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A B S T R A C T   

Cellular structures provide outstanding mechanical characteristics such as low density, zero Poisson’s ratio, and 
out-of-plane bearing capacity, displaying their extensive application prospects as a supporting framework for 
flexible morphing skins. Unlike traditional cellular structures that produce two-dimensional deformation under 
in-plane loading, this work proposes a novel cellular structure that generates local three-dimensional deforma-
tion activated by in-plane tension. The designed topology evolves from accordion honeycomb by tilting an angle 
of the inclined cell walls. The equivalent in-plane tensile modulus, shear modulus, and local out-of-plane 
deformation are theoretically deduced considering three-dimensional internal forces existing in the inclined 
cell walls. The finite element simulations are established, and the corresponding experimental tests are carried 
out to validate the rationality of the analyzed results. Then the effects on mechanical performance versus geo-
metric parameters of the unit cell are investigated, and the theoretical and simulated results illustrate good 
agreement generally.   

1. Introduction 

Morphing skin is one of the crucial technologies to achieve the dy-
namic deformation of aircraft flying like a bird, which should meet the 
demands of flexibility to deform and stiffness to bear aerodynamic loads 
simultaneously[1,2]. The adaptive cellular structure covered with flex-
ible silicone rubber skin is a feasible scheme for morphing skin, with low 
stiffness to morph and high stiffness to withstand the out-of-plane load. 
Olympio et al. investigated several morphing skins that used high-strain 
capable and high bending stiffness cellular cores with low modulus face- 
sheets covered for in-plane uniaxial and shearing morphing[3–6]. 
Bubert et al. designed a passive elastomeric matrix composite morphing 
skin supported by a honeycomb structure with zero Poisson’s ratio and 
demonstrated 100% uniaxial extension with potential for span- 
morphing UAV wingtip[7]. These studies show that cellular structures 
covered with flexible external skin have a promising application for 
morphing skins, stimulating extensive research on cellular supportive 
structures. 

Cellular structures exhibit light weight and remarkable mechanical 
properties related to the topology and geometric size of cells and have 

been widely investigated by combining theoretical, simulation, and 
experimental methods. Many research works on cellular structures with 
a positive, negative, or zero Poisson’s ratio value have been conducted 
[8–12]. Cellular structures with various topologies have been proposed, 
such as accordion cellular structure composed of elastic beams for one- 
dimensional deformation[13,14], star-shaped cells for two-dimensional 
shearing morphing[15–17], sandwich honeycomb composed of hexag-
onal components and thin plates[18,19], chiral honeycombs and anti- 
tetrachiral honeycombs[20–23], re-entrant honeycombs[24,25] and 
hybrid-honeycomb structures[26–29]. When suffering in-plane load in 
one direction, zero Poisson’s ratio honeycombs will neither shrink nor 
expand in the orthogonal direction. In addition, when these honeycombs 
bear out-of-plane bending loads, neither anticlastic curvature like pos-
itive Poisson’s ratio honeycombs nor synclastic curvature like negative 
Poisson’s ratio honeycombs will occur. These properties make honey-
combs with zero Poisson’s ratio more suitable for morphing wings 
[6,15,30]. However, the cellular structures cannot provide active 
morphing, so they need additional actuators to drive adaptive defor-
mation. Shape memory alloy (SMA) actuators, including wires and 
springs, are ideal candidates to actuate morphing wings for their high 
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energy density and large driving forces[31–34]. If stimulated by tem-
perature, SMA undergoes a phase transition and responds quickly to 
restore the original shape from the deformed state. By stimulating SMA 
actuators to contract along the chord direction, morphing wings are 
driven to deform. This deformation mechanism may require a larger size 
or a reasonable spatial layout of SMA actuators. A novel deformable 
structure called KinetiX constructed by rigid plates and elastic hinges 
was proposed. One of the combinations demonstrates the characteristics 
of large bending deformation under in-plane load[35]. Although the 
flexible hinges allow KinetiX to exhibit large bending deformation, the 
deformed bending state cannot be fixed to bear aerodynamic loads, 
limiting the application in morphing wings. 

This project aims to design active morphing skin supported by 
cellular structures and actuating by SMA actuators to drive bending 
deformation for morphing camber wings. This work presents the first 
part: developing a novel cellular structure as a potential supportive core 
for flexible skin and analyzing the in-plane mechanical properties. The 
novel cellular structure is obtained by turning the cell wall over an angle 
to deviate from the plane perpendicular to the honeycomb. This design 
method maintains the geometric hexagonal configuration and makes 
cell walls generate out-of-plane internal forces to induce 3D deformation 
when uniaxial tension is applied. The designed honeycomb is a planar 
structure that exhibits local three-dimensional deformation and shows 
zero Poisson’s ratio when subjected to in-plane tensile load. Theoretical 
analysis is developed to obtain the in-plane tensile elastic modulus and 
equivalent shear modulus of the 3D deformed honeycomb structure. The 
out-of-plane displacement under stretching is calculated. The rationality 
of the analytic results is verified by finite element (FE) simulation and 
experimental tests. The effects of geometrical parameters on the in-plane 
stiffness are also discussed by theoretical analysis and FE simulation. 

