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A B S T R A C T

The axial compressive buckling loads of shape memory polymer composite (SMPC) cylindrical shells are
very sensitive to geometric imperfections and temperatures, but few studies have been conducted on this
phenomenon. In this study, the buckling loads and geometric imperfection sensitivities of SMPC cylindrical
shells at different temperatures are determined by means of numerical simulations and experimental analyses.
The single perturbation displacement imperfection (SPDI), multiple perturbation displacement imperfection
(MPDI) and linear buckling mode imperfection (LBMI) techniques are used to simulate the initial geometric
imperfections and calculate the corresponding buckling loads and knock-down factors (KDFs) of SMPC
cylindrical shells at different temperatures. In the experimental part, the [0∕90∕ ± 45]𝑠 SMPC cylindrical shells
are manufactured through the autoclave molding process. The load-bearing capacities at different temperatures
are tested and compared with the numerical results. The results demonstrate that the buckling loads of the
SMPC cylindrical shell obtained by numerical techniques are sensitive to temperature, while the KDFs are
insensitive to temperature. Meanwhile, results indicate that brittle fracture is the main failure mode instead
of buckling at low temperature, so there is a risk when using any numerical technique to design SMPC
cylindrical shells in low-temperature region. At high temperatures, the SPDI method overestimates the KDFs,
while the KDFs calculated by the MPDI and LBMI techniques are in good agreement with the experimental
results. However, only the LBMI method can distinguish the influence of temperature on the post-buckling
patterns, and the corresponding post-buckling pattern is more consistent with the experiment. In addition, the
shape-recovery properties and repeatability of the SMPC cylindrical shells are good.

1. Introduction

Fiber-reinforced polymer composites (FRPCs) have the advantages
of high specific modulus, high specific strength, good fatigue resistance,
and they are easily formed into desired shapes, which make them
increasingly irreplaceable in aerospace applications [1,2]. Compared
with traditional polymers, shape memory polymers (SMPs) are a new
type of smart material that can change shape with changes in external
stimuli without external forces and have received increasing atten-
tion [3,4]. At present, the applications of SMPs and shape memory
polymer composites (SMPCs) in the aerospace field mainly include
space deployable hinges, trusses and antennas [5–7]. Most of these
structures are SMPC plates; SMPC cylindrical shells, which are excellent
load-bearing structures, have not been widely used [8,9]. The reason
for their lack of use is that the structure and external load conditions
of the SMPC cylindrical shells are relatively more complex than those
of the SMPC plates, which makes it difficult to analyze the load-bearing
capacity (the buckling load). In addition, as a temperature-sensitive
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material, the mechanical properties of SMPCs will change dramatically
with temperature, so the buckling behaviors of SMPC cylindrical shells
are quite different from those of general FRPC cylindrical shells.

The prediction of the axial buckling load of cylindrical shell struc-
tures has been a popular topic of research. However, it is found that
the theoretical buckling loads of cylindrical shells are always quite
different from the experimental results due to the geometric, loading
and material imperfections [10–12]. These inevitable imperfections
are caused during manufacturing or experimental processes, where
geometric imperfections are the most common and unavoidable [13].
The axial buckling load of a cylindrical shell is very sensitive to temper-
ature. Thus, the practical buckling loads of cylindrical shells are always
much lower than the theoretical values. The load-bearing capacities
are insufficient if the cylindrical shells are designed according to the
theoretical calculation results, which leads to premature destruction
of the structures. Therefore, the concept of the knock-down factor
(KDF) [14,15] is proposed to quantify such errors.
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The KDF is the ratio of the maximum axial load-bearing capacity
of a cylindrical shell in practical applications to its theoretical crit-
ical buckling load. The value of the KDF ranges from 0.2 to 1 for
most cylindrical shells, depending on the amplitudes of geometric and
loading imperfections [13]. As early as the 1960s, the NASA SP-8007
monograph proposed an empirical equation for the KDF based on a
large amount of experimental data [16]. Since then, this formula has
been widely used to determine the practical buckling loads of cylin-
drical shell components based only on the dimensional parameters,
i.e., KDF = 1 − 0.901 × (1 − 𝑒−

√

𝑅∕𝑡∕16). However, the calculation results
are always too conservative because the material properties are not
considered [17]; thus, cylindrical shells made according to this design
criterion will be too thick. The excessive weight of the structures will
affect the payloads of the launch vehicles and aircraft, which is exactly
what the aerospace fields should avoid. Therefore, in recent years, the
imperfection sensitivities of thin-walled cylindrical shells have been
widely studied based on theoretical and finite element analyses, and
the main idea is to artificially introduce initial geometric imperfections
into a perfect cylindrical shell and then study its stability.

Wang et al. [17,18] introduced the measured geometric imperfec-
tions into the numerical model through digital image correlation (DIC)
technology. It was found that the measured imperfections could well
simulate the initial geometric imperfections of the cylindrical shell, and
the numerical results showed good agreement with the experimental re-
sults. However, this technique cannot be performed in the preliminary
design stage. Sosa et al. [19] used the linear buckling mode imper-
fection (LBMI) method to investigate the imperfection sensitivities of
cylindrical shells. The main idea of this method is introducing the linear
buckling mode shape imperfection into the perfect cylindrical shell
after being scaled in a certain proportion, which is a commonly used
method in simulating the post-buckling behaviors of cylindrical shells.
Hühne [20] used the single perturbation load imperfection (SPLI)
method to quantify the imperfection sensitivities of cylindrical shells,
and he called this dimple-shaped perturbation the ‘‘worst’’, ‘‘realistic’’
and ‘‘stimulating’’ imperfection. Arbelo and Chen [21–23] modified
the SPLI method and proposed multiple perturbation load imperfection
(MPLI), worst multiple perturbation load imperfection (WMPLI) and
random perturbation load imperfection (RPLI) techniques, which could
better predict the practical buckling loads of cylindrical shells because
they increased the number of perturbation load imperfections (PLIs)
compared with the SPLI method. The dimple-shaped imperfections are
directly introduced into the side of the cylindrical shells in the SPLI,
MPLI, WMPLI and RPLI methods, and with the increase in the number
of PLIs, the buckling loads will gradually decrease until convergence,
so that the KDF can finally be obtained.

