same point in the matrix possesses the same stress
before and after the glass transition.

Fig. 1 Schematic of the constitutive model developed by Nguyen et al.; Eeq and Eneq

denote the elastic moduli of the equilibrium and nonequilibrium branches [45]

Fig. 2 Fractional viscoelastic models proposed by Pan et al.
[48]

Fig. 3 Multirelaxation fractional thermoviscoelastic models proposed by Zeng et al. [49,50]
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Using the volume fraction of the glassy phase as an internal
variable, Chen et al. [52,53] further extended the phase transition
method and established a 3D constitutive model for highly
deformed SMPs. The freezing reference configuration was

introduced to calculate the freezing process of material particles
in different periods. Furthermore, the author suggests that the
glassy and rubbery phases exhibited the same mechanical
response, and the frozen strain completely recovered after heating
up. This model is established in the framework of the existing
nonlinear viscoelastic constitutive theory, without explicitly con-
sidering the intermolecular interactions. Figure 4 illustrated the
evolution of the reference configuration during the phase transi-
tion. During cooling, the active, frozen, and phase transition inter-
mediate states exist simultaneously in the polymer. During the
transition from the active to phase transition intermediate states,
the strain changes from F̂aðtÞðSðtÞ;hðtÞ to F̂aðtÞðSðsÞ;hðsÞ. s
denotes the phase transition time. When t < s, the material is in
the active state; when t > s, the material completes the phase
transformation and moves to the frozen state; when t ¼ s, the
material is undergoing a phase transition. During the transition
from the active to frozen states, the material satisfies
FðX; sþ 0Þ ¼ F̂ f ðSðX; sÞ; hðX; sÞÞF. Furthermore, to ensure the
continuity of material deformation, the material satisfies
F̂aðSðx; sÞ; hðx; sÞÞ ¼ F̂f ðSðX; sÞ; hðX; sÞÞF. Consequently, during
the constant strain-cooling process, the deformation distribution
inside SMPs can be expressed as follows:

FðX; tÞ ¼
F̂aðSðX; tÞ; hðX; tÞÞ; if X 62 Xf hðX; tÞ

F̂
�1

f ðSðX; sÞ; hðX; sÞÞF̂f ðSðX; tÞ; hðX; tÞÞF̂aðSðX; sÞ; hðX; sÞÞ; if X 2 Xf hðX; tÞ

8<
: (11)

Considering that the transformation process is rate-dependent,
Pan et al. [54] proposed another phase evolution equation. By
studying the crystallization process of SMPs, Rao et al. [55] estab-
lished a constitutive equation to simulate the thermal–mechanical
process of crystallized SMPs. This model describes the SME and the
transition between the formation and melting of the crystal phase.
The uniaxial cyclic deformation and nonuniform shear deformation
of the hollow cylinder were investigated using this model. The stress
of the semicrystalline phase is expressed as follows:

T ¼ �pIþ 1� að Þ2qFja

@wa

@Cja

FT
ja
þ a2qFjc

@wc

@Cjc

FT
jc

¼ �pIþ 1� að ÞT̂a þ aT̂c

(12)

where T denotes the average stress of the material, T̂a the amor-
phous stress, T̂c the stress of the crystalline phase, Cja

and Cjc
the

right Cauchy–Green tensor, Fja
the deformation gradient in the

fixed configuration, and w the Helmholtz energy. Subsequently,
Rao et al. [56] modified the model and proposed a complete con-
stitutive model for the thermodynamic framework. This model
provided the constitutive relations of the rubbery (amorphous
phase) and semicrystalline phases. Volk et al. [57–60] proposed a
series of constitutive models combined with the Neo-Hookean
model and a hyperbolic tangent function for different mechanical
behaviors of SMPs. The Neo-Hookean equation was used to rep-
resent the mechanical behavior of the active phase, whereas the
hyperbolic tangent function was used to characterize the mechani-
cal behavior of the frozen phase.

The phase evolution model typically makes certain assumptions
to simplify the calculation. Liu et al. [51] and Chen et al. [52]
employed the uniform stress hypothesis, indicating that the active
and frozen phases have the same stress. Qi et al. [61] assumed that
the initial frozen and active phases have the same strain. Further,
Gilormini et al. [62] investigated various homogenization

hypotheses, including the uniform strain hypothesis, uniform
stress hypothesis, and Hashin–Shtrikman upper and lower bound-
ary approximations. The results indicate that the predictive ability
of these uniform hypotheses did not differ significantly. The pre-
dictability of the uniform strain hypothesis is better than that of
the uniform stress hypothesis. The more complex self-consistent
approximation and the Hashin–Shtrikman upper and lower boun-
daries did not significantly improve the predictability compared
with the strain hypothesis.

By investigating the evolution rules of the glassy phase,
Kazakeviciute–Makovska et al. [63] determined that they corre-
lated well with the free-recovery experimental data when various
prestrains were normalized as the main curve. Moreover, they
noted that the current methods for determining the volume frac-
tion and predicting the stress responses of constraint restoration
were not ideal. They developed a new evolution model for the
glassy phase volume fraction by introducing additional
temperature-dependent parameters.

Combined with the second law of thermodynamics, Baghani
et al. [64] proposed a 3D model by assuming that SMPs are com-
posites of active and frozen phases (Fig. 5) that can be converted
to each other by external thermal stimulation. Utilizing the first-
order mixing rule, the deformation was divided into the thermal,
initial frozen phase, new frozen phase, and stored strains. By ana-
lyzing the changes in the physical parameters during the loading
process, the evolution law of the internal variables was obtained.

Fig. 4 Evolution of the reference configuration in the phase
transition process

Fig. 5 Constitutive model proposed by Baghani et al. [65]
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Using a rectangular bar and a circular tube as examples, the tor-
sion behavior was simulated, and the validity of the model was
verified. However, this model is applicable only to slight deforma-
tions. Baghani et al. [65] extended this model and developed a 3D
finite deformation model. The free energy can be expressed as

Wðe;T;ur;ug; er; eg; esÞ ¼ urWrðerÞ þ ugWgðegÞ
þWkðe;T;ur;ug; er; eg; esÞ þWTðTÞ (13)

where W denotes the Helmholtz free energy density function, u
the volume fractions of each phase, r, g, and T the rubbery phase,
glassy phase, and thermal symbol, respectively, es the storage
strain, and Wk a kinematic constraint.

Assuming that SMPs are a type of particle composite, Yang
et al. [66] proposed a constitutive model combined with the
Mori–Tanaka theory and a new phase evolution equation. Assum-
ing that the phase evolution process occurred in stages, Li et al.
[67] proposed a constitutive model for SMPs. In this model, the
formation of the frozen phase was independent of the heating and
cooling rates. Subsequently, Li et al. [68] modified this model and
proposed another phase-evolution equation by introducing time
factors. In this study, the concept of the frozen strain rate is intro-
duced. It is assumed that when the temperature change is DT, and
the time, Dt, is sufficient, the phase transformation can be com-
pleted, and the frozen strain, Def� real , equals the theoretical value,
Def . Else, the actual value of Def� real is less than the theoretical
value, Def . Consequently, the expression for the freezing strain,
Def� real , is a function of time. The transition between the two
phases is assumed to be a continuous process (Fig. 6). For this
model, the critical formula can be expressed as

rtotal ¼
etotal � ef� real � eT

c
Eg
þ 1� c

Er

def

dT
¼ dc

dT
1� f Tð Þ
�  etotal � ef � eT

Er
c

Eg
þ 1� c

Er

� �

ef� real ¼ ef �
ðt

0

_ef e
� t�að Þ

s da

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(14)

where eT denotes the thermal strain, c the internal variable fraction
of the glassy phase, Eg and Er the elastic moduli of the glassy and
rubbery phases, respectively, ef the theoretical frozen strain, and
ef� real the actual frozen strain.