2. Models and experimental tests 

2.1. Geometry of the designed honeycomb structure 

Fig. 1a shows the geometric model of the designed 3D deformed 
honeycomb. It is evident that the honeycomb exhibits periodicity in both 
horizontal and vertical directions. A representative cell is selected for 
analysis, as shown in Fig. 1b, Fig. 1c. The following three parts can 
describe the representative cell: 1) the hexagonal inclined cell wall 
perpendicular to the honeycomb plane; 2) the hexagonal inclined cell 
wall with an angle to the honeycomb plane; 3) the horizontal cell wall 
connects both inclined walls. The unit cell exhibits symmetry in both 
horizontal and vertical directions. The lengths of the three cell walls 
described above are expressed by parameters βl, αl, and l, respectively. 
The thickness and depth of inclined and horizontal walls are represented 
by parameters t, λt, and b. They are expressed by t = ξl and b = ζl to 
obtain a non-dimensional description of the honeycomb unit cell. The 
parameter φ stands for the internal cell angle, while θ symbolizes the tilt 
angle between inclined walls and the plane perpendicular to the hon-
eycomb. The width of the unit cell is ηl, and the height is h =

2l[(α + β)cosφ + λξ]. When setting different parameters to construct the 
cell configurations, the following geometric constraints should be 
satisfied to avoid contacts or intersections between adjacent cell walls: 
⎧
⎪⎪⎨

⎪⎪⎩

ζtanθ <
1
2

η −
2ξ

cosφ
− 1 > {2αsinφ, 2βsinφ}max

(1)  

2.2. Theoretical model 

When applying tensile loads to the honeycomb along the x direction, 
the horizontal cell walls bear tensile loads without causing the defor-
mation of the inclined cell walls. Therefore, the honeycomb deformation 

Fig. 1. The geometric configuration of cellular structure with zero Poisson’s ratio: (a) 3D model, (b) representative cell with geometric representations, (c) front 
view, bottom view and section view. 
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in the y direction will not occur when loaded in the x direction. This 
feature can be summarized as the in-plane Poisson’s ratio νxy of the 3D 
deformed honeycomb structure is zero. When applying tensile loads to 
the honeycomb along the y direction, the inclined cell walls bend and 
cause global elongation deformation of the honeycomb. In addition, the 
honeycomb structure is symmetrical, and the elongation or shortening 
of the horizontal cell walls will not occur without external force in the x 
direction, so νyx is also considered zero through analysis. 

Castigliano’s second theorem is adopted in this work to derivate the 
equivalent elastic modulus among horizontal (x) and vertical (y) di-
rections. Here assumes that the honeycomb cell walls undergo flexural 
and axial deformation during the theoretical calculation while ignoring 
the relatively small shear and torsion deformation. Castigliano’s second 
theorem is described as follows: the strain energy U of the elastic system 
is expressed as a function of any applied force Pi, and the partial de-
rivative with respect to Pi of the strain energy U is equal to the 
displacement δi along the loading direction of Pi: 

∂U
∂Pi

= δi (2)  

2.2.1. Equivalent tensile modulus in the x direction 
The loading scheme of the unit cell for calculating the equivalent 

modulus in the x direction is shown in Fig. 2. The slight out-of-plane 
deformation of the inclined cell walls caused by in-plane forces is not 
considered when loading in the x direction. The deformation of the 
hexagonal inclined cell walls is ignored, for it hardly affects the overall 
deformation of the honeycomb along the loading direction. Therefore, 
the equivalent tensile modulus in the x direction can be solved by 
finding the homogenization stress and strain. Due to the horizontal and 
vertical symmetry of the cell, the stress of a quarter cell is analyzed. The 
displacement of the horizontal cell wall with a rectangular cross-section 
under tension can be obtained as: 

δx =
Fη

2Esλξζl
(3) 

Where Es is the elastic modulus of the raw material of the 3D 
deformed honeycomb, the homogenization strain and stress under 
horizontal tension are accessed as follows: 

εx = δx

/
ηl
2
=

F
Esλξζl2 (4)  

σx =
F

[(α + β)cosφ + λξ]ζl2 (5) 

The non-dimensional and homogenized equivalent Young’s modulus 

along the x direction equals the ratio of stress divided by strain: 

Ex

Es
=

λξ
[(α + β)cosφ + λξ]

(6)  

2.2.2. Equivalent tensile modulus in the y direction 
Fig. 3 shows the loading scheme for analyzing elastic modulus along 

the y direction of the designed 3D deformed honeycomb structure. The 
geometric shape of the honeycomb unit cell is horizontally symmetrical, 
vertically symmetrical, and centrally symmetrical. When the uniform 
load is applied in the y direction, it mainly acts on the oblique cell wall. 
The deformation of the horizontal cell wall is not considered. Fig. 3b 
shows a schematic diagram of the unit cell subjected to the uniform 
tensile load in the y direction and the force analysis of a quarter cell, 
where the Cartesian coordinate system x-y-z is the global coordinate 
system, and x1-y-z1 is the local coordinate system. The model is divided 
into two parts, the inclined hexagonal cell wall with an angle from the 
perpendicular plane (plane yz) above the horizontal wall and the hex-
agonal oblique cell wall perpendicular to the surface below. 