In addition, many numerical methods for calculating the imperfec-
tion sensitivity of thin-walled cylindrical structures have been proposed
in recent years. The single boundary perturbation imperfection (SBPI)
method [24] introduces local boundary perturbations on the top of
the shells to induce dimple-shaped imperfections indirectly. In addition
to dimple-shaped imperfections, Fathollah et al. [25,26] used cutout
(CR) to investigate the buckling loads of composite cylinders. Evkin
and Horak et al. [27–30] proposed analytical models to calculate the
local buckling load of cylindrical shells, and the different boundary
conditions were also considered. Wagner [31] and Hao [32] used the
reduced or incomplete reduced stiffness method to investigate the im-
perfection sensitivity of cylindrical shells. In addition to the numerical
and theoretical methods, Chen and Jiao [33–36] also completed plenty
of experiments to investigate the buckling behaviors of cylindrical
shells.

As mentioned above, there has been much research on the imper-
fection sensitivities of cylindrical shell structures, while only a few
of them are related to FRPC cylindrical shells (they mainly focus
on isotropic materials, such as steel). To the best of our knowledge,
few studies have been conducted on the geometric imperfection sen-
sitivity of SMPC cylindrical shells under axial compression. In this

study, the influence of temperature on the buckling behavior of SMPC
cylindrical shells is studied in a novel way. The temperature is di-
vided into a low-temperature region and a high-temperature region.
The compressive failure mode of SMPC cylindrical shells in the low-
temperature region is dominated by brittle fracture, while that in
the high-temperature region is dominated by buckling. The numerical
and experimental methods are combined to study the buckling behav-
iors of SMPC cylindrical shells. In the numerical simulations, single
perturbation displacement imperfection (SPDI), multiple perturbation
displacement imperfection (MPDI) and LBMI techniques are used to
simulate the initial geometric imperfections and calculate the buckling
loads and KDFs of SMPC cylindrical shells at different temperatures.
In the experimental part, the [0∕90∕±45]𝑠 SMPC cylindrical shell is
manufactured through an autoclave molding process. The load-bearing
capacities at different temperatures are tested and compared with the
numerical results. In addition, we propose that the SMPC cylindrical
shell can be applied to the auxiliary vibration reduction structure of
the space pyrotechnic releasing mechanism and performed repeated ex-
periments on the shape-recovery process of a buckled SMPC cylindrical
shell. In this study, the effects of temperature on buckling loads, KDFs
and post-buckling patterns of SMPC cylindrical shells are investigated
by numerical and experimental analyses, which can play a guiding role
in the preliminary design of SMPC cylindrical shells.

2. Numerical simulations

The single perturbation displacement imperfection (SPDI), multiple
perturbation displacement imperfection (MPDI) and linear buckling
mode imperfection (LBMI) techniques are introduced in this study
to verify the geometric imperfection sensitivities of SMPC cylindrical
shells at different temperatures and obtain the corresponding buckling
loads, KDFs and post-buckling patterns. In this section, these numerical
methods are investigated.

2.1. Finite element model preparation

Before performing the subsequent numerical simulations and exper-
imental analysis of the buckling loads and geometrical imperfection
sensitivities of SMPC cylindrical shells at different temperatures, some
key parameters, such as the overall size, fiber stacking configurations
and mesh size, should be first determined by linear buckling analysis. In
this section, the commercial software Abaqus 6.14 is used to determine
the critical buckling loads of perfect cylindrical shells under axial
compression. The boundary conditions are assumed to be clamped (the
same as in the subsequent experiments), and all the degrees of freedom
of the top and bottom edges of the shell are kinematically coupled by
two reference points. All six degrees of freedom of the bottom edge are
constrained. For the top edge, all five degrees of freedom except for
the axial motion are constrained, and a compressive concentrated force
in the axial direction is applied at the reference point. The material
properties of SMPC at different temperatures are shown in Table 1,
and the detailed testing procedures are provided in the Supplemental
file. 𝐺13 and 𝐺23 are assumed to be approximately equal to 𝐺12, and
the thickness of a single lamina is 0.15 mm. The linear perturbation-
buckling analysis step is used to determine the critical buckling load,
and the subspace algorithm is adopted to guarantee the accuracy. The
element type is S4R, and the critical buckling load can be calculated
by multiplying the eigenvalue by the previously applied concentrated
force.

To determine the best fiber stacking configuration, in this section,
eight kinds of typical fiber stacking configurations [0]8, [±45]4, [±45]2𝑠,
[0∕90]4, [0∕90]2𝑠, [0∕90∕±45]𝑠, [0∕90∕±60]𝑠, and [90]8 are compared. In
addition, a dimensional parameter of the cylindrical shell 𝑍 = 0.6𝐿2∕𝑅𝑡
is considered to investigate the influences of the length-to-radius ratio
and length-to-thickness ratio on the critical buckling loads, where the
radius 𝑅 and thickness 𝑡 of the cylindrical shell are 20 mm and 1.2 mm,
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Table 1
The lamina properties of SMPC at different temperatures.

Temperature (◦C) 25 40 60 80 100

Carbon fiber
reinforced SMPC

𝐸11 (MPa) 40 653 34 053 25 559 19 558 16 676
𝐸22 (MPa) 12 491 10 460 3732 17.3 9.04
𝑣21 0.29 0.77 0.63 0.44 0.41
𝐺12 (MPa) 814 574 37.4 27.2 21.2

respectively. The overall length 𝐿 is chosen to be 20 mm, 40 mm,
60 mm, 80 mm, 100 mm, 120 mm and 200 mm in this section; the
corresponding 𝑍 can be calculated as 10, 40, 90, 160, 250, 360 and
1000, respectively. It should be noted that the calculation accuracy will
be improved with the decrease of the mesh size, but the calculation cost
will simultaneously be greatly increased. Therefore, the proper mesh
size should be determined first. Table 2 shows the critical buckling
loads corresponding to different mesh sizes (numbers of meshes) for
the [0∕90∕±45]𝑠 SMPC cylindrical shell with the dimensional parameter
𝑍 = 10 at 25 ◦C. The critical buckling loads decrease gradually with
the increase in the number of meshes and finally tend to converge.
In this study, considering the accuracy and efficiency of the FEA
simultaneously, the mesh size is chosen to be the same as Z10-6 in
Table 2 for all the SMPC cylindrical shells. With the increase in 𝑍, the
size of the mesh will not change, and only the number of meshes will
increase.

