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A B S T R A C T

Focusing on multiline and narrowband spectral vibration control issues presented by engineering requirements, 
this study assessed the effectiveness of large-scale and high-rigidity structures equipped with piezoelectric stack 
actuators for the active control of vibration. By utilizing the modal decomposition approach, the derivation 
yielded a state-space equation for an Nth-order system of a piezoelectric cantilever beam was deduced. On this 
foundation, the traditional least mean square algorithm was improved, and a resettable uniformization filtered-x 
least mean square (RU-FxLMS) controller was designed, which effectively mitigated the adverse effects of 
filtering and prevented beating vibration phenomena during the control process. This improvement has, to a 
certain extent, compensated the deficiencies of the adaptive strategy over low frequency line spectral vibration. 
Afterwards, Simulations and experimental pertaining to active vibration control of piezoelectric cantilever beams 
were performed. Experimental data, gathered under the conditions of multiline spectra, narrowband spectra, and 
frequency-hopping vibration, exhibited a relatively obvious control effect. Under two typical vibration condi-
tions, the simulations and experiments exhibited reasonable and consistent control trends at each characteristic 
line spectrum, which validated the feasibility and reliability of this strategy for vibration control in the low 
frequency domain with piezoelectric structures.

1. Introduction

The vibration characteristics of engineering structures play a role in 
determining the performance of equipment and facilities and have sig-
nificant theoretical implications and engineering value. Currently, 
structural vibration serves as a crucial index for assessing the reliability 
of structures and systems. In the realm of vibration engineering, there 
exists no universally standardized demarcation for frequency ranges. 
Typically, low frequency vibration are characterized by frequencies 
ranging from 0 to 100 Hz and are commonly observed in large-scale 
structures such as buildings. Conversely, high frequency vibration are 
generally defined as those exceeding 1 kHz and are frequently encoun-
tered in smaller structural components, such as mechanical parts. Pas-
sive vibration control methods, which were initially developed to 
primarily target the attenuation of medium-high frequency structural 
vibration, exhibit limited efficacy in controlling low frequency line 
spectra and narrowband vibration. With the accelerated advancement of 
and combination of smart materials and structures with control science 

and engineering, active control of structural vibration utilizing smart 
materials has emerged as a burgeoning research focus. Piezoelectric 
materials, owing to their intelligent characteristics, lightweight nature, 
and superior linearity, have garnered relatively extensive utilization in 
the domain of active vibration control.

With the development and application of smart materials in the field 
of vibration control, numerous studies provided novel insights. Devices 
such as piezoelectric ceramic transducer (PZT) [1,2] and macro fiber 
composite (MFC) [3–6] were employed as actuators and sensors in vi-
bration control applications. Previous studies employed optimization 
algorithms, including genetic algorithms and non-dominated sorting 
genetic algorithm-II (NSGA-II), to meticulously optimize the positions 
and parameters of piezoelectric actuators [7–9]. Additionally, optimi-
zation designs for sensors were implemented [10,11], and the integra-
tion of piezoelectric devices was pursued [12]. Traditional vibration 
control strategies were also extensively studied in the field, encom-
passing the use of infinity norm controllers [13] and linear quadratic 
regulators (LQR) observers [14–17] within robust control theory 
frameworks, which provided effective mathematical solutions for 
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vibration control in complex systems. proportional-integral-derivative 
(PID) controllers [18–20], infinite impulse response (IIR) filter-based 
least mean square (LMS) controllers [21–23], LQR [24], auxiliary sto-
chastic noise methods [25], and radial basis function (RBF) neural 
network feedforward controllers [26,27] were employed to optimize 
signal processing, thereby enhancing the stability and response speed of 
control systems. In the realm of non-traditional vibration control stra-
tegies, adaptive control remained a longstanding research focus, capable 
of real-time adjustment and optimization of system dynamics to address 
nonlinear issues [28–30]. The model predictive control (MPC) method 
enhanced its adaptability to complex vibration environments through 
real-time optimization and prediction of system dynamics. Research 
indicated that the MPC method effectively suppressed vibrations and 
improved control performance, particularly excelling in nonlinear and 
multivariable systems [31–33]. Furthermore, the combination of MPC 
with other advanced algorithms further enhanced its robustness and 
real-time performance, providing a novel solution for structural vibra-
tion control. Meng et al. [34] proposed a multi-input multi-output 
multi-harmonic feedforward adaptive control method utilizing piezo-
electric stack actuators, which significantly reduced the vibration levels 
of helicopter fuselages. Xie et al. [35] proposed a fractional order PD 
control method for lattice grid beams based on piezoelectric fiber 
composite panels, which can significantly and rapidly reduce the vi-
bration amplitude of lattice grid beams. Several studies developed new 
control laws or parameter models, proposing novel approaches to opti-
mize system performance under specific conditions while maintaining 
system stability and optimizing other performance indices [36–38]. 
Research on topology optimization of piezoelectric structures has also 
emerged as a significant focus area. Zhang et al. employed finite element 