In this work, the counter-clockwise direction is defined as the posi-
tive direction of the bending moment, and the tensile direction of the 
cell wall is recognized as the positive direction of axial force. It is worth 
noting that Mx, Mz, Mx1, and Mz1 are all unknown bending moments 
related to the force F. Due to the horizontal symmetry of the honeycomb 
cell, the upper and lower surfaces of the quarter cell structure have no 
angular displacement around the x and z directions. Therefore, the 
following boundary conditions can be obtained: 

∂Udown

∂Mx
= 0,

∂Udown

∂Mz
= 0,

∂Uup

∂Mx1
= 0 and

∂Uup

∂Mz1
= 0 (7) 

The simplified walls are subjected to in-plane flexural internal force 
Mz(s), out-of-plane bending internal force Mx(s) and axial load FN(s). The 
elastic strain energy U is expressed by: 

U =

∫
F2

N(s)
2EsA

ds+
∫ M2

z (s)
2EsIz

ds+
∫

M2
x (s)

2EsIx
ds (8) 

Where Es is Young’s modulus of the substrate material, and A, Ix and 
Iz are the cross-sectional area of the inclined cantilever beam, the section 
moment of inertia on the x-axis and the section moment of inertia on the 
z-axis, respectively. According to the equilibrium equation of the hon-
eycomb cell wall, the internal force and moment distribution at any 
section of the upper inclined cell wall can be described as follows: 

FN = F, Mx1(s) = − Mx1 + Fssinφsinθ,
Mz1(s) = − Mz1 + Fssinφcosθ, 0⩽s⩽αl (9) 

The cross-sectional shape of the upper inclined cell wall is a paral-
lelogram, and the cross-sectional characteristics are solved: 

A1 = ξζl2, Ix1 =
l4ξ

(
2ξ3sin32θ − 3ξ2ζsin22θ + 4ζ3)

48cos2θ
and Iz1 =

ξ3ζcos2θ
12

l4

(10) 

For the inclined cell wall with a rectangular cross-section below the 
horizontal cell wall, the internal force distribution and the section 
properties are: 

FN = Fcosφ, Mx(s) = − Mx, Mz(s) = − Fssinφ − Mz, 0⩽s⩽βl (11)  

A = ξζl2, Ix =
ξζ3

12
l4 and Iz =

ξ3ζ
12

l4 (12) 

Next, the expression of strain energy U can be solved by substituting 
Eq.(9)-(12) into Eq.(8): 

Fig. 2. Theoretical calculation model of tensile modulus in x direction.  
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U =
F2(α + β)cos2φ

2Esξζl
+

2β
(
F2β2l2sin2φ + 3FMzβlsinφ + 3M2

z

)

Esξ3ζl3

+
6M2

x β
Esξζ3l3 +

8αcos2θ
(
F2α2l2sin2φsin2θ − 3FαlMx1sinφsinθ + 3M2

x1

)

Esξl3( 2ξ3sin32θ − 3ξ2ζsin22θ + 4ζ3)

+
6M2

z1α + 2F2α3l2cos2θsin2φ − 6FMz1α2lcosθsinφ
Esξ3ζl3cos2θ

(13) 

Combining the previous solution results and the boundary conditions 
of Eq.(7) to find the relationship between the unknown bending moment 
and F: 

Mx1 =
Fαlsinφsinθ

2
, Mz1 =

Fαlsinφcosθ
2

, Mx = 0, Mz = −
Fβlsinφ

2
(14) 

Integrating Eq.(2), it is natural to acquire the vertical displacement 
of the free top surface under uniform tensile force in the y direction: 

δy =
F(α + β)cos2φ

Eslξζ
+

F
(
α3 + β3)sin2φ

Eslξ3ζ
+

Fα3ζsin2φ
Eslξρ

ρ = 4ξ3cosθsinθ − 3ξ2ζ +
ζ3

cos2θsin2θ

(15) 

Then the homogenization stress and strain along the y direction are 
denoted as follows: 

⎧
⎪⎨

⎪⎩

σy =
2F
ζηl2

εy =
δy

l[(α + β)cosφ + λξ]

(16) 

Finally, the expression of the homogenized non-dimensional equiv-
alent Young’s modulus in the y direction is obtained from dividing the 
stress by the strain: 

Ey

Es
=

2ξ[(α + β)cosφ + λξ]/η

(α + β)cos2φ +
(α3+β3)sin2φ

ξ2 + α3ζsin2φ
ρ

(17)  

2.2.3. In-plane shear modulus 
A uniform distributed shear stress is applied to the honeycomb sur-

face to investigate the shear modulus of the 3D deformed cellular 
structure, as shown in Fig. 4. The honeycomb structure exhibits anti- 
symmetric under pure shear stress. Therefore, only anti-symmetric 
shear force exists in the symmetry plane, and symmetrical internal 
forces such as axial force and bending moment are zero. In this section, 
the deformation of a quarter model of the representative cell is analyzed 
similarly, regardless of the bending moment Mx caused by the horizontal 
cell wall and the torque T in the inclined cell wall. It is easy to get the 

Fig. 3. Analysis models with the loading scheme along the y direction: (a) unit cell; (b)1/4 cell.  