Fig. 1 shows that the critical buckling loads are greatly influenced
by the fiber stacking configurations, e.g., the [0∕90∕ ± 𝜃]𝑠 cylindrical
shell has the largest critical buckling load, while the [90]8 cylindrical
shell has the lowest critical buckling load. In addition, the critical
buckling loads of symmetrical laminated cylindrical shells are slightly
larger than those of anti-symmetric laminated cylindrical shells with
the same ply angle, but the differences are so small that they can
be neglected. In the meantime, with the increase in the dimensional
parameter 𝑍, the critical buckling loads will decrease rapidly for all
cylindrical shells until 𝑍 > 100, and then the critical buckling loads
will gradually converge to constant values.

It can also be seen from Fig. 1 that the levels of 𝑍-sensitivity of
cylindrical shells with different fiber stacking configurations are also
different. As 𝑍 increases from 20 to 1000, the critical buckling loads
of the [0]8, [0∕90]2𝑠 and [0∕90]4 cylindrical shells have the largest
reductions, up to 46.5%, 40.6% and 35.5%, respectively; the declining
magnitudes of the [90]8, [±45]2𝑠 and [±45]4 cylindrical shells are not
that dramatic, which are approximately 25% for all three cases; the
critical buckling loads of the [0∕90∕±45]𝑠 and [0∕90∕±30]𝑠 cylindrical
shells have the lowest sensitivity to 𝑍 (as 𝑍 increases from 20 to
100, the critical buckling loads only decrease by 12.7% and 14.3%, re-
spectively). Fig. A.1 shows the first-order linear buckling mode shapes
of SMPC cylindrical shells with different fiber stacking configurations
and 𝑍 at 25 ◦C. It can be seen that the buckling wavenumber in the
axial direction of the [0∕90∕ ± 𝜃]𝑠 cylindrical shells is independent
of 𝑍, while it will increase with the increase in 𝑍 for other fiber
stacking configurations. The above two points indicate that the critical
buckling loads of [0∕90∕ ± 𝜃]𝑠 cylindrical shells are not sensitive to the
dimensions.

Therefore, the [0∕90∕±45]𝑠 cylindrical shells are used for the subse-
quent numerical and experimental investigations when simultaneously
considering the load carrying abilities and the degrees of dimensional
sensitivities. In addition, 𝑍 is chosen to be 90 in the following sections
(the overall length is 60 mm, the radius is 20 mm and the thickness is
1.2 mm).

2.2. SPDI and MPDI techniques

The basic ideas of the SPDI and MPDI techniques are shown in
Fig. 2, and there are two steps: (1) The perturbation displacement
imperfections (PDIs) are applied to the outer side of the cylindrical

Table 2
The mesh convergence study of [0∕90∕±45]𝑠 SMPC cylindrical shell with the
dimensional parameter Z = 10 at 25 ◦ C.

Serial number Number of meshes (elements around
circumference and axial)

The buckling loads (kN)

Z10–1 10 × 5 101.75
Z10–2 20 × 10 95.06
Z10–3 40 × 20 90.80
Z10–4 60 × 30 87.45
Z10–5 80 × 40 86.32
Z10–6 100 × 50 85.80
Z10–7 120 × 60 85.52

Fig. 1. The critical buckling loads as a function of the 𝑍 of the cylindrical shell at
25 ◦C (the 1st buckling mode).

Fig. 2. The basic ideas of the SPDI and MPDI techniques.

shell, and the corresponding dimple-shaped deformations are obtained
by nonlinear static analysis. Then, the imperfection is introduced into
a perfect SMPC cylindrical shell by modifying the coordinates of nodes
using the .inp file of Abaqus. (2) The Nonlinear Riks Method is used for
the following nonlinear buckling (post-buckling) analysis, and the load-
carrying capacity (buckling loads) of the imperfect cylindrical shell can
be obtained. The lower bound of the buckling loads of SMPC cylindrical
shells can be determined by changing the amplitudes and positions of
the PDIs, and thus, the corresponding KDFs can be obtained. It should
be noted that the flexural stiffness of SMPC will decrease drastically
with increasing temperature, and different dimple-shaped deformations
will be caused by the same perturbation load at different temperatures.
Therefore, the perturbation displacement imperfection is utilized in this
study instead of the perturbation load imperfection.

Fig. 3 shows the distribution of the PDIs of the SPDI and MPDI
techniques. The most common form of PDIs is used in this study,
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Fig. 3. Diagram of the distribution of perturbation displacements of SPDI and MPDI techniques, and the corresponding initial imperfections patterns of [0∕90∕±45]𝑠 SMPC cylindrical
shells at 25 ◦C (the amplitude of perturbation displacements is 1 mm, and the deformation scale factor is 1).

Fig. 4. The initial imperfection patterns of [0∕90∕±45]𝑠 SMPC cylindrical shells obtained by SPDI (the amplitude of perturbation displacements is 1 mm, and the deformation scale
factor is 1).

i.e., the perturbation displacements are distributed at the middle height
of the cylindrical shell with the same amplitude. In this section, 1,
2, 3, and 4 PDIs are designed at the middle of the outer side of the
cylindrical shell. The 3 PDIs case can be divided into symmetrical and
asymmetrical cases, so there are a total of 5 cases in this section.
The corresponding initial imperfection patterns (the initial imperfect
shape in the 2nd step of Fig. 2) of [0∕90∕±45]𝑠 SMPC cylindrical
shells at 25 ◦C can also be seen in Fig. 3, where the amplitude of
perturbation displacements is 1 mm. It can be seen that the area of
the initial dimple-shaped imperfections of the cylindrical shell increases
with the increasing number of PDIs. In addition, SMPC is a kind of
thermosensitive material, and the effect of temperature on the initial
imperfection patterns caused by PDIs should also be investigated. Fig. 4
shows the initial imperfection patterns of [0∕90∕±45]𝑠 SMPC cylindrical
shells obtained by the SPDI method at different temperatures, where
the amplitude of perturbation displacements is also kept at 1 mm. It can
be concluded that the shape of the initial imperfection is independent
of temperature, and only the area is slightly reduced with increasing
temperature.