Assuming that the phase transition is caused by internal stress,
Lu et al. [69] developed a constitutive theory related to the inter-
nal stress concept. Arvanitakis et al. [70] proposed a phase transi-
tion equation for thermosetting materials based on the level-set
method. The phase transition model is simple to construct and
widely applicable and can be applied to describe the constitutive
relations of various SMPs and SMPCs. For semicrystalline SMPs,
the physical significance of the phase transition model is clear.
The material separation phase of semicrystalline SMPs is divided
into amorphous and crystalline regions, and the generation of the
phase transition is accompanied by melting and crystallization.
However, for amorphous polymers, the phase transition is concep-
tual and has no physical significance; therefore, it is impossible to
obtain the true volume fraction of each phase. The commonly
used method employs free recovery data under specific prestrain

conditions to determine the volume fractions of each phase. The
free recovery experiments under other prestrain conditions were
then used to test the rationality of such volume fractions. How-
ever, although the obtained model fits well with the experimental
results, there is no specific physical significance.

4 Viscoelastic Models Combing Rheology and Phase

Transition Concept

Phase evolution models are simple to establish, but they lack
physical significance. The model parameters cannot be obtained
from standard thermodynamic experiments. The rheology model-
ing method is more versatile and practical; however, this type of
model is more complex, and several parameters need to be deter-
mined. The predictability of the phase transition theory or rheo-
logical model alone is limited. Consequently, a new framework is
established by combining the viscoelastic and phase transition
theories.

Qi et al. [61] first established a 3D finite deformation constitu-
tive model for the complex multi-axial thermodynamic behavior
of amorphous SMPs by combining the viscoelastic model and
phase transition concept. In this study, SMPs are assumed to com-
prise rubbery, initial glassy, and frozen glassy phases. The
mechanical properties of the rubbery and initial glassy phases
were described by the Arruda–Boyce eight-chain and thermovis-
coelastic models, respectively. The definition of the transforma-
tion gradient of the frozen phase is key to expressing the SME in
this model. The model contains 17 parameters, including eight for
the stress of the elastic part, seven for the viscoplastic part, and
two for the Vogel–Tammann–Fulcher function of the frozen phase
volume fraction. The deformation gradient and corresponding
free-energy equations are as follows:

T ¼ frTr þ fg0Tg0 þ fTTT (15)

where fr , fg0, and fT denote the volume fractions of the rubbery,
initial glassy, and frozen glassy phases, respectively, and Tr , Tg0,
and TT correspond to their Cauchy stresses, respectively. For the
stress tensor, TT , of the frozen glassy phases, Qi et al. suggested
that the deformation was the redistribution of the overall deforma-
tion, and it was assumed that all frozen glassy phases had the
same deformation gradient at different times. Consequently, there
is an increment, DFnþ1

T , of the deformation gradient of the frozen
glass phase

DFnþ1
T ¼

Fnþ1ðFnÞ�1
if DT 6¼ 0

I if DT ¼ 0

(
(16)

where Fn and Fnþ1 denote the global deformation gradients of the
increment from n to nþ 1, respectively. Although the model can
accurately simulate the SME of SMPs, the form of the constitutive
model is complex because several other classical models have
been incorporated into the modeling process.

By analyzing the microstructure of SMPs, Kim et al. [71] estab-
lished a 1D constitutive theory that contained one viscoelastic
hard phase and two hyperelastic soft phases. The two soft phases
corresponded to the mechanical behavior of SMPs in the rubbery
and glassy states, which were represented by the Mooney–Rivlin
hyperelastic model, whereas the hard phase is described by a lin-
ear viscoelastic model (Fig. 7). In this study, the SLS model was
used to describe the mechanical behavior of the hard phase, and

Fig. 6 Schematic of the model proposed by Li et al.
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the following genetic integral form was applied to the constitutive
relation of the model:

rh ¼ rs ¼
ð

t

Y t� sð Þ de
ds

ds (17)

where the relaxation modulus satisfies: Yðt� sÞ ¼
q0 þ ðq1=p1 � q0Þexpð�t=p2Þ, p1 ¼ lðE1 þ E2Þ, q0 ¼ E1E2

E1þE2
;

q1 ¼ E1l
E1þE2

.
For the soft phases that contain the frozen phase and active

phase, the Mooney–Rivlin model was used to describe the
mechanical behavior, which can be expressed as

ru ¼ 2C10ðku � k�2
u Þ þ 2C10ð1� k�3

u Þ; ku ¼ 1þ eu (18)

where ru, eu, and ku denote the stress, strain, and axial elongation
ratios, respectively.

The model parameters were determined by differential scanning
calorimetry (DSC) experiments and a series of tensile tests at dif-
ferent temperatures. The parallel model was significantly affected
by the tensile properties, whereas the series model was more sus-
ceptible to the strain storage rate. However, from the series and
parallel hypotheses of the model, it can be observed that the defor-
mation mechanism of the SMPs remained in the conjecture stage.

Based on this model, Gu et al. [72] used the affine network
model to replace the Mooney–Rivlin model to characterize the
change rule for the soft segment and proposed a 3D constitutive
model. Combined with the phase transition concept, Wang et al.
[73] proposed a physical, temperature, and time-related

constitutive model for SMPs. By assuming it to be a composite,
the Mori–Tanaka theory was introduced to describe the mechani-
cal behavior of SMPs. The stress is expressed as

r ¼ ~Lðe� eM
f � eT

f Þ ¼ ~L½epreð1� UM
f Þ þ eTð1� UT

f Þ� (19)

where epre denotes the prestrain, UM
f and UT

f the fractions of the
mechanical and thermal parts of the frozen phase, respectively, ~L
can be obtained by ~L ¼ LaðIþ Uf AÞ�1

, and La denotes the stiff-
ness tensor of the active phase.

Reese et al. [74] proposed a thermodynamically coupled model
to describe the mechanical behavior of the rubbery state from
macroscopic and mesoscopic perspectives. Using a finite element
approach, they developed a tetrahedral cell to simulate the rubbery
phase. Subsequently, the constitutive models were inserted into
finite element software to analyze the two-dimensional (2D) and
3D thermodynamic problems. Using this model, the SME of the
two types of vascular stent structures was simulated, and its valid-
ity was verified. However, the viscoelastic behavior during the
phase transition and inelastic effect of the two phases were not
considered in this model.

Guo et al. [75] extended the traditional linear phase transition
theory to nonlinear and established a normally distributed phase
evolution model. According to the phase transition theory, the
deformation was divided into three parts: the active phase strain,
ea; frozen phase strain, ef ; and thermal strain, eT (Fig. 8).