Fig. 4. Unit cell bearing in-plane shear stress.  

T. Li et al.                                                                                                                                                                                                                                        



Composite Structures 305 (2023) 116482

5

equilibrium equation expressed by force F and shear stress τ through the 
force analysis of the cell: 

F[λξ + (α + β)cosφ ] = Fyη, F =
τηζl2

2
(18) 

Due to the bisymmetry of the model, no horizontal relative 
displacement occurs between the two points AB, nor does CD. The shear 
deformation of the semi-model under the applied uniform shear stress 
can be simplified into two parts: the relative horizontal displacement of 
points AC and the relative vertical displacement between points AB. 
Therefore, the equivalent shear strain can be given by the ratio of 
displacement to the geometric length of the model: 

γ =
uxA − uxC

[λξ + (α + β)cosφ ]l
+

2uyA

ηl
(19) 

Where uxA and uxC are the horizontal displacements of the two in-
clined walls under shear stress, respectively. The internal force distri-
bution of inclined wall above the horizontal cell wall in a local 
coordinate system bearing shear force F and a unit force along the 
positive x is as follows: 

FN = − Fsinφ, Mx1(s) = Fscosφsinθ,
Mz1(s) = Fscosφcosθ, 0⩽s⩽αl (20)  

FN = − sinφ, Mx1(s) = scosφsinθ, Mz1(s) = scosφcosθ, 0⩽s⩽αl (21)  

F’
N = cosφ,M’

z1(s) = ssinφsinθ,M’
z1(s) = ssinφcosθ, 0 ≤ s ≤ αl (22) 

The horizontal displacement and vertical of the top end of the in-
clined rod are calculated by Mohr integral: 

u =

∫ L

0

FN(s)FN(s)
EA

ds+
∫ L

0

Mx(s)Mx(s)
EIx

ds+
∫ L

0

Mz(s)Mz(s)
EIz

ds (23)  

uxA =
Fαsin2φ

Eslξζ
+

4Fα3cos2φ
Eslξ3ζ

+
4Fα3cos2φ

Eslξρ (24)  

uyA =
4Fα3sinφcosφ

Eslξ3ζ
−

Fαsinφcosφ
Eslξζ

+
4Fα3sinφcosφ

Eslξρ (25) 

The horizontal displacement of the end of the inclined rod below the 
horizontal cell wall can be written by repeating the above steps as 
follows: 

uxC = −
Fβsin2φ

Eslξζ
−

4Fβ3cos2φ
Eslξ3ζ

(26) 

Combing with Eq.(18) (19) and G = τ/γ, the non-dimensional 
equivalent homogenized shear modulus G/Es can be obtained. 

2.2.4. Out-of-plane deformation 
The proposed cellular structure can activate out-of-plane deforma-

tion under tensile load, which is quantitatively analyzed below. It is 
worth mentioning that a spatial geometric relationship exists and makes 
the given tilt angle of the inclined cell wall differ from the angle in the 
theoretical analysis. When analyzing the equivalent modulus, this dif-
ference has little effect on the equivalent modulus and is therefore 
ignored. However, the angle difference cannot be overlooked when 
analyzing the out-of-plane deformation, so the relationship between the 
two angles needs to be determined first. The angle between the hypot-
enuse on the plane perpendicular to the inclined wall and z axis is 
defined as ψ . From the spatial geometric relationship, the following 
expression can be obtained: 

tanθ
cosφ

− tanψ − tanφ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

cos2θ
−

1
cos2ψ

√

= 0 (27) 

According to the solution process in section 3.3, the internal force 
distribution of the inclined hexagonal cell wall that has an angle with the 

honeycomb plane is: 

FN = Fcosφ, Mx1(s) = F
(

s −
αl
2

)

sinφsinψ,

Mz1(s) = F
(

s −
αl
2

)

sinφcosψ, 0⩽s⩽αl
(28) 

Obtain out-of-plane deformation through coordinate transformation: 

uz = uz1cosψ + ux1sinψ (29) 

Where ux1 and uz1 represent the displacement along the x1 and z1 axis 
under tensile load F along the y axis in the local coordinate system x1-y- 
z1, respectively, which are analyzed by the unit force method in the 
following text. The out-of-plane deformation of the honeycomb unit cell 
along axis z1 caused by stretching in the y direction can be obtained: 

uz1 =

∫ αl

0

F(s − αl/2)sinφsinψ
EsIx1

⋅( − s)ds

= −
Fα3sinφsinψ

Esl
(

4ξ4cosψsin3ψ − 3ξ3ζsin2ψ +
ξζ3

cos2ψ

)
(30) 