analysis and sensitivity analysis using the adjoint variable method [39, 
40], effective reductions in energy consumption under harmonic exci-
tations were achieved, leading to enhanced control performance. 
Furthermore, existing research has also applied control methods to 
various practical scenarios, including submerged systems [41], annular 
antenna structures [42], shape memory polymer composites [43], and 
buildings [44–46]. In large-scale and high-rigidity structures within 
engineering applications, the emergence of multiline spectra and 
narrowband spectra vibration at low frequency is a frequent occurrence. 
The implementation of active control strategies can significantly 
enhance the vibration damping effectiveness of these structures within 
the low frequency range. Building upon previous research, this paper 
proposed an improved algorithm based on the filtered-x least mean 
square (FxLMS) algorithm, derived the constitutive control model for 
piezoelectric cantilever beams, and conducted simulations and experi-
mental validations of multiline spectra and narrowband spectra vibra-
tion active control under multiple operating conditions on a 
large-section steel structure piezoelectric beam. Consistency compari-
sons between control simulations and experimental results were per-
formed under typical operating conditions. Additionally, we compared 
the improved algorithm with traditional algorithms under the same 
operating conditions and analyzed the advantages of the improved al-
gorithm, which partially improved the deficiencies of the adaptive 
method regarding line spectrum responses. This study employed a 
structure characterized by a large stiffness and size cantilever beam, 
combined with embedded piezoelectric materials for vibration control 
research, aiming to provide a reference for the research on linear and 
nonlinear vibration control of low frequency structures in engineering.

Nomenclature
RU-FxLMS Resettable uniformization filtered-x least mean square
LSF Line spectral frequency
φi(x) The ith-order mode shape function
xs The control point coordinates
xe The observation point coordinates
mi The ith-order modal mass
ωni The ith-order natural frequency
ζi The ith-order damping ratio
dij The piezoelectric strain constant
Di The potential shift
sE
ij The elastic modulus at a constant electric field strength

εσ
ij The dielectric constant at a constant external stress

Ei The electric field strength
n The number of stacking layers
A The cross-sectional area

h The thickness of stacking layers
hs The actuating distance
uc The control input in the system
μ The convergence step
x(k) The reference signal
P(z) The transfer function of the signal transmission path
C(z) The transfer function of the secondary channel
Ć (z) The estimation of the transfer function of the secondary 

channel
d(k) The vibration signal received by the displacement sensor
y(k) The controller output signal after algorithm iteration
s(k) The feedback signal
W(z) The LMS adaptive filter
r(k) The filtered signal
h(k) The output signal of the RU-FxLMS

Fig. 1. Schematic of the piezoelectric cantilever beam.

X. Zhang et al.                                                                                                                                                                                                                                   Engineering Structures 327 (2025) 119637 

2 



2. Cantilever beam theory with piezoelectric actuators

2.1. Constitutive equations

Cantilever beams are fundamental structures commonly encountered 
in engineering. This study investigates the active vibration control ca-
pabilities of piezoelectric structures with a focus on cantilever beams 
under conditions such as online spectra and narrowband vibration. The 
schematic of the piezoelectric cantilever beam is presented in Fig. 1.

Given the utilization of a high-stiffness cantilever beam, the 
displacement and deformation were relatively small during vibration, 
thus allowing the nonlinear behavior associated with large deformations 
to be neglected. The constitutive equations for the cantilever beam were 
modeled based on the Euler-Bernoulli beam assumption. The differential 
equations governing the transverse vibration of a uniform beam sub-
jected to an external disturbance force are as follows: 

m
∂2y
∂t2 + c

∂y
∂t

+ EI
∂4y
∂x4 = f

(

x, t
)

(1) 

When the excitation is a transverse force, the external force is 
expressed as 

f(x, t) = F(t)δ(x − x1) (2) 

By utilizing the principle of modal orthogonality, the transfer func-
tion at any point on the beam can be readily derived. 

Gi(s) =
φi(xs)φi(xe)

mi
(
s2 + 2ζiωnis + ω2

ni
) (3) 

where xs is the input point, xe is the output point, mi is the ith-order 
modal mass, extending to a state space of order N, the state-space 
equation can be formulated as 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x́ 1 = x2

x́ 2 = − ω2
n1x1 − 2ζ1ωn1x2 +

φ1(xs)

m1
u

⋅⋅⋅

x́ 2N− 1 = x2N

x́ 2N = − ω2
nNx2N− 1 − 2ζNωnNx2N +

φN(xs)

mN
u

y = φ1(xe)x1 + φ2(xe)x3 + ⋅⋅⋅ + φN(xe)x2N− 1

(4) 

The system matrix is 

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1
− ω2

n1 − 2ζ1ωn1

⋅⋅⋅
0 1

− ω2
nN − 2ζNωnN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

2N×2N

(5) 

The input matrix B =

[

0, φ1(xs)
m1

, ⋅⋅⋅,0, φN(xs)
mN

]T

2N×1
If the excitation defined by Eq. (2) is expressed in a bending moment 

form, then 

f
(

x, t
)

= M0
∂

∂x
[δ(x − x2) − δ(x − x1)] (6) 

Correspondingly, the transfer function will be the same at any point 
on the beam: 

Gi(s) =
[φ́ i(xs2) − φ́ i(xs1)]φi(xe)

mi
(
s2 + 2ζiωnis + ω2

ni
) (7) 