Based on the phase transition theory, Guo et al. [76] investi-
gated the strain hardening of SMPs by introducing a strain-rate
parameter into the viscoelastic model. In another study, Guo et al.
[77] assumed that during the phase transition process, SMPs com-
prise of a frozen state and several active states. Each phase state
was characterized by a series of Kelvin and Maxwell elements
(Fig. 9). During cooling, the active phase (element i), represented
by the small viscous element, completes the phase transformation
to the frozen state, and the strain in element i is frozen and con-
verted to the stored strain. The strain value of the SMPs at time t
under unit stress is a function of the temperature and time, which
can be expressed as

Fig. 7 Schematic of the series model and the parallel model

Fig. 8 Schematic of the phase evolution model

Fig. 9 Schematic of the phase evolution model
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e ¼ /f ðes þ em
f Þ þ

Xn

1

/ie
m
i þ eT

¼ rð/f ðTÞJf ðT; tÞ þ
Xn

1

/iðTÞJiðT; tÞÞ þ /f e
s þ eT (20)

with Jf ðT; tÞ ¼ 1
Gf
þ 1

G
0
i

ð1� e
� t

sf Þ þ t
gf

and JiðT; tÞ ¼ 1
Gi
þ 1

G0i

ð1� e
� t

siÞ þ t
gi

. where Gi denotes the transient elastic modulus of

the ith phase inside the SMP, the viscosity coefficient, gi, is used

to characterize the viscoelastic properties of the ith phase, G0i
denotes the elastic modulus employed to characterize the visco-
elastic behavior of polymer materials before and after the phase
transition temperature, and JiðT; tÞ denotes the creep compliance.

This equation gives the constitutive equation describing the
mechanical behavior of SMPs during each stage of deformation.
During the loading process at a constant temperature, there was
no phase transition process caused by the temperature, and the
macroscopic performance was viscoelastic. The viscoelastic
model can accurately describe the mechanical behavior of SMPs
at different temperatures, and the introduction of the phase-
transition volume fraction enables it to explain the shape-memory
properties of SMPs.

Combining the rheological theory and phase evolution concept,
Scalet et al. [78] developed a constitutive model for semicrystal
SMP containing 14 parameters. Park et al. [79] developed a finite
strain constitutive theory by dividing SMPs into active and frozen
phases (Fig. 10). Both the rubbery and glassy phases were mod-
eled using a visco-hyperelastic equation. The deformation gradi-
ent was multiplicatively divided into the deformation gradient of
each phase to describe the deformation behavior of SMPs. How-
ever, this model can only predict the strain recovery process.
Combined with the internal state variable modeling method,
Bouaziz et al. [80] developed a new phase evolution equation.
During heating and cooling, the temperature is transferred from
the surface to the interior. Guo et al. [81] suggested that the phase
evolution process followed the same rule and developed a consti-
tutive model by considering the microstructure of semicrystalline
SMPs.

Li et al. [82] developed a time-dependent viscoelastic model
combined with the phase transition theory. Under an external
load, the molecular network was crosslinked and redirected, and
reversible phases (secondary crosslinking) formed during cooling,
locking the deformed shape while disappearing during the heating
process. The rubbery state was considered as an anisotropic
incompressible material, and stress relaxation and creep under
continuous loading were considered. When T> Tg, two incom-
pressible spring elements and a dashpot element were employed
to represent the mechanical behavior of the rubbery phase as
shown in Fig. 11, and the total Cauchy stress, r, can be expressed
as r ¼ rR1 þ rR2. When T< Tg, a new reversible phase (second-
ary crosslinking) was activated, acting as a lock of the temporary
shape, which was represented by a spring element in parallel with
a viscous damper, and the Cauchy stress was calculated as
r ¼ rR1 þ rR2 þ rE1 þ rE2.

Zhao et al. [83] proposed a constitutive model based on multi-
ple decompositions of the deformation gradient. Combining the
phase transition concept, SMPs were considered to be a composite
consisting of glassy and rubbery phases (Fig. 12).

The advantage of viscoelastic models combined with the rheol-
ogy and phase transition concept lies in their versatility and viabil-
ity. They can describe the thermal-mechanical properties related
to the temperature and rate without knowing the specific polymer
network structure of the SMP. However, this type of model is
complex and contains several parameters.

Table 3 summarizes the phase evolution equations. The deter-
mination of the volume fraction is an important part of the phase
transition model. However, in the past phase volume fractions
have been determined using empirical formulas because of the
lack of reasonable physical interpretations. In theoretical models
of the phase transition, SMPs are typically divided into two parts:
the active and frozen phases. With increasing and decreasing tem-
peratures, the phase transition between the active and frozen
phases begins accompanied by the storage and release of strain,
exhibiting the SME at the macrolevel. Therefore, a reasonable and
accurate characterization of the variation in the volume fraction of
the active or frozen phases with temperature is the key to explain-
ing the SME using this model.

Fig. 10 Schematic of the phase evolution model

Fig. 11 Schematic of the constitutive model

Fig. 12 Schematic of the constitutive model proposed by Zhao
et al.

020802-10 / Vol. 75, MARCH 2023 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/appliedm

echanicsreview
s/article-pdf/75/2/020802/6952485/am

r_075_02_020802.pdf by H
arbin Institute of Technology, Yanju Liu on 03 D

ecem
ber 2022



Typically, there are two methods to define storage strain:
directly defining the expression of storage strain, such as the
model of Park et al. [79], and deriving the evolution equation of
storage strain, such as the model of Liu et al. [51]. Furthermore,
some models do not define the stored strain but obtain the shape
memory strain by a special strain relationship, such as the model
of Qi et al. [61].

As exemplified by the phase-transition model proposed by Liu
et al. [51], the variation in the frozen phase volume fraction with
temperature can be expressed as

/f ¼
e�

epre

¼ 1� 1

1þ cf Th � Tð Þn (21)

where e� denotes the storage strain, epre the prestrain of the SMP,
and cf and n are obtained by fitting the experimental data. The
form of the model is simple, however, cf and n have no physical
significance, and are difficult to determine experimentally. In the

model proposed by Qi et al. [61], the variation in the frozen phase
volume fraction can be expressed as

/f ¼ 1� 1

1þ exp � T � Tr

A

� � (22)

where A denotes a constant highly dependent on the phase transi-
tion region of the material, and Tr a characteristic temperature of
the phase transition with a value approximately equal to the Tg. In
2012, Gilormini et al. presented a piecewise function model to
describe the phase transition of SMPs, which can be expressed as

/f ¼

0; T < Tmin

1� T � Tmin

Tmax � Tmin

� �m
 !n

; Tmin � T � Tmax

1; T > Tmax

8>>>>><
>>>>>:

(23)

Table 3 Summary of phase evolution equations

Phase evolution equations References Phase evolution equations References

/ ¼ 1� 1

1þ cf ðTh � TÞn
Liu et al. [51]

/f ¼ 1� 1

1þ exp �T � Tt

A

� � Qi et al. [61]

/ ¼ aexp � Tt

T

� �m

b�n

 !
Wang et al. [73]