Similarly, applying a unit force along the x1 direction to the free end 
of the inclined cell wall to obtain: 

ux1 =
Fα3sinφ

Eslξ3ζcosψ
(31) 

Following Eq.(29) to obtain out-of-plane deformation under uni-
axially stretched along y direction: 

uz =
Fα3sinφsinψ

(
ω2 − ξ2ζcos4ψ − ω1 + ζ3)

Eslξ3ζcosψ
(
ω2 − ω1 + ζ3)

ω1 = 3ξ2ζcos2ψsin2ψ

ω2 = 4ξ3cos3ψsin3ψ

(32)  

2.3. Finite element simulation 

In this work, commercial finite element software Abaqus (2016, 
Abaqus Inc.) was used to analyze the numerical homogenized in-plane 
modulus. The full-scale representative honeycomb with 4 x 4 cells, as 
shown in Fig. 5, was established to calculate the numerical equivalent 
tensile modulus along the x and y directions and the equivalent shear 
modulus. The 3D models were developed using linear hexahedral 
element (C3D8R) defined by 8 nodes and six degrees of freedom at each 
node. After a convergence test, the minimum global mesh density was 
0.75 mm, the element size of wall thickness was t/2, and the number of 
elements obtained by this setup was about 30 thousand. The boundary 
conditions of the three categories are listed in Table 1[18]. It is worth 
noting that the symbols ε0 and γ0 here represent the imposed tensile and 
shear strain, respectively, and Li (i = x or y) represents the total length of 
the full-scale honeycomb structure along i direction. The displacement 
constraint was applied to the master node built at the center of the 
loading surface coupled with all nodes. The homogenized stresses were 
calculated by averaging the reaction forces of the master node over the 
area of the loading surface. Then the equivalent moduli were obtained as 
the ratios of the averaged stresses to the imposed strains. 

2.4. Honeycomb preparation and experiment 

All specimens of the 3D deformed honeycomb were prepared by a 
rapid prototyping 3D printer (ANICUBIC mega) based on the fusion 
deposition molding (FDM) technique with polylactic acid (PLA) plastic. 
The 3D printer has a 0.4 mm diameter brass nozzle, using PLA filaments 
with 1.75 mm diameter to fabricate specimens. Depending on the 3D 
printer and the material properties of PLA, the platform temperature and 
extrusion nozzle temperature were set to 60 ◦C and 200 ◦C, respectively, 

T. Li et al.                                                                                                                                                                                                                                        
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to achieve good adhesion and avoid warpage. All honeycombs were 
printed with a nozzle speed of 60 mm/s in a rectilinear pattern and 0.2 
mm layer thickness with 100% infill. For obtaining the mechanical 
elastic constants of the core material, quasi-static tension tests have been 
conducted following the ASTM standard (ASTM D638), using Zwick 010 
test machine with dumbbell-shaped samples. Similarly, the dumbbell- 
shaped specimens were prepared by the same 3D printer with constant 
parameters. The elastic properties of PLA raw material achieved by 
tensile tests are Es = 2069 MPa, νs = 0.35, and Gs = 766 MPa, and they 
were used as the equivalent isotropic mechanical constants in the 
theoretical calculation and FE simulation. 

The in-plane equivalent elastic constants of the 3D deformed cellular 
structures were tested in this section. Homogenized elastic modulus Ex, 
Ey, and equivalent shear modulus Gyx were characterized by Zwick Z010 
tensile machine with 1 kN load cell. Displacement controlled the loading 
rate and remained constant, with a stretching rate of 2 mm/min along 
the x direction. The loading rate was 5 mm/min for stretching along the 
y direction and applying shear force. Loads were output by force 
transducers, and position changes of machine crosshead were regarded 
as displacements. Then stress–strain curves were converted by 

load–displacement curves to fit the in-plane elastic constant. The ho-
mogenized elastic moduli of the 3D deformed honeycomb structures 
with different cell wall thicknesses were tested. The geometrical unit cell 
parameters of the 3D deformed honeycomb samples used in the in-plane 
tensile and shear test are set as follows: l = 10 mm, α = β = 1, λ = 1, η =
3, ζ = 0.4, φ = 30◦, θ = 15◦, ξ = 0.12, 0.17, 0.22. The overall dimensions 
of the honeycomb samples are shown in Table 2. 

When testing the shear modulus Gyx of the 3D deformed cellular 
structure, different from an off-axial test along 45◦ following the ASTM 
D3518/ D3518M-13 standard[18], this work performed the shear test by 
the designed L-shaped clamps that transform loading direction[36]. Due 
to the angle between inclined cell walls and the honeycomb surface, the 
3D deformed honeycomb was no longer uniform along the z direction, 
leading to inconsistent equivalent shear modulus of the selected samples 
with different dimensions under off-axial 45◦ tension. Fig. 6 shows the L- 
shaped clamps capable of measuring the force–displacement response in 
the deformed direction and eliminating the influence of the honeycomb 
samples being wider than the grips. The shear modulus can be tested by 
rotating the clamps by 90◦. 