2.3. LBMI method

The geometrical imperfections introduced by the SPDI and MPDI
techniques are not localized in the axial direction, and the shapes
of SPDI and MPDI are independent of temperature. To overcome the
above two shortcomings, the LBMI method is also introduced in this
study to calculate the buckling loads and KDFs of SMPC cylindrical
shells at different temperatures. The procedure of the LBMI method is as
follows: the linear buckling mode of the cylindrical shell is multiplied
by a scaling factor 𝛿 as the initial imperfection, and the subsequent
steps are all the same with the SPDI and MPDI techniques. Although
the linear buckling eigenmode shapes are quite different with different
modes, Fathollah and Milad [10] found that the KDF is only dependent
on the scaling factor 𝛿 but not on the modes. Therefore, to ensure the
consistency of the result, the 1st linear buckling eigenmode shape is
selected in this study as the LBMI. Fig. 5 shows the 1st linear buckling

eigenmode shapes and the corresponding critical buckling loads of
[0∕90∕±45]𝑠 SMPC cylindrical shells at different temperatures. As the
temperature increases from 25 ◦C to 100 ◦C, the critical buckling loads
of the SMPC cylindrical shell will decrease rapidly, and the decrease
range will exceed 96%. Notably, the 1st linear buckling eigenmode
shapes in the high temperature range (60 ◦C, 80 ◦C and 100 ◦C)
and low temperature range (25 ◦C and 40 ◦C) are quite different.
As shown in Table 1, the ratio of the longitudinal modulus to the
transverse modulus of SMPC (𝐸11∕𝐸22) is 3.25 at 25 ◦C, while it will
increase to 1845 as the temperature increases to 100 ◦C. The high
degree of anisotropy may result in distorted buckling modes in the
high-temperature region (the reason for this phenomenon is beyond the
scope of this study).

Compared with SPDI and MPDI, the LBMI will include the initial
geometric imperfections along the axial direction of the cylindrical
shell. In addition, the shapes of LBMIs are closely related to temper-
ature, which is more consistent with the inherent properties of SMPC
materials.

3. Experimental studies

3.1. Specimen preparation

To ensure the quality of the specimens, carbon fiber-reinforced
SMPC prepreg tapes were used as raw materials instead of carbon
fiber and liquid shape memory epoxy resin. The technology of two-
step automated tape laying was applied to manufacture the prepreg
tapes, and the detailed preparation steps are shown in Section S1,
Supplemental files. The resin was shape memory epoxy resin with a
glass transition temperature of 100 ◦C prepared by Leng’s group [37],
and the fiber was Toray T300s 12K carbon fiber (Toray Industries Inc.,
Tokyo, Japan). The material properties of both cured resin and fiber are
shown in Table S1, Supplemental files. The specimens were prepared
by the hand lay-up process assisted by the autoclave. The fiber stacking
configuration of all the specimens is the same as that of the above
numerical analyses, i.e., [0∕90∕±45]𝑠.
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Fig. 5. The 1st linear buckling eigenmode shapes and the corresponding critical buckling loads of [0∕90∕±45]𝑠 SMPC cylindrical shells at different temperatures (Z = 90, the
deformation scale factor = 1).

Fig. 6. The fabrication of SMPC cylindrical shells. (a) sketch of the cylindrical mold, (b) curing process of the SMPC cylindrical shell, and (c) SMPC cylindrical shell.

3.1.1. Specimen preparation of SMPC cylindrical shells
First, the prepreg tape was cut into rectangular shapes according

to the dimension parameters of the cylindrical shell, where there were
4 layers of 0◦ prepreg tape and 4 layers of 45◦ prepreg tape. The
prepreg tape was laid layer by layer with a fiber stacking configuration
of [0∕90∕±45]𝑠 on a cylindrical mold after softening by a heat gun.
The diameter of the cylindrical mold was 40 mm, and the length was
100 mm. To facilitate demolding, the raw material of this mold was
PTFE. To ensure that air was completely removed and wrinkles on
prepreg tapes were eliminated during the following vacuuming process,
a layer of air-permeable demolding ply and a layer of felt must be
wrapped around the prepreg. Finally, the vacuum bag was wrapped, as
shown in Fig. 6(a), and the whole specimen was cured by an autoclave
(Dalian Yingtian Composite Material Co., LTD, China), as shown in
Fig. 6(b). The curing process was set as follows: curing at 80 ◦C for
3 h, then curing at 100 ◦C for 3 h and finally curing at 150 ◦C for 5 h,
with a compressive pressure of 0.1 MPa and a vacuum of 0.001 MPa.

3.1.2. Specimen preparation of SMPC plates
To better understand the thermomechanical behaviors of SMPCs

with the same fiber stacking configuration, DMA experiments were
needed, so SMPC plates were also prepared. First, the prepreg tapes
were cut into a rectangular shape with dimensions of 200 mm × 200 mm,
where there were 4 layers of 0◦ prepreg tape and 4 layers of 45◦

prepreg tape. These 8 layers of prepreg tape were then laid layer by
layer with a fiber stacking configuration of [0∕90∕±45]𝑠 between two
peel ply-covered rectangular metal molds. The combined molds were
subsequently wrapped with a layer of felt, and finally, a vacuum bag
was wrapped and vacuumized, with a vacuum of 0.001 MPa, as shown
in Fig. 7(a). The subsequent curing process was the same as that of
SMPC cylindrical shells.