/ ¼ 1

1þ exp
2w

T � Tt

� � Reese et al. [74]

/ ¼ b� tanhððT � AÞ=BÞ
b� a

Volk et al. [58]
/ ¼ 1

V

ð
X

1

2
ðIþ tanhðw=sÞÞdV

Arvanitakis [70]

/ ¼
ðT

Ts

1

S
ffiffiffiffiffiffi
2p
p exp �ðT � TgÞ2

2S2

� �
dT

Guo et al. [75]
ng ¼

b

1þ expðcðT � TtrÞÞ
� d

Park et al. [79]

/ ¼ 1� 1

1þ exp �T � Ttrð _TÞ
b

� � Pan et al. [48]
c ¼ 1� 1

1þ cðTh � TÞn ¼
ef

etotal

Li [68]

/ ¼ 1

V

ð
X

1

2
ðIþ tanhðw=sÞÞdV Arvanitakis [70]

/f ¼

0; T < Tmin

1� T � Tmin

Tmax � Tmin

 !m
0
@

1
An

; Tmin � T � Tmax

1; T > Tmax

8>>>><
>>>>:

Gilormini [62]

/ ¼ 1�
ð1

rcðTÞ
pðrÞdr

 !
� 1� 1� exp �DHaðTÞ

kBT

� �� �Dt

s0

0
@

1
A

Yang and Li [66]

/f ¼ 1� 1� b

1þ expð�a1ðT � TrÞÞ
� b

1þ expð�a2ðT � TcÞÞ
Bouaziz et al. [80]

nc ¼

1

1þ exp½bcool ðT � Tc; eff Þ�
if _T60

1

1þ exp½bcool ðTEND � Tc; eff Þ�
1

1þ exp½bheot ðT � Tm; eff Þ�
if _TP0

8>>>>><
>>>>>:

Scalet et al. [78]

/ ¼ 1þ tanhðc1Tg � c2TÞ � tanhðc1Tg � c2ThÞ
tanhðc1Tg � c2ThÞ � tanhðc1Tg � c2TlÞ

Baghani et al. [65]

1� uf ¼ uexpð�ðkTtran =ðT � sbÞÞm=bnÞ Guo et al. [81]

uf ¼ 1� c ¼ 1� ATexp �DGðThÞ10
�

C1

C2 þ T � Th

� �
RT

þ Th � T

b � Th � T

0
B@

1
CA

Lu et al. [68]
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where Tmin and Tmax denote the initial and final temperatures of
the phase transition, respectively. Compared with the experimen-
tal results, these three models can accurately characterize the
phase transition behavior between the frozen and active phases.
However, the models contain several parameters, which have no
clear physical significance and can only be obtained by fitting the
experimental results.

Furthermore, Guo et al. proposed a normal-distribution phase
transition model to characterize the change in the volume fraction
of the frozen phase

/ ¼
ðT

Ts

1

S
ffiffiffiffiffiffi
2p
p exp � T � Tgð Þ2

2S2

� �
dT (24)

where the variance, S, can be expressed as S ¼ Tf�Tg

n . The initial
temperature, Ts, and finishing temperature, Tf , of the phase trans-
formation, and phase-transition temperature, Tg, can be obtained
by DSC experiments. The parameter, n, can be given by the
boundary conditions under ideal conditions, that is, /f ðTminÞ ¼ 1
and /f ðTmaxÞ ¼ 0. By comparing the experimental and simulation
results, it was determined that the normal distribution model can
accurately characterize the variation in the frozen volume fraction
with temperature during the phase transformation.

Each of the three types of SMP models has unique characteris-
tics, and the modeling method chosen to describe the mechanical
behavior requires consideration of which performance aspect to
focus upon. For the phase transition model, SMPs are considered
to be a mixture of glassy and rubbery phases. Under this classifi-
cation, models have been established by Liu et al. [51], Chen and
Lagoudas [52,53], and Pan et al. [54]. The phase transition models
have sufficient flexibility in extending existing constitutive mod-
els of polymers to the rubbery and glassy phases to describe the
SME. However, because the temperature variation rate and time
hysteresis effect are not considered in this model, the thermal
deformation related to the time–temperature course cannot be
accurately described. For example, owing to the lack of
time–temperature-related parameters to describe the change in
mechanical properties in the model, the typical viscoelastic prop-
erties of the viscoelastic materials, such as relaxation, creep, and
rate dependence, cannot be described.

For the rheological model, it can be observed that the visco-
elastic model is extended to the thermodynamic behavior under-
going glass transition, and the viscosity parameters are regarded
as nonlinear functions of temperature, as in the models established
by Tobushi et al. [13], Nguyen et al. [28], Diani et al. [31], Li
et al. [37], and Yu et al. [40,41]. The SME is considered to be due
to the change in viscosity or relaxation time in the glass transition
region caused by temperature changes. Compared with the phase
transition model, the viscoelastic model does not directly describe
the SME but describes the time-dependent mechanical properties
of SMPs. Consequently, several time–temperature-related param-
eters in the model describe the changes in mechanical properties.
However, a deeper physical explanation of the description of the
SME is not provided. There are also no clear physical definitions
of the storage and shape memory strains, which can only be
described in phase-transition models. Therefore, such models can-
not adequately explain the SME mechanism.

5 Constitutive Models of Shape Memory Polymers

Composites

Typically, SMPs exhibit a low modulus and recovery force, and
their practical applicability is low. Therefore, it is necessary to
add reinforcing fillers to expand its application range. The fillers
can be divided into particles and fibers, including short fibers, uni-
directional continuous fibers, and woven fiber cloths. SMPCs
need to add a theoretical description of the interaction between
the reinforcing phase and matrix, and between the reinforcing
phase and reinforcing phase by considering the complex thermo-
dynamic characteristics of the matrix. Therefore, the construction
of a constitutive SMPC model is complicated.

5.1 Constitutive theories of Particle Reinforced Shape
Memory Polymers Composites. There are several effective
models for predicting the thermodynamic properties of
particulate-reinforced SMPCs. The most common modeling
method is the conventional viscoelastic method combined with
the micromechanics theory, including the self-consistent theory
[84–88] and Mori–Tanaka method [89]. Combined with the
Mori–Tanaka theory, Yang et al. [90] investigated the mechanical
properties of SMPCs based on the assumption of a uniform distri-
bution of the particle phase. The changes in the mechanical prop-
erties of SMPCs with temperature and volume fraction of the
inclusion phase were systematically investigated. Xu et al. [91,92]
investigated a type of SMPC foam consisting of styrene-based
SMPs and deformable glass microspheres using a combined rheol-
ogy and phase transition model.

Baghani et al. [93] developed a model to investigate the
mechanical properties of particulate-reinforced SMPCs under dif-
ferent loading conditions. The SMPCs were divided into two
parts: the SMP and the hard segment. The SMPs were further
divided into glassy and rubbery phases (Fig. 13). The reinforced,
glassy, and rubbery phases are considered viscoelastic materials.
The strain satisfies the Clausius–Duhem inequality and is divided
into six parts, including the SMP strain, ep; reinforcement phase
strain, eh; irrecoverable strain, ei; and thermal strain, eT

e ¼ /pep þ /heh þ ei þ eT (25)

where c and p denote the reinforcement phase and SMP matrix,
respectively, and /p and /h the volume fractions of the SMP
matrix and hard segment phase, respectively.