The local out-of-plane deformation of the honeycomb specimen 
induced by in-plane uniaxial tension was measured by a laser 
displacement sensor (Panasonic HG-C1050) with a range of 30 mm and 
an accuracy of 30 μm. Fix the laser displacement sensor on the slider for 
unrestricted movement in the frame constructed with aluminum 

Fig. 5. FE simulation model of in-plane tensile modulus.  

Table 1 
The setting of boundary conditions for simulation.  

Surface Ex Ey Gyx 

A Free ui = 0 (i = 1⋅⋅⋅6, i ∕= 2)
u2 = ε0Ly 

ui = 0 (i = 2⋅⋅⋅6)
u1 = γ0Ly 

B Free ui = 0 (i = 1⋅⋅⋅6) ui = 0 (i = 1⋅⋅⋅6)
C ui = 0 (i = 1⋅⋅⋅6) Free Anti-symmetry 
D u1 = ε0Lx

ui = 0 (i = 2⋅⋅⋅6)
Free Anti-symmetry 

E Free Free Free 
F Free Free Free  

Table 2 
Dimension of specimens for tensile and shear tests.  

Thickness(t)/mm 1.2 1.7 2.2 

Stretched along x 120 × 77 × 4 
mm3 

120 × 75 × 4 
mm3 

120 × 73 × 4 
mm3 

Stretched along y or 
shear 

150 × 90 × 4 
mm3 

153 × 90 × 4 
mm3 

156 × 90 × 4 
mm3  
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profiles. Before testing the deformation along the z direction, the slider 
movement plane was calibrated to be parallel to the tensile specimen. 
The experiments tested three samples with geometric characteristics as 
follows: l = 10 mm, α = β = 1, λ = 1, η = 3, ζ = 0.2, φ = 30◦, θ = 30◦, ξ =
0.12. The step loading method was used to stretch the samples along the 
y direction at a rate of 1 mm/min until the load increased to 20 N. When 
load increased at each interval by 5 N, the upward stretching was 
stopped and maintained for 180 s to record the deformation read by the 
laser sensor. As shown in Fig. 7, the relative displacement between 
points A and B was recognized as the out-of-plane deformation. 

3. Results and discussions 

Table 3 lists the results of theoretical calculation, experimental tests, 
and FE simulation with different cell walls’ thicknesses, as well as the 
comparison of the three. For the homogenized tensile elastic modulus Ex, 
there is a 2.78% discrepancy between the theoretical and the experi-
mental result when ξ = 0.22, which is 2.11% lower than the predicted 
simulated value, and the latter being 0.66% stiffer than the FE simula-
tions. As ξ decreases, the discrepancy between the analytical results and 
experimental tests increases, and the deviation between the theoretical 
and predicted simulation values also grows. In contrast, the gap between 
theoretical analysis and the simulation value narrows. As the thickness 
of the cell wall decreases, the deviation of the tested elastic constants 
rises gradually. The theoretical homogenized modulus Ey shows a lower 
stiffness at ξ = 0.12, which differs from the experimental value and FE 
simulation with an 11.71% and 5.08% gap, respectively. With the 
decrease of thickness, the error of theory and experiment or simulation 
increases gradually. For the equivalent shear modulus Gyx, the 

theoretical value is the maximum among the three results under 
different cell wall thicknesses. With decreasing ξ, the simulation results 
gradually approach the theoretical values, and the deviation is reduced 
from 8.36% at ξ = 0.22 to 1.85% at ξ = 0.12. Compared to the simu-
lation results, the experimental shear moduli are from bigger to smaller 
with reduced cell wall thickness. 

Uncertainties affecting the results among the three sets of data can be 
ascribed to a variety of reasons. The samples manufactured using the 
FDM technics have internal porosity and layerwise deposition, so the 
honeycomb material does not completely meet homogeneous and 
isotropic assumptions. When analyzing the homogenized tensile elastic 
modulus along the x direction, the inclined cell wall’s contribution to 
the deformation of the honeycomb is neglected, causing a slight 
distinction between theoretical and FE results. In addition, the defor-
mation of the horizontal cell wall under vertical tensile load increases 
with the decline of the cell thickness, and the assumption of ignoring the 
deformation of the horizontal cell wall leads to increased deviation. 

It can be obtained from Table 3 that theoretical, experimental, and 
FE results of in-plane shear modulus with the diverse thicknesses of unit 
cells are relatively close to each other, the differences of which are 
within 10%. On the one hand, the deformation of the inclined wall 
caused by torque is ignored in the theoretical analysis, which is con-
tained within the FE calculation procedure. On the other hand, the 
theoretical model describes the deformation of a unit cell with periodic 
boundary conditions in a pure shear state. However, experimental tests 
and FE simulation use uniaxial stretch to simulate the shear deformation 
and set another two surfaces free. In addition, the number of cells is also 
the cause of the slight difference between the three studied results. 