3.2. DMA tests of the SMPC sheets

The dynamic mechanical properties of SMPC were determined by
DMA with the three-point bending mode. All the specimens were cut
by a water jet cutting machine (Nanjing Bitong Technology Co., LTD,
China) from one large SMPC sheet, as shown in Fig. 7(b), and the
average thickness of the SMPC specimens was measured to be 1.5 mm.
Therefore, according to the ASTM D5023-15 Standard Test Method, the
dimensions of the specimen were 44 mm × 6 mm, and the support span
was 22 mm to ensure that the span-to-depth ratio was between 14 and
20. The depth and width of the specimen were measured and recorded
at its center, and the specimen was then centered on the supports.
During the DMA test, the frequency mode was set as multifrequency
with a frequency of 1 Hz, the heating rate was 2 ◦C∕min, and the final
temperature was 120 ◦C. The storage modulus and loss factor (Tan
Delta) curves with temperature were output by software. Tan Delta
is the loss factor, which is equal to the ratio of the loss modulus and
storage modulus.

In the meantime, the DMA test of pure SMP specimens was also con-
ducted, and the results were compared with those of SMPC, which are
shown in Fig. 8. The storage moduli of both SMP and SMPC decrease
with increasing temperature and eventually stabilize at low values. At
the same temperature, the modulus of SMPC is much higher than that
of SMP, indicating that the introduction of carbon fibers has greatly
improved the load-carrying capacity of the resin matrix. It is worth
noting that the temperature corresponding to the peak of the Tan Delta-
temperature curve is generally used to describe the glass transition
temperature (𝑇𝑔) of SMP and SMPC. As shown in Fig. 8, the 𝑇𝑔 of
SMP is approximately 100 ◦C, while that of SMPC is approximately
30◦C less. The main reason for this phenomenon is that the thermal
conductivity of the carbon fiber is much higher than that of the epoxy
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Fig. 7. The fabrication of SMPC sheets. (a) The fabrication process and (b) the SMPC lamellar specimens for DMA tests.

Fig. 8. DMA test results of SMP and SMPC.

resin matrix, so the interior of SMPC will be heated faster at the same
external ambient temperature, and the material more easily reaches
its 𝑇𝑔 . As a result, the introduction of carbon fiber greatly enhances
the mechanical properties of shape memory epoxy resin but reduces its
glass transition temperature.

3.3. Isothermal buckling tests of SMPC cylindrical shells under axial com-
pression

After the curing process, the cylindrical specimens were demolded
as shown in Fig. 6(c). Then, the SMPC cylindrical shell was cut to
a length of 70 mm (the free length during the subsequent tests was
60 mm, as shown in Fig. 9). The axial compressive tests were performed
by Instron 5569 universal mechanical test instruments to obtain the
buckling loads of the SMPC cylindrical shells at 25 ◦C, 40 ◦C, 60 ◦C,
80 ◦C and 100 ◦C. It is worth noting that before the experiment,
both ends of this SMPC cylindrical shell must be covered with metal
clamps to ensure the clamped boundary conditions during the axial
compressive test (corresponding to the clamped boundary conditions in
the previous theory and FEA), as shown in Fig. 9. After measuring and
recording the size of the specimen, it was placed between the compres-
sion plate of the test instruments and kept at the preset temperature for
30 min in an oven, as shown in Fig. 10. During the experiment, a 10
𝑁 preload was first applied, and then the specimen was compressed
at a loading speed of 2 mm/min. A digital signal acquisition system

was used to record the force 𝐹 (𝑡) and displacement 𝑠 (𝑡) during the
compression experiment, and the sampling frequency was 10 Hz. At
least five specimens were prepared for each configuration, and the
mean values of the test data were calculated to represent the results.

4. Results and discussion

4.1. Parameter study of the SPDI, MPDI and LBMI methods

Taking the [0∕90∕±45]𝑠 SMPC cylindrical shell with the dimensional
parameter 𝑍 = 90 as an example in this section, the effects of the
number and amplitude of PDIs on the SPDI and MPDI techniques are
studied. In addition, the influence of the scaling factor 𝛿 on the LBMI
method is also investigated. Besides, since SMPC is highly temperature-
sensitive, the effect of temperature on the KDF and post-buckling
patterns is taken into consideration.

4.1.1. SPDI
Fig. 11(a) shows the variation of buckling loads of the [0∕90∕±45]𝑠

SMPC cylindrical shell with the perturbation displacement 𝜂 at 25 ◦C.
As 𝜂 increases from 0.1 mm to 2 mm, the buckling load decreases
rapidly from 77.7 kN to 57 kN and then tends to converge when
𝜂 = 1 mm. The main reasons for this phenomenon are as follows:
The corresponding imperfection caused by the single perturbation dis-
placement (as shown in the 1st step of Fig. 2) will become larger with
the increase in 𝜂, and this imperfection will lead to a rapid decrease
in the buckling load; when the dimple-shape deformation reaches a
certain threshold, only a very small axial compressive load can be
borne near this defect, while other parts of the cylinder will bear most
of the remaining compressive load. Therefore, the perfect region will
occupy the main role in the buckling load, and the imperfection may
be irrelevant. In addition, as shown in Fig. 11(c), when 𝜂 increases from
0.1 mm to 1 mm, the post-buckling patterns are quite different (the end
shortening of the cylinder is the same, which is approximately 1.2 mm).
The area of the concave region will increase significantly. However,
as 𝜂 continues to grow to 2 mm, the area of the concave region will
not change, and only the sunken depth will increase. Therefore, the
buckling loads and post-buckling patterns of the cylindrical shell are
quite sensitive to 𝜂, while once 𝜂 reaches a certain threshold value, the
buckling loads and post-buckling patterns will not continue to change.
This threshold value of the [0∕90∕±45]𝑠 SMPC cylindrical shell obtained
from the SPDI method is 1 mm, and the corresponding KDF at 25 ◦C is
approximately 0.73.
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Fig. 9. The tested SMPC cylindrical shells with clamped boundary conditions.

Fig. 10. The axial compressive tests of SMPC cylindrical shells.

Fig. 11(b) shows the variations in buckling loads and KDFs with
temperature when 𝜂 = 1 mm. As the temperature increases from 25
◦C to 100 ◦C, the buckling loads of the [0∕90∕±45]𝑠 SMPC cylindrical
shell will decrease from 57 kN to 1.9 kN, which drops by 96.6%, while
the KDF only drops from 0.73 to 0.66 (9.5% decrease). It can also
be seen from Fig. 11(c) that with increasing temperature (when the
temperature is 25 ◦C and 100 ◦C), the post buckling patterns are almost
the same (the area of the concave region will not increase), so the
decrease in KDF is not significant. Therefore, we can conclude that
the buckling loads of the SMPC cylindrical shell obtained by the SPDI
technique are sensitive to temperature, while the post-buckling patterns
and KDFs are insensitive to temperature.