Velmurugan et al. [94] investigated the influence of microstruc-
ture parameters and strain rate on multiwalled carbon nanotubes/
SMPCs. Jarali et al. [95] extended the single inclusion theory to
the double inclusion problem by employing Eshelby’s model. By
investigating the interaction between the matrix and inclusion
phase (carbon fiber and carbon nano tube), the effective mechani-
cal properties of SMPCs were obtained, and analytical solutions
under low-strain deformations were derived. Taherzadeh et al.
[96] proposed a constitutive model for particulate-reinforced
SMPCs and analyzed it with finite element software. By establish-
ing representative volume elements, the author investigated the
mechanical properties of SMPCs with different nanoparticle vol-
ume fractions and length–width ratios.

Fig. 13 Schematic of the constitutive model proposed by Baghani et al.
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Based on the assumption of homogeneous isotropy, Yin et al.
[97] developed a modified viscoelastic constitutive theory and
investigated the thermodynamic properties and shape-recovery
behavior of particulate-reinforced SMPCs. The model combined
the modified Adams–Gibbs and Eyring models to describe the
relaxation and yield behavior and employed the non-Gaussian
molecular network model to characterize the hyperelastic proper-
ties under significant deformations (Table 4a). The free recovery
behavior of SMPCs with different particle fractions and the
stress–strain response with temperature were estimated. The
temperature-dependent modulus of SMPCs was considered as a
combination of the additional Prony chain and pure SMP matrix
systems

E Tð Þ ¼ E0 þ E1exp � T

T1

� �b1

" #
þ E2exp � T

T2

� �b2

" #

þ E3exp � T

T3

� �b3

" #
(26)

where E0 denotes the equilibrium modulus, E1 and E2 the refer-
ence moduli, b1 and b2 the Prony parameters, and E3 and b3 the
parameters related to the inclusion phase.

Combined with the micromechanical model and network transi-
tion theory, Zeng et al. [98] investigated the effective mechanical
properties, potential mechanisms of stress relaxation, and shape
memory behavior of SMPCs. This study assumed that the SMPCs
were composed of a backbone and transient networks (Table 4b).
Employing the thermal viscoelastic–hyperelastic constitutive
model and Monte Carlo algorithm network, Yarali et al. [99] pro-
posed a representative volume element of SMPCs and investi-
gated the homogenization of helical carbon-nanotube-reinforced
SMPCs under high deformation conditions. In this study, a
hyperelastic model was introduced into the model to describe the
stress of the elastic part, and Maxwell–Wiechert components were
employed to describe the viscoelastic part (Table 4c). Using the
finite element method, the shape recovery properties of SMPCs
under different heating rates and prestrains were investigated. Fur-
thermore, the author explored the effect of the volume fraction on
the SMPC properties, orientation, and geometric parameters of
reinforcement. Subsequently, Zeng et al. [100] established a
micromechanical theory and characterized the mechanical proper-
ties of SMPCs combined with the Mori–Tanaka method
(Table 4d).

Combined with GMM, Zhao et al. [101] established a visco-
elastic constitutive relationship of particulate-reinforced SMPs
using the Mori–Tanaka method. Through Laplace transformation,
the viscoelastic response of the model was linear in the Laplace
domain. Hence, the author predicted the thermal–mechanical
cycle process of SMPCs and explored the variation law of the
elastic modulus with temperature and inclusion volume fractions.

5.2 Constitutive Theory of Fiber-Reinforced Shape Mem-
ory Polymers Composites. Nishikawa et al. [102] investigated
the mechanical behavior of short-fiber-reinforced SMPCs using
the finite element method. The model developed by Tobushi et al.
[13] was employed to describe the mechanical behavior of the
SMP matrix, whereas the carbon fiber phase was represented by
an orthotropic elastomer. However, the simulated results indicate
that the local irrecoverable deformation becomes significant
owing to the addition of short carbon fibers. Furthermore, even
though the overall strain of the material was set at 8%, owing to
the stress concentration effect, the strain in the local areas reached
15%. Furthermore, irrecoverable deformation affects the shape-
recovery effect. Consequently, only by establishing a model that
considers the microstructure of the fiber and SMP and investigat-
ing the local strain concentration effect, can the SME and quanti-
tative calculation of the irrecoverable strain be accurately

determined. Masaaki et al. [103] developed a periodic unit method
and investigated the effects of fiber content and geometrical
parameters on the mechanical properties of SMPCs.

Based on the phenomenological theory framework, Ge et al.
[104] developed a constitutive model for fiber-reinforced SMPCs.
In this study, SMPs and fibers were regarded as heterogeneous
solids, in which the fiber was assumed to be a complex solid, and
the SMPs were assumed to be a composite elastomer with melt
and crystalline phases. The multibranch model on the right repre-
sents the crystallization process of the matrix at different times.
When the matrix phase crystallizes, the switch opens, and the
material can carry the load. When the material is in the molten
state, the switch closes, and the material cannot carry the load
(Table 4e).

The departure of the stress distribution in SMPCs was described
by the micromechanics of heterogeneous solids. By dividing
SMPCs into a rubbery phase, glassy phase, and fiber reinforce-
ment, Tan et al. [105] established a fiber-reinforced SMPC consti-
tutive model combined with the bridging model and phase
evolution theory. The bridging model assumes that the matrix and
fiber surfaces are closely connected before the failure of the com-
posite. The internal stress, rm

i , in the matrix, and rf
i in the fiber are

connected by a nonsingular matrix ½Aij�. This model qualitatively
analyzed the influences of the ambient temperature and fiber vol-
ume fraction on the SME and recovery force. However, this model
does not consider the anisotropy of the fiber, the interaction
between the fiber and matrix, or thermal residual stress between
the fiber and matrix. The key equations involved in this model are
as follows:

ei ¼ ef
i wf þ eg

i wg þ er
i wr þ eT þ egs

n

ri ¼ rT
i þ rrec

i þ rC
i

rC
i ¼ wf r

f
i þ wgr

g
i þ wrr

r
i

rm
i ¼ /gr

g
i þ /rr

r
i

rm
i ¼ ½Aij�ðwf djk þ wm½Ajk�Þ�1rk ¼ ½Aij�½Bjk�rk

8>>>>>>>>><
>>>>>>>>>:

(27)

where g, r, and f denote the glassy phase, rubbery phase, and
fibers, respectively. eT denotes the thermal strain, and egs

n the stor-
age and release of strain during heating and cooling. wf denotes
the volume fraction of the fibers.

The deformations of woven fabric-reinforced SMPCs (WF-
SMPCs) are complex because temperature changes result in ther-
mal stress and significantly affect the interaction between the
matrix and fibers. Roh et al. [106] investigated the time-dependent
viscoelastic and unfolding behavior of thin-walled SMPC cantile-
ver beams through experiments and numerical analyses and
derived the viscoelastic constitutive model of SMPCs. The consti-
tutive model was established by considering the interaction
between the fabric and SMP matrix. The mechanical behavior of
SMPs is described by a phenomenological model, that is, the SMP
is composed of glassy and rubbery phases. The stress–strain rela-
tionships of the rubbery and glassy phases are described by multi-
chain models (Table 4f). The overall deformation of the SMP
matrix includes thermal, elastic, and storage strains. Employing
this model, the shape recovery and viscoelastic properties of WF-
SMPCs under high temperatures were investigated, providing a
theoretical basis for its application in deployable structures.