The variation of Poisson’s ratio νyx against strain for honeycombs 
with different wall thicknesses was obtained by FE simulation during 
stretching in the y-direction, as shown in Fig. 8. The Poisson’s ratio is a 
small non-zero value. As the tensile strain increases further, the in-plane 
Poisson’s ratio of the honeycomb structure gradually stabilizes to 
− 0.007. The small non-zero value of Poisson’s ratio can be explained by 
the non-uniform tensile stress of the horizontal cell walls. The internal 
horizontal cell walls inside the two inclined walls and the outer parts 
produce opposite bending deformation. The ones on the compression 
side are shortened, and the others on the tension side are elongated. The 
increasing wall thickness brings more bending resistance and more 
pronounced non-uniformity characteristics. The combined factors lead 
to a small non-zero deformation in the transverse direction. 

Fig. 9 shows the comparison of the three results of out-of-plane 
deformation. Errors will inevitably occur in the recorded data during 
the test, so the deformation data of each point is recorded five times then 
the average value is taken. The bar chart shows that the experimental 
out-of-plane deformations of the three specimens are relatively consis-
tent and are not much different from the theoretical results indicated by 
the square dot and FE simulation results shown by the triangle dot. 

Fig. 6. Experimental setup for in-plane elastic constants: (a)stretched along x direction, (b) stretched along y direction, (c) shear test.  

Fig. 7. Out-of-plane deformation caused by in-plane stretching: (a) original 
shape, (b) corrugated shape. 
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Therefore, theoretical analysis can be considered reasonable. Despite 
not the expected continuous arc shape, the generated local out-of-plane 
deformation cannot be ignored. In our future work, the material and 
topology of honeycombs will be designed to realize continuous bending 
deformation. Furthermore, the characteristic that in-plane loading ac-
tuates continuous bending deformation will be systematically investi-
gated and demonstrated. 

4. Parametric analysis 

This section performs a parametric analysis of the elastic properties 
of the 3D deformed cellular structure to determine the dependence of 
the geometric parameters based on the derived equivalent modulus 
expression and FE simulation. The changes versus cell angle under 
diverse parameters of the non-dimensional modulus along the x direc-
tion of the 3D deformed honeycomb structure are plotted in Figs. 10-12, 
where the analyzed and simulation results are represented by solid lines 
and scattered points, respectively. As shown in Figs. 10-12, the theo-
retical results are in good agreement with the simulation results. As the 
angle φ increases, the simulation results are higher than the theoretical 
values at some points. Especially in Fig. 10, the difference between the 
two becomes more evident with the growing cell wall thickness. This 
phenomenon occurs due to the ignorance of the forces between inclined 
and horizontal cell walls when theoretically deriving the equivalent 
tensile modulus Ex. The simplification brings a larger displacement than 
the real one under tensile loads. Thus, theoretical values are smaller 
than ideal simulation results. In addition, the area where the inclined 
cell wall and the horizontal cell wall intersect becomes bigger as the 
angle φ and the parameter ξ increase, so ignoring the force influence 
leads to a more evident deviation between the simulation and theoret-
ical values. 

When applying a tensile load along the x direction, the horizontal 
cell walls significantly carry the load. Therefore, the cross-sectional 
parameters ξ and λ of the horizontal cell wall are the main factors 
affecting Ex/Es. The 3D morphing structure is stiffer along the x direction 
with the increase in the cross-sectional area of the horizontal cell wall. 
When the parameter ξ increases from 0.1 to 0.2, Ex/Es increases by 93%. 
While the parameter λ increases from 1 to 2, Ex/Es increases by 81%. In 

Table 3 
Comparison of in-plane elastic constants of the theoretical, experimental and FE simulation results.  

ξ Equivalent modulus (MPa) Theoretical Experimental FEM Error (T-E) Error (T-F) Error (E-F) 

0.22 Ex  233.181 239.674 ± 2.966  238.098  − 2.78%  − 2.11%  0.66% 
Ey  49.64 49.965 ± 2.490  51.321  − 0.65%  − 3.39%  − 2.71% 
Gyx  3.431 3.233 ± 0.065  3.144  5.77%  8.36%  2.75% 

0.17 Ex  184.922 191.469 ± 0.702  187.528  − 3.54%  − 1.41%  2.06% 
Ey  23.596 25.226 ± 0.598  24.647  − 6.91%  − 4.45%  2.30% 
Gyx  1.561 1.461 ± 0.042  1.459  6.41%  6.53%  0.14% 

0.12 Ex  134.057 141.648 ± 1.826  135.063  − 5.66%  − 0.75%  4.65% 
Ey  8.44 9.428 ± 0.140  8.869  − 11.71%  − 5.08%  5.93% 
Gyx  0.541 0.514 ± 0.003  0.531  4.99%  1.85%  − 3.31%  

yx

Fig. 8. The Poisson’s ratio νyx against strain curve.  