Extending this to a system of order N, the state-space equation can be 
formulated as 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x́ 1 = x2

x́ 2 = − ω2
n1x1 − 2ζ1ωn1x2 +

[φ́ 1(xs2) − φ́ 1(xs1)]

m1
u

⋅⋅⋅

x́ 2N− 1 = x2N

x́ 2N = − ω2
nNx2N− 1 − 2ζNωnNx2N +

[φ́ N(xs2) − φ́ N(xs1)]

mN
u

y = φ1(xe)x1 + φ2(xe)x3 + ⋅⋅⋅ + φN(xe)x2N− 1

(8) 

At this point, the system input matrix isB =
[

0, [φ́ 1(xs2)− φ́ 1(xs1)]
m1

, ⋅⋅⋅,0, [φ́ N(xs2)− φ́ N(xs1)]
mN

]T

2N×1
The operating frequency range of the ceramics was significantly 

lower than their resonant frequency, thus the dependence of the 
piezoelectric constant on frequency was neglected. The constitutive 
equations for the piezoelectric stacked ceramics were modeled based on 
the linear elasticity assumption, homogeneity assumption, small 
displacement assumption, and the assumption of negligible interfacial 
effects, etc. Due to the thin and brittle nature of a piezoelectric ceramic 
sheet, the additional bending moments resulting from its attachment to a 
structure are considered negligible. If the d33 effect only occurs in the 
polarization thickness direction, then the one-dimensional piezoelectric 
equation in the axial direction is 
{

ε3 = sE
33σ3 + d33E3

D3 = d33σ3 + εσ
33E3

(9) 

where ε3 represents the axial strain, D3 represents the axial potential 
shift, σ3 represents the axial stress, sE

33 represents the axial elastic 
modulus at a constant electric field strength, εσ

33 represents the dielectric 
constant at a constant external stress, d33 represents the piezoelectric 
constant, and E3 represents the electric field strength. When there is no 
constraint on the polarization direction of the piezoelectric ceramic and 
the effect of external excitation is neglected, the strain equation is linear. 
If the number of laminated sheets is n, the area is A, the thickness in the 
polarization direction of each sheet is h, and the strain deformation of 

Fig. 2. (a) Block diagram of the lateral adaptive filter structure, (b) Block diagram of the adaptive LMS algorithm filter system.
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the piezoelectric sheet in the polarization direction under the action of 
an applied alternating voltage U(t) is δ, then the electrostatic strain ε =
δ/h. Under no-load conditions, a single piezoelectric ceramic is sub-
jected to the following stress: 

σ3 = cE
33

(
ε3 −

δ
h

)
(10) 

Consequently, within a piezoelectric cantilever structure composed 
of stacked ceramic layers, the control force can be modified according to 
Eq. (6). 

f
(

x, t
)

=
nhsd33UA

sE
33nh

∂
∂x

[δ(x − x2) − δ(x − x1)]

= uc
∂

∂x
[δ(x − x2) − δ(x − x1)] (11) 

where hs signifies the distance from the axis of the piezoelectric ceramic 
to the neutral axis of the cantilever beam and uc is the control input in 
the system.

2.2. Governing equations

The basis of the active control system lies in the design of the 
controller, which includes both filter and algorithmic components. The 
algorithm adaptively adjusts the filter coefficients to facilitate the 
filtering process. Fig. 2(a) shows the configuration of the lateral adap-
tive filter. The LMS algorithm performs iterative operations aiming to 
minimize the root mean square error of the predefined target value by 
employing a finite impulse response structure. Fig. 2(b) displays the 
block diagram for the LMS algorithm filter system, where d(n) and e(n)
are used in the control system as target and error signals.

The root mean square of the error signal at time n is 

J(n) = E
[
e2(n)

]
= E

[
(d(n) − y(n))2] (12) 

The gradient is determined by differentiating Eq. (12) to achieve the 
minimum root mean square error of the signal. 

∇(n) =
∂J(n)
∂W

⃒
⃒
⃒
⃒
W=W(n)

=

[
∂J(n)
∂w1

,
∂J(n)
∂w2

, ⋅⋅⋅,
∂J(n)
∂wL

]

(13) 

The gradient ∇(n) of the squared error signal for unbiased estimation 
is taken in the LMS algorithm, yielding the following result: 

∇̂ =
∂e2(n)

∂W
= − 2e(n)X(n) (14) 

In accordance with the steepest descent theory principles, setting the 
Eq.(13) to zero and combine Eq.(14) allows the expression of the filter 
weight vector W(n+1) at the subsequent instant to be obtained, where μ 
is the convergence step. This is a consequence of determining the filter 
coefficient W0 at the instance of the minimum error signal. 

W(n+ 1) = W(n)+ 2μe(n)X(n) (15) 

The algorithm used in the active vibration control system in this 
study is illustrated in Fig. 3, where x(k) represents the reference signal, 
P(z) represents the transfer function between the two endpoints of the 
signal transmission path, C(z) represents the transfer function of the 
secondary channel, Ć (z) represents the estimation of the equivalent 
transfer function of the secondary channel, d(k) represents the vibration 
signal received by the displacement sensor, y(k) represents the 
controller output signal after algorithm iteration, and s(k) represents the 
feedback signal after C(z) and e(k) is the system error signal. W(z)
represents the LMS adaptive filter.