Su et al. [107,108] established an anisotropic viscoelastic con-
stitutive model for WF-SMPCs. The anisotropic hyperelastic
mechanical behavior of woven fabrics is represented by spring
elements, whereas the isotropic viscoelastic mechanical behavior
is represented by the generalized Maxwell model. It was assumed
that the deformations of the woven fabric and matrix were the
same during the thermodynamic loading process. Because the
mechanical strength of the matrix changes with temperature,
the mechanical contribution of the fabric to the composite is dif-
ferent in the shape memory cycles. A temperature correction
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coefficient, Cf ðTÞ, was introduced to correct the contribution of
the fabric to the total Helmholtz free energy. The second
Piola–Kirchhoff stress, S, can be expressed as

w ¼ wmatrix þ Cf ðTÞwfabric þ wT (28)

S ¼ Smatrix þ Cf Sfabric (29)

where wmatrix, wfabric, and wT denote the Helmholtz free energies
related to the matrix, fabric, and temperature, respectively, and
Smatrix and Sfabric denote the second Piola–Kirchhoff stresses of
the matrix and fabric, respectively.

Short fiber-reinforced SMPCs exhibit better mechanical proper-
ties than pure SMPs while maintaining a high deformation
capacity and excellent shape memory performance. Based on the
temperature-dependent laminate theory, Zeng et al. [109] pro-
posed a viscoelastic model for short fiber-reinforced-SMPCs and
investigated the thermodynamic behavior of SMPCs under differ-
ent loads. This model was modified based on the SLS model
shown in Table 4g, in which the yield characteristics were related
to the fiber content and represented by the modified Erying model.

Gu et al. [110] developed a thermodynamic coupling model for
SMPCs based on the isotropic hypothesis using the internal vari-
able method. The deformation was divided into three parts: ther-
mal, hyperelastic, and viscoelastic deformations. The mechanical
deformation of SMPCs can be divided into elastic equilibrium and
viscoelastic nonequilibrium parts related to the time response. The
stress of the mechanical deformation part, rm, was divided into rn

and rv because the dashpot element and spring in the nonequili-
brium part are connected in series, and their stresses are equal.
Therefore, rm can be further divided into the stress in the equilib-
rium part, rn, and the stress of the spring in the nonequilibrium
part, re. Notably, the equilibrium part stress, rn, is expressed as
fiber-reinforced transversely isotropic hyperelastic composites,
proposed by Guo et al. [111].

Furthermore, the viscoelastic part was divided into the equilib-
rium and nonequilibrium parts related to time. The thermal defor-
mation was described using the two-phase homogenization
theory. The key equations involved in the model can be expressed
as

rm ¼ rn þ re

rn ¼ �pI1Ge Fm Fmð ÞT þ cGc 1� I
�2=3
4

� �
Fma0 � Fma0

rv ¼ re ¼ 1

Je
Le : Ee

(30)

where I denotes the second-order unit tensor, p the hydrostatic
pressure, Fm the deformation gradient of the mechanical part, Gc

the effective shear modulus of the SMPC, I4¼a0 � Cm � a0,
Cm ¼ FmTFm, a0 the fiber direction in the initial configuration,
and c the material parameter.

However, this model did not consider the anisotropy of SMPCs,
the different thermal expansion properties below and above the
Tg, or the interaction between the matrix and fibers. Furthermore,
the residual stresses caused by the differences in the elastic modu-
lus and thermal expansion between the matrix and fibers were not
involved.

Currently, there are several constitutive studies on the anisot-
ropy of unidirectional and braided reinforced composites. The
theory proposed by Peng et al. [112], which has physical signifi-
cance, is typically used for anisotropic composites. Hong et al.
[113] divided the energy of the SMPC into the matrix, fiber ten-
sile, and fiber shear energies, and deduced the stress expression of
the SMPC while investigating the WF-SMPCs. The theory devel-
oped by Park et al. [79] was employed to describe the mechanical
properties of an SMP matrix. As shown in Table 4h, the SMP
matrix consists of the active and frozen phases. r and g denote the
active and frozen phases, and e, v, p, and nm represent the elastic,

viscous, plastic, and shape memory strains, respectively. The
model considered the anisotropy of the SMPCs and described the
residual thermal stress using Eshelby’s equivalent inclusion
model. The average thermal residual stress in the SMPC was cal-
culated using the intrinsic strain and stress distributions in the
cylindrical space.

Table 4 summarizes the schematics of the constitutive models
of the SMPCs mentioned above.

5.3 Buckling and Post-Buckling Behavior of Shape Mem-
ory Polymers Composites. Continuous fiber-reinforced SMPCs
(CF-SMPCs) exhibit advantages such as high specific stiffness
and strength, simple formation, and low density. In addition, CF-
SMPCs exhibit a significant folding deformation at high tempera-
tures and have been widely employed in space deployable struc-
tures. By folding the structure, the loading space and launch cost
can be effectively decreased. When transported to a specified
orbit, the structure can recover its initial shape by heating it to a
temperature above its Tg. During folding, the SMPC exhibits a
geometrical nonlinearity deformation similar to that of the strip
spring, and the fibers inside the SMPC undergo microbuckling
deformation under compression (Fig. 14), changing the macro-
scopic stiffness of the structure.

A critical mechanical problem is the deformation of the fiber
after reaching the critical buckling load. The maximum deforma-
tion ratio of conventional CF-SMPCs is determined by the frac-
ture elongation of the fiber, which is typically less than 2%.
However, because SMPCs are sensitive to temperature, their mod-
ulus at high temperatures is low (only a few MPa). The fiber can
generate a significant buckling deformation without breaking by
subjecting the SMPC to bending deformation at high tempera-
tures. Microbuckling is the reason why SMPCs can withstand sig-
nificant bending deformations. When the SMP matrix is softened
at high temperatures, it does not have sufficient stiffness to sup-
port the compressed fiber, and the fiber undergoes microbuckling
owing to the low shear modulus of the SMP. The material can
maintain good mechanical and shape-memory properties under
significant macroscopic bending deformations.

To investigate the buckling behavior of SMPCs, theoretical
research methods such as homogenization, Bloch wave, and strain
energy function methods have been employed. Some 3D constitu-
tive models of fiber-reinforced flexible composites were devel-
oped combined with the second-order homogenization theory and
employed the Neo-Hookean model to represent the response of
the matrix [114,115]. Although this method has been improved, it
is essentially a nonlinear theoretical problem, which is still diffi-
cult to solve accurately, and obtaining microscopic local stresses
and strains is challenging [116–118]. The Bloch wave theory has
some advantages in analyzing the deformation and damage evolu-
tion of laminated material microstructures. However, it requires
complex programing and numerical computing capabilities, limit-
ing its application in the deformation analysis of fiber-reinforced
flexible composites [119]. Furthermore, according to the strain
energy function, the total strain energy can be obtained by sum-
ming the tensile, compressive, and shear strain energies of the
fiber and matrix. Hence, the fiber buckling half-wavelength, fiber
buckling amplitude, neutral plane position, and macroscopic strain
of the composite laminates can be obtained.