4.1.2. MPDI
Fig. 12 shows variations in KDFs with the amplitudes of pertur-

bations of all four MPDI cases at 25 ◦C. It can be seen that the KDF
will converge when the amplitude of perturbations 𝜂 is approximately
1 mm, and with the increase in the number of perturbation displace-
ments, the final KDF will become lower. This is because the area of
the perfect region of the cylindrical shell will gradually decrease with
increasing amplitude and number of perturbation displacements, which
will lead to a decrease in KDF. This phenomenon can also be seen in

Table 3
The buckling loads and KDFs of [0∕90∕±45]𝑠 SMPC cylindrical shell under different
temperatures by MPDI method.

Temperature (◦C) Buckling load of 3PDI-as (kN) KDF

25 47.2 0.607
40 38.3 0.602
60 2.92 0.568
80 2.13 0.563
100 1.65 0.56

Fig. 13. The area of the concave region increases significantly as the
number of perturbation displacements increases, so the KDF decreases
simultaneously. It is worth noting that the final KDF of the 3PDI-as
case is only approximately 0.6 and is even lower than that of the 4PDI
case, which indicates that the increase in the degree of asymmetric
distribution of PDIs will lead to a decrease in the KDF. Therefore, the
3PDI-as case is more sufficient to simulate the geometric imperfections
of SMPC cylindrical shells. Hereinafter, MPDI will be represented by
3PDI-as (𝜂 = 1 mm), and then the influence of temperature on KDFs
will be investigated by the MPDI technique.

It worth noting that the initial imperfections and post-buckling
patterns of the SMPC cylindrical shell under SPDI are insensitive to
temperature (as shown in Figs. 4 and 11), and the same phenomenon
was found in the MPDI method. Therefore, we do not distinguish the
post-buckling patterns at different temperatures, and the post-buckling
patterns at 25 ◦C are used as representatives in this section. The
buckling loads and KDFs of the [0∕90∕±45]𝑠 SMPC cylindrical shell
under different temperatures are calculated by the MPDI method, and
the results are shown in Table 3. The buckling loads and KDFs obtained
by the MPDI method are lower than those obtained by the SPDI method,
but the variation tendency is similar: the buckling loads will decrease
dramatically with increasing temperature, but the variation in the KDF
is not obvious.

4.1.3. LBMI
To consider the geometric imperfections at different axial positions

and better investigate the effect of temperature on the post-buckling
patterns of the SMPC cylindrical shell, the LBMI method is also in-
troduced. Different from the SPDI and MPDI techniques, the initial
imperfection of the LBMI method is the 1st linear buckling mode of the
cylindrical shell multiplied by a scaling factor 𝛿, so we must study the
convergence of 𝛿. As shown in Fig. 14(a), the stiffness of the cylindrical
shell can be significantly reduced by increasing the scaling factor 𝛿. As
𝛿 increases from 0.05ℎ to 0.3ℎ (ℎ is the thickness of the shell, which is
1.2 mm in this study), the buckling loads will gradually converge from
61.5 kN to 43.7 kN at room temperature. Therefore, 𝛿 is selected as
0.3ℎ in the subsequent analysis.

Fig. 14(b) shows the variation in KDFs with temperature when
𝛿 = 0.3 h. The KDFs obtained by the LBMI method are lower than

7
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Fig. 11. The results of the SPDI method: (a) the variation in buckling loads with 𝜂 at 25 ◦C, (b) the variations in buckling loads and KDFs with temperature when 𝜂 = 1 mm, and
(c) the post-buckling patterns of SMPC cylindrical shells.

Fig. 12. The KDFs of the [0∕90∕±45]𝑠 SMPC cylindrical shell as a function of the
perturbation displacements 𝜂 at 25 ◦C.

those obtained by the SPDI and MPDI techniques, but the trend is
similar. However, the post-buckling patterns of the SMPC cylindrical
shell obtained by the LBMI method are sensitive to temperature, which
will be quite different in low- and high-temperature regions. At the
low-temperature region, the 1st linear buckling mode of the SMPC
cylindrical shell is the regular spiral-shape deformation, so the post-
buckling patterns of the LBMI method are dimple-shape deformations,
which are similar to those of the SPDI and MPDI methods. At the
high-temperature region, the 1st linear buckling mode shapes of the
SMPC cylindrical shell distort, and irregular critical buckling modes are
generated, so the post-buckling patterns transform from dimple-shape
deformation into local folding-shape deformation. The initial imper-
fections and corresponding post-buckling patterns of the [0∕90∕±45]𝑠
SMPC cylindrical shell obtained by the SPDI, MPDI and LBMI methods
are summarized in Fig. A.3. It should be noted that all the linear
buckling modes of the SMPC cylindrical shell are distorted at high
temperature, rather than not only the 1st modes, which can be seen
in Fig. A.2. However, this phenomenon is not the focus of this study,
and we will discuss this in detail in our future work.

4.2. Comparison of numerical and experimental results

The axial compressive load–displacement curves of [0∕90∕±45]𝑠
SMPC cylindrical shells at different temperatures are shown in Fig. 15.
The load-bearing capacities of the SMPC cylindrical shell will decrease
with increasing temperature. At 25 ◦C, the maximum load-bearing ca-
pacity of the SMPC cylindrical shell can exceed 30 kN. At a temperature
of 100 ◦C, the cylindrical shell buckles when the axial compressive
load is only 1.6 kN, thus losing part of the load-bearing capacity. In
addition, the features of these curves are quite different in the low-
temperature and high-temperature regions. As shown in Fig. 15(a) (at
25 ◦C and 40 ◦C), when the compressive force reaches a certain value,
the compressive load–displacement curves will show a tendency of a
leap downward, indicating that the cylindrical shell will be crushed,
and the structure has entirely lost its load-bearing capacity. However,
with the increase in temperature, as shown in Fig. 15(b), when the
compressive force reaches the maximum value, it does not decline
rapidly but slowly drops to a stable value. This indicates that the SMPC
cylindrical shell will not be damaged at high temperatures, and the
structure can still have a certain load-bearing capacity after buckling.