In the vibration control experiments, two related factors affecting the 
control efficacy were identified: the inherent time delay of the physical 
channels and the proportion of high frequency components in the error 
signals picked up by the sensors. Compensating for time delays through 
feedback compensation is subject to certain limitations, which may 
potentially lead to stability issues within the system. Consequently, a 
feedforward approach is commonly employed to mitigate these delay 
effects. Focusing on the second influencing factor, the resettable uni-
formization filtered-x least mean square (RU-FxLMS) control strategy 
proposed herein was grounded in adaptive filtering algorithms, which 

Fig. 3. Block diagram of the RU-FxLMS algorithm.
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facilitated continuous low-pass filtering within the closed-loop compu-
tations and enabled online identification of the secondary channels to 
augment control efficacy. Additionally, during the algorithm execution, 
the signal s(k) amplitude is reset and compensated at each fixed step to 
ensure that the input signal to the driver remains smooth and that the 
output capability is maximized. The feedback signal was subjected to 
reset and uniformization processing before acquisition, thereby miti-
gating the detrimental impacts of filtering and preventing the beat 
phenomena during the control procedure, which compensated for the 
shortcomings in adaptive control over low frequency line spectra to a 
certain extent.

The signal propagation through a channel is characterized by a 
convolution of the signal with the channel transfer function. The output 
of the RU-FxLMS algorithm is presented for a filter of order L and a 
moment length of k. 

y(k) = XT(k)W(k) = WT(k)F(k) =
∑L

l=1
wl(k)f(k − L+ 1) (16) 

Then, we obtain 

s(k) =
∑L

l=1

wl(k)r
(
k − L+1

)
= rT(k)W(k) (17) 

where r(k) denotes the convolution of the reference signal with the 
transfer function of the secondary channel. 

e(k) = d(k)+ s(k) = d(k)+ rT(k)W(k) (18) 

A parallel derivation yields a relationship for the filter weights, 
which is expressed as follows: 

W(k+1) = W(k) − 2μe(k)r(k) (19) 

Through the reset and uniformization module, the output signal h(k)
satisfies the following definitions, where A is the signal maximum 
amplitude, T is the number of resets, and t is the duration of each reset. 

∀t, k ∈ R, ∃A ∈ R;
{

h(k) =
s(k)
s(kT)

≤ A,
(

T − 1
)

t ≤ kT ≤ Tt|T ∈ Z+

}

(20) 

3. Preparation

To minimize the impact of fixed boundary conditions on the results 
of the vibration control experiments, the cantilever beam was secured to 
the rib plate and L-beam using bolts. Additionally, the assembly was 
anchored to the cast iron platform with bolts to establish a high-rigidity 
active control platform for cantilever beam vibration. This configuration 
is depicted in Fig. 4. The cantilever beam employed was 1200 mm long, 
150 mm wide, and 60 mm thick and was constructed from Q235 ordi-
nary carbon structural steel. A shaker (model JZK-50) was vertically 
mounted 450 mm from the fixed end of the cantilever to induce vibra-
tion. The piezoelectric actuator, force transducer (model CL-YD-2311), 
and prestressing device were embedded in series at the midspan of the 
cantilever beam, 700 mm from the fixed end. An eddy current 
displacement transducer (model ZA-21) was installed 200 mm vertically 
above the distal end of the cantilever to measure the vibration dis-
placements at that point.

The experiment was conducted by employing a closed-loop control 
method, the principle of which is illustrated in Fig. 5. The semiphysical 
control platform was outfitted with an 8-channel verified time controller 
(model PXIe-8881, equipped with a Linux RT real-time operating sys-
tem), a 2-channel 24-bit analogue output dynamic signal generator 
(model PXIe-4463), and a 16-channel 24-bit dynamic signal acquisition 

Fig. 4. Active vibration control platform for high-rigidity cantilever beams.

Fig. 5. Schematic diagram of the principle of closed-loop control method.
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card (model PXIe-4497). The control platform was interfaced with the 
host computer to enable real-time data exchange. The analogue signal 
was generated by the host computer, and the voltage signal was pro-
duced by the dynamic signal generator through a power amplifier 
(model YE5874A) to drive the shaker, thereby stimulating vibration of 
the cantilever. The eddy current displacement transducer collected vi-
bration data and transmitted analogue signals through the dynamic 
signal capture card to the host computer. The control system generated 
real-time control signals and produced voltage signals via the dynamic 
signal generator, which then drove the piezoelectric actuator through a 
piezoelectric ceramic power amplifier (model E00. C3) to damp the 
oscillation of the cantilever. Data exchange was conducted in real time, 
and the algorithm was executed in 1 ms increments.

The FxLMS algorithm is recognized as a widely utilized adaptive 
control algorithm in the field of active vibration control owing to its 
simplicity of description and comprehension. In particular, the algo-
rithm requires only multiplication and addition operations, aligning 
well with the operational structure of standard PXIe hardware. This 
compatibility facilitates adaptation and implementation in actual engi-
neering application systems. After the output signal reset capability of 

the FxLMS algorithm was optimized, the robustness of the algorithm was 
further enhanced in the face of physical modelling errors and truncation 
errors arising from finite computational accuracy.