When SMPCs undergo a significant bending deformation, they
produce microbuckling in the compression zone and affect the
macrostiffness [120]. Timoshenko et al. [121] used an elastic
matrix as a group of parallel spring elements to determine the
strain energy. According to the total strain energy being equal to
the work done by the external force, the authors determined the
critical load of fiber buckling. Based on Timoshenko’s study,
Rosen et al. [122] developed a buckling model for unidirectional
fiber-reinforced composites. The goal was a 2D simplified model
of a unidirectional plate, which is equivalent to a fiber and matrix
layer evenly interbedded. However, the results of tensile buckling
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Table 4 Summary of the schematics of constitutive models of SMPC

Schematics References Schematics References

a [94]
[97]

b [98]

c [99] d [100]

e [104] f [106]

g [119] h [113]

Fig. 14 Illustration of the bending deformation of fiber-reinforced SMPCs and strain state
of the cross section
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are significantly different from those of the experimental observa-
tions, indicating the limitations of the model. According to this
model, the minimum critical stress of the structure under shear
and tensile buckling is calculated as follows:

rS
cr ¼

p2Ef vf h2

12k2
þ Gm

1� vf
; rT

cr ¼
p2Ef vf h

2

12
þ 24k2Em

p4ch3Ef
þ 1

k2

" #
(31)

where rS
cr and rT

cr denote the shear and tensile stresses, respec-
tively; k the half-wavelength of the fiber buckling; vf the volume
fraction of the fiber; Ef and Em the elastic moduli of the fiber and
matrix, respectively; Gm the shear modulus of the matrix; and h
the diameter of the fiber.

Through preliminary theoretical studies and experimental
observations, Gall [123] found that when composite laminates
were folded along a cylinder with a certain curvature, the fiber
inside the laminates deformed less owing to local buckling. How-
ever, the laminates maintained an excellent structural performance
after deformation recovery. Composite Technology Development
conducted extensive research on the buckling deformation of
SMPCs, including mechanistic studies, experimental tests, and
practical applications. It includes the observation of the failure
strains, buckling mode of epoxy-based SMPCs, testing of the
bending performance and finite element verification, and a study
of the theoretical viscoelastic constitutive relation and failure
mode [124–127]. Taking the neutral plane as the boundary, Francis
et al. [127] established the strain energy equation of SMPCs by divid-
ing the cross section into tensile and compression buckling regions.
Based on this model, a solution was derived for the half-wavelength
of the fiber microbuckling under bending deformation. However, the
premise of the model was developed based on the assumption that
microbuckling had already occurred, and the neutral layer coincided
with the critical microbuckling layer. Consequently, the model can-
not predict the slight deformation stage before microbuckling occurs
and only applies to a situation of significant deflection.

Based on Timoshenko’s study, Campbell et al. [128,129] further
investigated the microbuckling behavior of the elastic matrix after
embedding long fibers and proposed a theoretical model for the
microbuckling of long-fiber SMPC plates. Based on the energy equa-
tion, the buckling half-wavelength can be expressed as follows:

kcr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p4Ef If

3Gm
d

t

� �2

vuuuut
e ¼ 1
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dxð Þ2 þ dyð Þ2
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dx 	 1
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dy

dx

� �2

dx

(32)

where If denotes the moment of inertia of the fiber section, and t
the thickness of the laminate.

Furthermore, Hutchinson, Suo, Huang, and Roger et al.
[130–133] investigated the buckling problem of CF-SMPCs.
These theoretical buckling models are based on pure tensile or
shear modes. The experimental results indicated that shear buck-
ling occurred mainly during the flexural loading of the laminates.
However, owing to the different distribution locations of the fibers
from the neutral layer, the nominal flexural strain of the fibers in
different layers was different, resulting in a difference in the fiber
buckling amplitude. Therefore, in addition to shear buckling, ten-
sile buckling must be considered in the buckling model.

To analyze the post-buckling properties, Campbell et al. [134]
assumed that SMPCs followed a double linear constitutive rela-
tionship. With the buckling surface layer as the boundary, the
plates were divided into buckling and nonbuckling zones. The
position coefficient of the neutral layer was deduced based on
the resultant force of the cross section along the longitudinal
direction to be zero under pure bending conditions. Because the

bending moment on the cross section was equal to the moment of
the external force couple, they established a numerical analysis
model of the SMPC. Francis [135] investigated the local post-
buckling behavior of fibers during bending deformation and
obtained key parameters, such as the offset distance where the
neutral plane strain was zero and the fiber buckling wavelength.

Furthermore, Lake et al. [136] investigated the mechanical
properties of SMPCs. The experimental results indicated that the
buckling of the SMPC laminates always exhibited a sinusoidal
shape. Wang et al. [137] proposed a unidirectional fiber-
reinforced SMPC microbuckling model that can predict the buck-
ling wavelength. The strain energy equations of the in-plane and
out-of-plane bucklings were established, and the buckling was
analyzed from two angles.

These theoretical buckling models were all proposed based on
the assumption of pure tensile or shear modes; however, during
the bending of laminates, the fiber undergoes mixed shear/tensile
buckling deformations. Therefore, Wang et al. [138] proposed a
simplified 2D tensile/shear coupling buckling model, where the
critical buckling wavelength can be expressed as

kc ¼ 2p4
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where n denotes the laminate-fiber layer. The critical buckling
wavelength obtained by this equation correlates well with the
experimental observations; however, the model is established
based on the 2D structure of the unidirectional fiber.

By dividing the flexural deformation of the fiber-reinforced
SMPCs into three regions: compressing and buckling areas, com-
pressing and nonbuckling areas, and stretching and nonbuckling
areas, Lan et al. [120] developed an analysis model and obtained a
strain energy expression. The amplitude of the buckling fibers and
the position of critical buckling were obtained and calculated. It
was theoretically verified that a significant macroscopic bending
deformation can be obtained by slight buckling. The strain energy
of CF-SMPCs during finite deflection was investigated using the
thermodynamic energy method, and the critical buckling was
obtained according to the minimum energy principle as follows:

kc ¼
4M

t
(34)
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where k is the curvature, and M ¼ VmGm=ðVmEm þ Vf Ef Þ, and zns

represents the neutral plane.
Tan [139] developed a buckling model for metal film/fiber-rein-

forced SMPCs under significant deflections and provided an ana-
lytical expression of the key parameters of buckling deformation.
The relationship between the recovery force, recovery moment of
the SMPC laminates, and geometrical parameters of the structure
were obtained using the model. The main energy forms of the
composites during deformation were analyzed, and the total
energy equation was calculated. Using the principle of minimum
potential energy, the critical strain of the structure was obtained,
and the fiber-buckling problem was analyzed using the finite ele-
ment method. The critical strain can be expressed as

ecr ¼ 4
h

fExx
z� 1þ Emt

Exx
� f

h
gþ Gsvsð Þ

� �� �
(36)