Table 4 shows the comparison of buckling loads from simulation
and experimental results at different temperatures. At 25 ◦C and 40
◦C, the numerical simulations greatly overestimate the load-bearing
capacity of the SMPC cylindrical shell, and the deviation can reach
89%. When the temperature rises to 60 ◦C, 80 ◦C and 100 ◦C, the
deviations will decrease gradually. The buckling loads obtained from
the MPDI technique are in good agreement with the average values of
the experimental results, where the error is less than 5%. The main
reason for this phenomenon is that SMP is in its glassy state at low
temperature (as seen from the DMA analysis), and the compressive
strength of carbon fiber is much lower than its tensile strength. The
compressive strain-to-failure of the SMPC is extremely low. Therefore,
the SMPC cylindrical shell is more prone to undergoing compressive
fracture than buckling deformation at relatively low temperatures,
leading to its maximum load-bearing capacity being significantly lower
than the simulation result. With increasing temperature, the SMP will
gradually change from the glassy state to the rubbery state, and the
SMPC can withstand large compressive and flexural deformations with-
out fracture. Therefore, brittle fracture does not occur during the
post-buckling deformation of the SMPC cylindrical shell; thus, the
experimental results are in good agreement with the numerical results.
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Fig. 13. The post-buckling pattern of [0∕90∕±45]𝑠 SMPC cylindrical shells with the same axial compressive displacement at 25 ◦C (𝜂 = 1 mm).

Fig. 14. The results of the LBMI method: (a) the variation in buckling loads with 𝛿∕ℎ at 25 ◦C and (b) the variations in KDFs with temperature when 𝛿 = 0.3 h.

Fig. 15. The axial compressive load–displacement curves of [0∕90∕±45]𝑠 SMPC cylindrical shells at different temperatures: (a) low-temperature region and (b) high-temperature
region.

Table 4
The buckling loads of [0∕90∕±45]𝑠 SMPC cylindrical shells from numerical simulations and experimental results at different temperatures, error
= (FEA- Experiment)/ Experiment.

Temperature
(◦C)

Experimental bearing
load (kN)

Buckling load by
SPDI (kN)

Error (%) Buckling load by
3PDI-as (kN)

Error (%) Buckling load by
LBMI (kN)

Error (%)

25 30.2 ± 1.4 57.0 89.0 47.2 56.2 44.7 48.3
40 29.0 ± 1622 44.7 54.2 38.3 32.2 35.7 23.1
60 3.03 ± 0.27 4.93 62.7 2.92 −3.63 2.60 −14.2
80 2.17 ± 0.15 2.52 16.1 2.13 −1.70 1.89 −12.7
100 1.67 ± 0.21 1.95 17.0 1.65 −0.72 1.47 −11.7
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Fig. 16. The initial shape and deformation morphologies of SMPC cylindrical shells under axial compression at different temperatures.

Fig. 16 shows the initial shape and deformation morphology of
SMPC cylindrical shells under axial compression at different temper-
atures with the same displacement. Fig. 16(b) and (c) show that at 25
◦C and 40 ◦C, SMPC cylindrical shells are partially fractured, resulting
in cracks and delamination damage, while the remaining parts do
not undergo any deformation. This indicates that at low temperature,
SMPC cylindrical shells are crushed instantaneously and lose their
load-bearing capacity. However, at high temperatures, as shown in
Fig. 16(d)–(f), SMPC cylindrical shells are not destroyed but undergo
buckling deformation. The SMPC cylindrical shell buckles before being
destroyed under the axial compressive load, and then the SMPC bears
bending strain rather than compressive strain. As the temperature rises,
the local bending strain also increases significantly, which will be very
large when the temperature reaches 100 ◦C; however, no damage
occurs, as shown in Fig. 16(f), and the structure can still have a certain
load-bearing capacity, which is consistent with the analysis results
above.

Fig. 17 shows the KDF of [0∕90∕±45]𝑠 SMPC cylindrical shells
obtained from numerical simulations and experimental results at dif-
ferent temperatures. The KDFs calculated by the SPDI, MPDI and LBMI
techniques decrease successively. In addition, in the low-temperature or
high-temperature regions, the KDFs calculated by the same numerical
method change little. Only when the temperature increases from 40
◦C to 60 ◦C will the KDFs decrease by approximately 10%. In the
low-temperature region, all the numerical methods overestimate the
load-bearing capacity of the SMPC cylindrical shell, which is caused by
the premature brittle fracture of SMPC. In the high-temperature region,
the SPDI method overestimates the KDFs of the SMPC cylindrical shell,
which is not safe in the preliminary design; the KDFs calculated by the
MPDI are in good agreement with the average value of the experimental
results, while in some test pieces, the experimental results are smaller
than the simulation results, which may lead to a premature failure
of the structure; the KDF calculated by the LBMI method is slightly
smaller than the experimental results, with an error of approximately
10%, but it is safer than the MPDI method. In addition, it can be
seen from Figs. 18 and A.3 that the post-buckling pattern of the SMPC
cylindrical shell at high temperature obtained from the LBMI method
is more consistent with the experimental result, while the SPDI and
MPDI techniques cannot distinguish the influence of temperature on
the post-buckling patterns.

In summary, in the preliminary design of SMPC cylindrical shells,
numerical methods are not able to calculate the KDF at low tempera-
tures well. Because the SMPC cylindrical shells are more prone to brittle

Fig. 17. The KDF of [0∕90∕±45]𝑠 SMPC cylindrical shells obtained from numerical
simulations and experimental results at different temperatures.

fracture (rather than buckling deformation) at low temperature, the
existing numerical methods are not able to distinguish them (brittle
fracture and buckling) well. At high temperature, the LBMI method
is an effective and safe method, and the corresponding post-buckling
pattern is more consistent with the experimental result.