This manuscript focuses on active control of multiline spectra and 
narrowband vibration within high-rigidity piezoelectric cantilever beam 
structures. Initially, the response of a high-rigidity cantilever beam 
structure to forced vibration was investigated using the hammering 
method to determine the dynamic characteristics of the structure. Sub-
sequently, closed-loop vibration control experiments were conducted on 
a high-rigidity piezoelectric cantilever beam structure utilizing the RU- 
FxLMS control algorithm, during which the vibration data of the struc-
ture were collected.

4. Results and discussion

4.1. Simulation of active control of piezoelectric cantilever vibration

The traditional FxLMS algorithm required secondary path estimation 
through identification. An improvement was made by incorporating an 
online identification method in the secondary path, enabling the accu-
rate and real-time acquisition of the physical channel model. To estab-
lish a more accurate physical model for the secondary channels, rather 
than directly applying the primary channel models, necessitating the 
addition of an analogue filter, designated Ć (z), to compensate for the 
transfer characteristics of the secondary channel. The actual channel 
was replaced with an online detected model for controller computation, 
and random white noise was introduced as a training signal, enabling 
the controller to achieve better coverage of the input signal spectrum. 
Consequently, this approach allowed a more accurate estimation of the 
transfer function of the secondary channel. In modelling the mechanics 
of the piezoelectric cantilever beam, physical parameters such as the 
beam length, structural damping, Young’s modulus, sectional moment 
of inertia, linear mass, length of the piezoelectric ceramic, distance 
along the central axis of the piezoelectric ceramic, neutral axis of the 

Table 1 
Structural properties and boundary conditions in simulation.

Parameters Value

Cantilever Beam Length 1.2 m
Damping Ratio 0.03
Young’s modulus 2.1e11 Pa
Sectional Moment of Inertia 2.7e− 6 m4

First four modal masses 84.77/84.78/85.78/84.88 Kg
Linear Mass 70.65 Kg/m
Excitation input point location 0.45 m
Bending moment control point location 0.2 m
Vibration observation point location 1 m
Driver to Neutral Distance 0.0175 m
Driver length 0.07 m

Fig. 6. Block diagram for the active control system of the cantilever beam.
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Fig. 7. Diagram of algorithm tracking and convergence effect (a) Frequency-hopping signal tracking effect, (b) Low frequency noise signal tracking effect, (c) Filter 
weight convergence effect, (d) Residual and fitting effect, (e) Phase trajectory diagram of frequency-hopping, (f) Phase trajectory diagram of low frequency noise, (g) 
Poincare map of frequency-hopping, (h) Poincare map of low frequency noise.

Fig. 8. Simulation results of active control of multiline spectral vibration (a) Time domain diagram before and after control, (b) Frequency domain diagram before 
and after control.
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beam, mounting position of the piezoelectric ceramic, position of the 
perturbation point, and position of the observation point were input as 
boundary conditions, which are illustrated in Table 1.

The disturbance force was input into the transverse vibration state- 
space Eq. (9) of the cantilever beam, and the vibration displacement 
observed at the observation point was processed using the FxLMS con-
trol algorithm. This processed displacement was subsequently fed back 
through the force-electric coupling characteristic of the secondary 
channel piezoelectric ceramic to control the bending moment exerted by 
the actuator. The control bending moment was then input into Eq. (14), 
which pertains to the state space of the cantilever beam transverse vi-
bration, thereby completing active vibration control of the piezoelectric 
cantilever beam via the modal superposition method. Fig. 6 shows a 
block diagram of the active control system of the cantilever beam.

Prior to the simulation, the performance of the algorithm and the 
convergence of the filtering were verified and analysed to ensure the 
robustness of the truncation error under the object modelling errors and 
limited computational accuracy. When the control system received 
frequency-hopping simple harmonic signals and low frequency noise 
signals, the tracking performance of the output signal was satisfactory. 
Following the online determination of the secondary channel, the sys-
tem displayed increased sensitivity to the tracking of low frequency 
noise signals, and a more rapid convergence of the filter weights was 
achieved. The tracking efficiency, convergence, and nonlinear charac-
teristics of the algorithm were illustrated in Fig. 7.

As shown in Fig. 7(a)-(d), the improved algorithm demonstrated 
good tracking performance for both types of signals. It exhibited a faster 
convergence speed of filter weights and residuals for noisy signals and 
also showed improvements in the deficiencies of line spectrum response. 
As illustrated in Fig. 7(e)-(h), the improved algorithm exhibited a 
favorable response for both linear and chaotic systems. However, it 
required a longer computation time to achieve convergence in linear 
systems.

The input point of the system was set 450 mm from the root, and the 
external disturbance force was configured as a superimposed spectrum 
of simple harmonic waves with frequencies of 10, 15, 20, 25, and 40 Hz 
and an amplitude of 20 N. Fig. 8 displays the simulated effect of the 
active vibration control for the external disturbances with a multiline 
spectrum based on the piezoelectric cantilever beam model.

The external disturbance force applied to the system was set as 
Gaussian white noise with a power spectral density amplitude of 50. This 
resulted in a narrowband spectrum ranging between 30 Hz and 40 Hz 
after filtering. The simulated effect of active vibration control for the 
external disturbance within this narrowband spectrum, based on the 
piezoelectric cantilever model, is depicted in Fig. 9.