020802-16 / Vol. 75, MARCH 2023 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/appliedm

echanicsreview
s/article-pdf/75/2/020802/6952485/am

r_075_02_020802.pdf by H
arbin Institute of Technology, Yanju Liu on 03 D

ecem
ber 2022



where h and f can be expressed as h ¼ vsGsðEmtþ ExxzmÞ and
f ¼ Exxz2

m þ Emt2 þ 2Emtzm, respectively.
The assumption that the matrix around the buckling fiber had a

uniform shear strain in the 1D beam and 2D plane model affected
the prediction of the local shear failure. Therefore, Zhang et al.
[140] developed an analytical model by assuming a fiber to be a
3D solid and investigated the size effect on the shear strain. The
solution of the half-wavelength changing with fiber content was
determined by Francis et al. [135] and Lan et al. [120], and can be
expressed as

k ¼ Efvfp4h2t2

8Gmf vfð Þ �1þ ln
8t

h

ffiffiffiffi
vf

p

r !" #2
664

3
775

1=4

(37)

6 Necessary Experimental Methods to Obtain

Parameters

To characterize the mechanical properties and obtain the model
parameters of SMPs and SMPCs, a series of dynamic and static
mechanical property tests are often performed, including dynamic
thermomechanical analysis, tensile tests, creep/stress relaxation
tests, and high- and low-temperature recovery tests. Because the
mechanical properties of SMPs and SMPCs are closely related to
the temperature, variable temperature experiments are often per-
formed. In addition, because the most useful property of this type
of material is shape memory, the thermal–mechanical cycle
experiment is a basic experiment.

(1) Static mechanical property tests
Static mechanical property tests are the main methods used
to study the mechanical properties of SMPs and SMPCs.
According to the different test requirements, two test modes
are typically employed: stretching and three-point bending.
Because the mechanical properties of SMPs and SMPCs
vary significantly before and after the glass transition, and
the material parameters, such as elastic modulus, change
significantly, the environmental temperature of mechanical
experiments is typically involved before and after the glass
transition. Uniaxial tensile experiments were performed at
different temperatures and constant strain rates to deter-
mine the variations in the elastic modulus, yield strain,
yield stress, ultimate strain, and ultimate stress of SMPs
and SMPCs with temperature.

(2) Differential scanning calorimetry
Differential scanning calorimetry is an important thermal
analysis method that can effectively measure the phase
transition and glass transition behaviors of materials. The
change in mechanical properties, such as the transition
from the highly elastic to glassy states, of the sample during
temperature change changes the specific heat, which is
reflected as the “jitter” of the baseline in the experimental
curve. During DSC experiments, the samples undergo
phase and glass transitions, accompanied by clear heat
absorption and exothermic phenomena. This method
mainly determines the glass transition behavior of SMPs
and obtains the glass transition temperature.

(3) Dynamic thermomechanical analysis
Dynamic mechanical analysis is primarily used to measure
the mechanical properties of viscoelastic materials, which
change with time, temperature, and frequency. Owing to
the viscoelastic properties of polymer materials, there is a
significant delay between the mechanical response strain
(stress) and applied high-frequency stress (strain). The vari-
ation law of material parameters, such as the energy storage
modulus, loss modulus, and loss angle with temperature,
can be obtained by measuring the relationship between the

high-frequency external excitation and material response.
This method mainly determines the dynamic mechanical
properties of the Tg, loss modulus, and loss angle.

(4) Shape-recovery ratio
The shape-recovery properties of SMPs and SMPCs are an
important issue in studies on this type of material. The
recovery characteristics of SMPs and SMPCs are signifi-
cantly affected by the ambient temperature, and the recov-
ery ratios of SMPs and SMPCs differ under different
temperature conditions. At low temperatures, the molecular
micro-Brownian motion is poor, and the pre-strain cannot
be fully recovered after unloading, resulting in a residual
strain. With an increase in temperature, the recovery char-
acteristics gradually improve. Under high-temperature con-
ditions, the micro-Brownian motion improves significantly.
In the absence of an external load, the stretched molecular
chain can rapidly return to its initial shape, which is macro-
scopically reflected in excellent shape-memory
characteristics.

(5) Viscoelastic–mechanical properties
Creep and stress relaxation are important viscoelastic prop-
erties of SMPs and SMPCs. The study of viscoelastic prop-
erties is significant for accurately characterizing
mechanical behavior. Creep and stress relaxation experi-
ments were performed at different temperatures to deter-
mine the variations in delay time, relaxation time, and
creep compliance with temperature.

7 Summary and Outlook

With the increasing studies on SMPs and their composites, sev-
eral SMPs and SMPCs have emerged, and their applications have
developed rapidly. Owing to the wide variety of SMPs, complex
mechanisms, and different operating conditions, more applicable
and high-precision constitutive models are still being developed.
Moreover, there are only a few theoretical models that can
describe the internal shape memory mechanisms of semicrystal-
line, optical actuation, and solution actuation SMPs, and must be
considered.

Phase transition models are established based on the SME of
SMPs and have fewer parameters than the viscoelastic model.
Rheological models are developed based on time-dependent
thermodynamic properties; therefore, they have more advantages
in terms of universality. Combining the two modeling methods,
the constitutive models have a clearer physical meaning and can
better describe the shape memory mechanism. Consequently, the
modeling of SMPs and SMPCs should develop toward a direc-
tion with more explicit physical meaning and general form, facil-
itating the development and design of new types of SMPs,
SMPCs, and structural systems. Furthermore, establishing a gen-
eralized model with fewer parameters is a possibility for future
studies.

For the buckling analysis of SMPCs, the expression of deforma-
tion energy was obtained by deformation analyses. Critical param-
eters, such as the critical bending moment, strain, and wavelength,
can be determined according to the minimum potential energy.
However, most theoretical analyses have mainly focused on the
folding deformation of unidirectional materials, and the correla-
tion analysis for WF-SMPCs is lacking. Furthermore, the analysis
of the interaction between the fiber and matrix and the residual
stress of the matrix and fiber are the main directions for future
SMPC constitutive models.

Conclusions

The constitutive models of SMPs can be divided into rheologi-
cal and phenomenological models, as well as a combination of the
two models. The rheological model of SMPs can be represented
by different combinations of the spring and dashpot elements.
Studies have modified the model by introducing nonlinear terms,
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rate- and temperature-dependent terms, and multiple branches to
describe the more complex viscoelastic behavior of SMPs. How-
ever, this type of model typically contains a significant number of
parameters and cannot reasonably describe the storage and release
of strain. Phenomenological models can clearly describe the freez-
ing and release of strain in the thermodynamic cycle, but they can-
not describe the viscoelastic behavior. Combining the rheological
method at the macroscopic scale with the phenomenological
method at the molecular level is an effective solution. Compared
to SMPs, theoretical studies on the mechanical properties of
SMPCs are limited. Except for a few specific SMPC structures,
such as beams and plates, the predictability of the constitutive
model is limited, particularly for dynamic performance. As the
range of SMPC-based applications expands, it is necessary to
establish relevant theoretical models to study mechanical behavior
in-depth and provide a theoretical basis for its future applications.
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