5. The application assumption and repeatability experiments of
buckled SMPC cylindrical shells

The abrupt unloading of prestress when the pyrotechnic releas-
ing device explodes is one of the main causes of the instantaneous
high impact of spacecraft. If the prestress can be released before
the pyrotechnic releasing device explodes, the impact and noise can
be effectively reduced. It can be seen in Section 4.2 that the SMPC
cylindrical shell has an excellent axial load carrying capacity at low
temperature, which can exceed 30 kN, and it is not prone to deform
before being destroyed. While its buckling load will be greatly reduced
at high temperature (1.67 kN), and large macroscopic compression
deformation can occur without any damage. Using this characteristic,
the SMPC cylindrical shell can be applied to the auxiliary vibration

10



H. Zhao, X. Lan, L. Liu et al. Thin-Walled Structures 183 (2023) 110340

Fig. 18. The post-buckling patterns of [0∕90∕±45]𝑠 SMPC cylindrical shells in the high-temperature region with the same axial displacement determined by (a) experiment and (b)
SPDI, (c) 3PDI-as, and (d) LBMI methods.

Fig. 19. The working process of the auxiliary vibration reduction structure of the space pyrotechnic releasing mechanism.

reduction structure of a space pyrotechnic releasing mechanism, which
can avoid the disadvantages of an explosive impact and noise of exist-
ing pyrotechnic releasing devices. Its specific working process can be
seen in Fig. 19 and is described as follows:

(a) The SMPC cylindrical shells should be installed in series with
a conventional pyrotechnic releasing device. At the locking state, the
SMPC cylindrical shell can effectively bear the prestress due to its char-
acteristics of large load carrying capacity and small axial deformation
before failure.

(b) Before the pyrotechnic releasing device explodes, the SMPC
cylindrical shell needs to be heated. It will then buckle and shorten
under the action of pre-compressive stress so that the prestress can be
smoothly unloaded. When the pyrotechnic releasing device explodes,
the instantaneous impact of the whole system at the small prestress
state will be significantly reduced.

(c) After the SMPC cylindrical shell unloads the pre-compressive
stress of the pyrotechnic releasing device, it can return to its initial
shape after being reheated again to its 𝑇𝑔 .

Fig. 20 shows that the SMPC cylindrical shell applied in this study
can completely recover to its initial shape even after undergoing a large
buckling deformation, which better reflects its shape memory capacity.
Several repeated experiments were then carried out on the same SMPC
cylindrical shell to measure its buckling load and deformation recovery
ability. The results are shown in Fig. 21. This indicates that after
10 repeated ‘‘initial-buckled-recovery shape’’ cycles, the buckling load
decreases from 1.67 kN to 1.49 kN, which is a decrease of only 10%,

and in the last four cycles, it decreases by even less. Moreover, the
SMPC cylindrical shell can return to its initial shape without any
damage after 10 recovery cycles, so the repeatability of this kind of
SMPC cylindrical shell is excellent.

6. Conclusion

In this study, axial compression experiments of [0∕90∕±45]𝑠 SMPC
cylindrical shells at different temperatures are conducted. The SPDI,
MPDI and LBMI techniques are used to investigate the effect of geomet-
ric imperfections on the buckling behaviors of SMPC cylindrical shells,
and the corresponding buckling loads, KDFs and post-buckling patterns
at different temperatures are compared with the experimental results.
An auxiliary vibration reduction structure is proposed, and repeated
experiments are carried out to verify the repeatability of the SMPC
cylindrical shells. The main conclusions of this study are as follows:

(1) The buckling behaviors of SMPC cylindrical shells are very
sensitive to temperature. In this study, the temperatures are divided
into a low-temperature region and a high-temperature region, and the
corresponding buckling behaviors at different temperature regions are
investigated. In the low-temperature region, the SMPC cylindrical shell
is more prone to brittle fracture than buckling deformation during
the axial compressive experiment. In the high-temperature region, the
SMPC cylindrical shell buckles before being destroyed.

(2) For the SPDI and MPDI techniques, the buckling loads and post-
buckling patterns of SMPC cylindrical shells are closely related to the
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Fig. 20. Shape-recovery process of the buckled SMPC cylindrical shell at 100 ◦C. (a) The post-buckling state and (b) the state after being reheated and recovering its shape.

Fig. 21. The repeated ‘‘initial-buckled-recovery shape’’ experiment of an SMPC
cylindrical shell at 100 ◦C.

number and amplitude of the perturbations, and the robust lower-
bound buckling load can always be obtained when 𝜂 = 1 mm. The
KDFs obtained from the MPDI method are always lower than those
of the SPDI method, and the increase in the number and degree of
the asymmetric distribution of PDIs leads to a decrease in the KDF.
Therefore, the 3PDI-as case is more sufficient to simulate the geometric
imperfections of SMPC cylindrical shells.

(3) In the low-temperature region, all three imperfection methods
overestimate the load-bearing capacity and KDF of the SMPC cylin-
drical shell because the existing numerical methods are not able to
distinguish brittle fracture and buckling. In the high-temperature re-
gion, the SPDI method overestimates the KDFs; the KDFs calculated by
the MPDI and LBMI techniques are in good agreement with the exper-
imental results, while the LBMI method is safer and more conservative
than the MPDI method in the preliminary design of SMPC cylindrical
shells. In addition, only the LBMI method can distinguish the influence
of temperature on the post-buckling patterns, and the corresponding
post-buckling pattern is more consistent with the experiment.

(4) The buckling loads of the SMPC cylindrical shell obtained by
numerical techniques are sensitive to temperature, while the KDFs are
insensitive to temperature.

(5) The repeatability of the SMPC cylindrical shells is excellent at
100 ◦C. After 10 repeated ‘‘initial-buckled-recovery shape’’ cycles, the
buckling loads only decrease by 10% and the shells do not show any
irreversible damage.
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Fig. A.1. The 1st linear buckling mode shapes of SMPC cylindrical shells with different fiber stacking configurations and different values of the dimensional parameter Z at 25
◦C (the deformation scale factor is 1).

Fig. A.2. The linear buckling mode shapes of the [0∕90∕±45]𝑠 SMPC cylindrical shell at 100 ◦C (the deformation scale factor is 0).

Fig. A.3. The initial imperfections and corresponding post-buckling pattern (Mises-stress contours) of SMPC cylindrical shells by numerical simulations.
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