In light of the simulation results obtained, enhanced control per-
formance was demonstrated for the piezoelectric cantilever when the 
RU-FxLMS control algorithm was applied for both multiline and 
narrowband spectra. For the disturbances characterized by multiline 
spectra, a suppression effect ranging from 4 to 13 dBm was achieved for 

Fig. 9. Simulation results of active control of narrowband spectral vibration (a) Time domain diagram before and after control, (b) Frequency domain diagram before 
and after control.

Fig. 10. The design architecture diagram of the acquisition-closed loop operation-feedback system.
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Fig. 11. Experimental results of active control of multiline spectral vibration, Fig(a) to (l) are time and frequency domain diagram before and after controlling the 
number of line spectra.
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each single-line spectrum, and a broadband suppression effect was 
realized in the medium frequency range. For the disturbances charac-
terized by narrowband spectra, a vibration control effectiveness 
exceeding 10 dB was achieved in the narrowband range, and similarly, 
broadband suppression was realized in the medium frequency range.

4.2. Experiment of active control of piezoelectric cantilever vibration

An experimental investigation into active control of multiline spectra 
and narrowband vibration in high-rigidity piezoelectric cantilever beam 
structures was conducted. This study segmented the problem to examine 

Fig. 12. Experimental results of active control of bilinear spectral vibration, Fig(a) to (l) are time and frequency domain diagram before and after controlling the 
bilinear spectral span.
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the effects of various parameters: the number of lines in the multiline 
spectra of the excitation perturbation signals, their respective spans, and 
the center frequency and widths of the narrowband spectra. These pa-
rameters were analysed for their influence on the active control char-
acteristics of high-rigidity piezoelectric cantilever beams.

The experiment utilized a PXI data acquisition system, with both the 
acquisition card and output card employing bus modules. The bus pro-
vided clock, trigger, and data communication, with a bandwidth of 4 
GB/s. The system integrated a processor that ran a Linux Real-Time 
operating system, with timing cycles precise to the microsecond level. 
The measured average closed-loop control error was less than 10 μs. The 
acquisition card was configured for timed data collection at 1 ms in-
tervals, and data was read point-by-point. The retrieved data was 
transmitted via a triggered queue to the closed-loop control algorithm 
cycle. Once the closed-loop computation was completed, the calculated 
result data was sent to the output module, which triggered the output 
module to send the output. Therefore, two triggered queues were 
employed, with both the algorithm step size and sampling period set to 
1 ms. The actual time for a single state collection and feedback operation 
ranged from 200 to 300 μs. The design architecture diagram of the 
acquisition-closed loop operation-feedback system was shown in Fig. 10.

In the conducted experiments, the primary and secondary physical 
channels of the RU-FxLMS algorithm corresponded to actual compo-
nents, including the piezoelectric cantilever beam structure, signal 
generator, signal collector, and power amplifier. In the implemented 
algorithm, the actual channel was substituted by the theoretical channel 
model, meaning that the analogue filter transfer functions for the pri-
mary and secondary channels within the control system were set to 1. 
Furthermore, the estimation of the secondary channel was refined by 
integrating random white noise as the training signal for compensation 

purposes.

4.2.1. Multiline spectral vibration control experiment
A simulated multiline spectral signal was generated by the host 

computer to drive the shaker, which in turn stimulated vibration of the 
cantilever beam. The frequencies of the simple harmonic signals were 
set at 10, 30, 40, 50, 60, 70, and 80 Hz. In the initial set of experiments, a 
vibration input signal comprising a double-line spectrum was estab-
lished by superimposing a 10 Hz signal onto a 30 Hz base. This pattern 
was continued for subsequent experimental groups by incrementally 
superimposing additional single-line spectra. The number of features in 
the multiline spectrum was controlled to verify the active control 
characteristics of the piezoelectric cantilever beam vibration. The 
experimental results before and after implementation of control are 
depicted in Fig. 11.

As shown in Fig. 11, the experimental results indicated that with an 
increasing number of spectral lines, the overall vibration control effec-
tiveness correspondingly decreased. Furthermore, the results demon-
strated that an increase in the frequency of the single-line spectra led to a 
decline in the control effectiveness of that single-line spectrum.

A computer was utilized to simulate a double-line spectral signal, 
which activated the shaker and induced vibration of the cantilever 
beam. The input signals employed for double-line spectral vibration had 
the span of different frequencies. The eigenfrequency ranges of the two 
single-line spectra were adjusted to experimentally validate the active 
control capabilities for piezoelectric cantilever vibration. The compar-
ative results before and after implementation of control are presented in 
Fig. 12.

As shown in Fig. 12, the experimental outcomes indicated that the 
extent of the frequency span between the two single-line spectra had a 

Fig. 13. (a) Effect of number of line spectra on vibration suppression rate, (b) Effect of line spectrum span on vibration suppression rate, (c) Effect of the single line 
spectral frequency on the vibration suppression.

Fig. 14. Experimental results of vibration control of single line spectrum, (a) Frequency domain diagram before and after control, (b) Effect of the single line spectral 
frequency on the vibration suppression.
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negligible effect on the overall vibration control efficacy. Nonetheless, 
as the frequency of the double-line spectra increased, the control 
effectiveness for the double-line spectrum deteriorated.

The control experiments conducted on multiline and double-line 
spectra facilitated the extraction of influential factors, which included 
the number of line spectra, the span of the line spectra, and the line 
spectral frequency (LSF). The experimental data were collated and are 
illustrated in Fig. 13.

As illustrated in Fig. 13(a), the vibration suppression rate was 
approximately 40 % when double-line spectra were exclusively present. 
As the number of line spectra increased, the suppression rate markedly 
decreased. The suppression rate approached an approximate value of 
10 % when the number of line spectra reached five. As demonstrated in 
Fig. 13(b), an increase in the frequency span between two single-line 
spectra was associated with a modest increase in the vibration sup-
pression rate, which generally stabilized at approximately 50 %. As 
indicated in Fig. 13(c), the single eigenfrequency within the multiline 
spectrum and the double-line spectrum were extracted and analysed 
separately. The suppression effect deteriorated with increasing fre-
quency of the single-line spectrum. Furthermore, the trend of the 
degradation in the suppression capability for the multiline spectrum 
became more pronounced as the eigenfrequency increased. Overall, the 
presence of a brief time delay in the actual physical channel led to the 
finding that signals with a higher frequency incurred bigger phase and 
amplitude errors due to the time delay, which consequently impacted 
the control efficacy.

To further examine the control effect and influencing factors for the 
high-rigidity cantilever beam actuated by a piezoelectric device under a 
single-line spectral perturbation when employing the control strategy 
presented in this study, vibration control experiments were conducted. 
External excitations with frequencies of 10, 20, 30, 40, 50, 60, and 70 Hz 
were individually applied, and the outcomes of each experimental set 

were compiled, as depicted in Fig. 14.
As illustrated in Fig. 14, the vibration control effect was observed to 

exceed 2 dB for single-line spectral frequencies at or below 50 Hz. 
However, when the frequency exceeded 50 Hz, the vibration suppres-
sion rate rapidly decreased to less than 1 dB. The vibrational effects at 
20 Hz were slightly less favourable than the control results obtained for 
the other low frequency spectral lines, and this divergence was attrib-
uted to the influence of the bolts and ribs employed in the mounting of 
the cantilever beam structure. The inherent frequency of the structure 
was identified to be approximately 20 Hz, which resulted in the control 
efforts for forced vibration near this frequency transitioning into man-
agement of the structural resonance.

4.2.2. Narrowband spectral vibration control experiment
The host computer generated an analogue, narrowband signal that 

activated the shaker and induced vibration of the cantilever beam. The 
center frequency was set at 10 Hz, and the span for the narrowband 
spectral vibration input signal was established as different frequencies. 
An experimental verification of the active control characteristics of the 
piezoelectric cantilever beam vibration for the narrowband spectrum 
was conducted. The results before and after control implementation are 
presented in Fig. 15.

As shown in Fig. 15, the experimental results indicated an 
enhancement in the vibration control effectiveness within the charac-
teristic band as the width of the narrowband spectrum increased, 
whereas the vibration amplitude within the noncharacteristic band 
increased.

The host computer generated an analogue narrowband signal that 
drove the shaker to induce vibration of the cantilever beam. The span 
was set to 4 Hz, and the narrowband spectral vibration input signal had 
different center frequency. The center frequency of the narrowband 
spectrum was controlled to experimentally verify the active control 

Fig. 15. Results of active control of narrowband spectral vibration with different bandwidths, Fig(a) to (f) are Frequency domain plots before and after vibration 
control at different bandwidths.
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characteristics for piezoelectric cantilever vibration. The pre- and post- 
control experimental results are presented in Fig. 16.

As illustrated in Fig. 16, the experimental results indicated that the 
vibration control efficacy within the characteristic band diminished 
with increasing center frequency of the narrowband spectrum, while the 
vibration amplitude for the noncharacteristic band increased.

In the control experiments of the narrowband spectrum, the band-
width and center frequency were identified as influencing factors. The 
data were collated and are presented in Fig. 17.

As depicted in Fig. 17(a), when the bandwidth was narrow, the 
suppression effect on the characteristic band vibration was approxi-
mately 1 dBm. An increase in the suppression effect was observed with 
increasing bandwidth. Fig. 17(b) illustrates that when the center fre-
quency of the narrowband spectrum was low, the vibration suppression 

effect within the characteristic band was approximately 4 dBm. With an 
increase in the center frequency, a notable reduction in the suppression 
effect was observed. Overall, the presence of minor time delays within 
the actual physical channel led to inaccuracies in the algorithm tracking 
of the characteristic frequency bands of narrowband signals. This, in 
turn, caused the piezoelectric actuator to operate outside the charac-
teristic frequency bands, resulting in suppression of vibration within the 
narrowband range and a slight amplification of vibration outside the 
narrowband range.

4.3. Effectiveness analysis of the RU-FxLMS algorithm

To further ascertain the efficacy of the control strategy within the 
low frequency band for suppression of vibration under multiline spectra, 

Fig. 16. Results of active control of narrowband spectral vibration with different center frequency, Fig(a) to (e) are Frequency domain plots before and after vi-
bration control at different center frequency.

Fig. 17. (a) Effect of narrow band spectral width on vibration suppression, (b) Effect of the center frequency of the narrow band spectrum on the vibration 
suppression.
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ten-line spectral vibration control and frequency-hopping tracking 
control simulation and experiment were conducted within the frequency 
range of 0–50 Hz. The consistency between simulation and experimental 
results was validated through the implementation of closed-loop control 
for the two prevalent vibration conditions commonly encountered in 
engineering. The results of these simulations and experiments are pre-
sented in Fig. 18 and Fig. 19.

As depicted in Fig. 18 and Fig. 19, within the low frequency band 
ranging from 0 to 50 Hz, the control strategy could effectively manage 
up to ten-line spectra and frequency-hopping spectra. In the simulations 
and experiments conducted under two distinct operational conditions, 
the time-domain results indicated that the control performance in the 
simulation surpassed that of the experiment, albeit with a slower 
convergence rate. The physical channels in the experiment exhibited 

inherent time delays, which marginally compromised the control 
effectiveness and the simulation incorporated an additional primary 
channel model and variable step-size control strategy, which contrib-
uted to the slower convergence. This outcome was consistent with ex-
pectations. The trends observed in both the simulation and experimental 
results were rational, thereby validating the efficacy of the control 
algorithm.

To further investigate the superiority of the improved algorithm, 
closed-loop control experiments were conducted under multiline spec-
tral vibration conditions. Both the conventional and the improved 
FxLMS algorithms were employed in these experiments. The experi-
mental results are presented in Fig. 20.

As shown in Fig. 20, the presence of the "reset" module allowed the 
feedback signal to be periodically reset to a specified amplitude. This 

Fig. 18. Results of vibration control of multiline spectral vibration, (a) Time domain diagram before and after control, (b) Frequency domain diagram before and 
after control.

Fig. 19. Results of vibration control of frequency-hopping vibration (a) Time domain diagram before and after control, (b) Frequency domain diagram before and 
after control.

Fig. 20. Experimental results of vibration control of multiline spectral vibration (a) Time domain diagram before and after control, (b) Frequency domain diagram 
before and after control.
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feature enabled the improved method to effectively control the vibra-
tions rapidly. In Fig. 20(a), the adjustment time was significantly 
reduced compared to traditional control methods. The nonlinearity 
during the moment of resetting caused minor fluctuations in the 
controlled amplitude during the initial stages of control, which subse-
quently stabilized. Due to the presence of the " uniformization " module, 
the feedback signal was able to stabilize the amplitude at the maximum 
output voltage of the actuator while maintaining the frequency and 
phase unchanged, resulting in improved control performance. In Fig. 20
(b), the suppression effect on each spectral line was higher compared to 
traditional control methods. This validated that the improved RU-FxLMS 
algorithm exhibited enhanced control capability in the low-frequency 
range.

5. Conclusion

This study investigated the active control characteristics of large- 
section and high-rigidity piezoelectric cantilever beams under multi-
line and narrowband vibration. The traditional LMS algorithm was 
enhanced, and a RU-FxLMS controller was designed by identifying and 
compensating the secondary channel online, as well as by constructing a 
reset & uniformization module to address the instability in vibration 
signals collected by sensors, thereby maximizing the output capability 
and ensuring the smoothness of the output signal. The intrinsic equa-
tions of a high-rigidity piezoelectric cantilever beam, which incorpo-
rated feedback, control and observation, were integrated. The equations 
enabled extraction of the state at any point along the beam at any given 
moment before and after vibration control. Additionally, active control 
simulations pertaining to the vibration of a piezoelectric cantilever 
beam were conducted. The tracking efficiency, convergence, and 
nonlinear characteristics of the algorithm were verified and analysed. In 
the case of multiline spectral disturbances, the system achieved a sup-
pression effect that varied between 4 and 13 dBm for each individual 
line spectrum, while a broadband suppression effect was realized within 
the high frequency band. Regarding narrowband spectral interference, 
the system attained a significant suppression effect over the entire fre-
quency range, with a notable 10 dBm suppression effect being realized 
in the characteristic narrowband spectrum.

Ultimately, active vibration control experiments were conducted on 
piezoelectric cantilever beams. The effects of the multiline spectral 
number, span, and frequency and the central frequency and width of 
narrowband spectra on the active vibration control properties of high- 
rigidity piezoelectric cantilever beams were investigated. The experi-
ments revealed the following: (1) In the case of multiline spectral dis-
turbances, the number of line spectra exerted a larger influence on the 
vibration suppression rate, whereas the span between line spectra had a 
lesser effect, and effective vibration control was realized within the low 
frequency range from 0–50 Hz. (2) With respect to narrowband spec-
trum disturbances, the center frequency of the narrowband spectrum 
had a more significant impact on the vibration suppression effectiveness, 
whereas the width of the narrowband spectrum influenced the sup-
pression within a specific bandwidth. (3) The results of vibration control 
in multiline spectra and frequency-hopping vibration demonstrated that 
the trends in the simulations were consistent with those in the experi-
ments. This consistency validated the accuracy of the constitutive 
modelling of the piezoelectric cantilever beam and confirmed the effi-
cacy of the proposed improved algorithm. This provides a novel 
approach for the active control of multilinear and nonlinear vibration in 
the low frequency range for high-rigidity structures.
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