Fig. 9. Comparison of out-of-plane deformation of the theoretical, experi-
mental and FE simulation results. 

E x
/E
s

l

Fig. 10. Non-dimensional modulus Ex/Es vary with the cell angles for 
different ξ. 
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addition, the ratio of the length of the inclined cell wall to the horizontal 
cell wall represented by α and β also affects the equivalent modulus. 
From theoretical analysis, it can be considered that the effects of the two 
parameters are equal. Even if α and β take different values will not affect 
the stiffness as long as the sum of the two parameters remains un-
changed. Although the morphology of the unit cell is altered by the 
length of the inclined cell wall, the effective cross-sectional area along 
the x direction is not changed, so the equivalent modulus remains 
consistent. Comparing the two curves with α = 0 and α = 1 in Fig. 12, the 
Ex/Es of the latter drops significantly compared to the former. In the case 
of α = 0, there is no inclined cell wall with a tilting angle, causing two 
adjacent horizontal cell walls to connect directly, which increases the 
stress cross-sectional area and stiffness. 

Figs. 13-15 illustrate the relationship between the in-plane non- 
dimensional equivalent elastic modulus Ey/Es and the cell angle φ of the 
3D deformed honeycomb structure along the y direction under different 
cell geometric parameters. Similarly, the solid lines in the figure 
represent the theoretical results, and the scattered points denote the 
simulation results. The simulation result differs from the theoretical 
value at the cell angle equaling 0 due to the assumption that the hori-
zontal cell wall is not deformed in the theoretical model analysis; in 
other words, the stiffness of the horizontal cell wall is considered close to 

Fig. 11. Non-dimensional modulus Ex/Es versus the cell angles for different λ.  

Fig. 12. Non-dimensional modulus Ex/Es change with the cell angle for 
different α. 

ll

E y
/E
s

Fig. 13. Non-dimensional modulus Ey/Es vary with the cell angles for 
different ξ. 

l

E y
/E
s

Fig. 14. Non-dimensional modulus Ey/Es versus the cell angles for different λ.  

l

E y
/E
s

Fig. 15. Non-dimensional modulus Ey/Es vary with the cell angle for 
different α. 
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infinity. However, the bending deformation of the horizontal cell wall is 
considered in the simulation calculation, resulting in the simulation 
result being smaller than the theoretical value. As the cell angle grad-
ually increases, the influence caused by the deformation of the hori-
zontal cell wall declines, and the theoretical and simulation results are in 
good agreement. For example, when setting the parameter l = 10 mm, α 
= 1, β = 1, η = 3, λ = 1, θ = 15◦, ζ = 0.4, ξ = 0.2, φ = 30◦, the difference 
between theoretical analysis and FE calculation is 4.2%. The homoge-
nized equivalent modulus along the y direction shows a downward trend 
as the angle increases under the same parameters, such as when ξ = 0.2, 
λ = 1, α = 1, Ey/Es drops sharply as the angle φ increases from 0 to 15◦ by 
64%. It can be seen from Fig. 13 that an increasing thickness of cell wall 
ξ leads to an enlargement of the in-plane non-dimensional equivalent 
Young’s modulus Ey/Es, which increases by 678% when ξ varies from 0.1 
to 0.2 for a cell angle of 30◦. Fig. 14 describes the effect of the parameter 
λ on Ey/Es. It can be obtained that the thickness of the horizontal cell 
wall has little impact on the elastic modulus in the y direction. From the 
previous analysis, the parameter λ significantly influences the tensile 
equivalent modulus along the x direction, indicating that λ is a param-
eter that affects the anisotropy of the honeycomb structure. Fig. 15 
shows the theoretical prediction and FE simulation calculation of the 
non-dimensional modulus Ey/Es versus the cell angles with diverse 
parameter α. The difference caused by the parameter λ is not apparent 
from the overall perspective. It is worth mentioning that α = 0 means 
that all inclined cell walls are perpendicular to the honeycomb surface, 
while α = 1, β = 1 indicates that two types of inclined cell walls exist 
with the same length. The two curves are very close, indirectly showing 
that angle θ has little effect on the equivalent modulus along the y di-
rection. A consistent result can be achieved by setting appropriate pa-
rameters corresponding to the geometric configurations published in 
reference[18]. 

Figs. 16-17 depict the variation of non-dimensional shear modulus 
Gyx/Es with different geometric parameters. Although some differences 
exist at both ends of the curve under different conditions, the analytical 
solution is consistent with the trend of the homogenization simulation 
results. Fig. 16 shows the effect of cell wall thickness on shear modulus. 
As the inner angle increases, the in-plane shear modulus first falls and 
then goes up, and the growing cell wall thickness significantly increases 
the shear modulus. Fig. 17 illustrates the change of the in-plane shear 
modulus with parameter α, the ratio of the inclined cell wall at an angle 
with the honeycomb plane to the horizontal cell wall. It can be seen that 
shear modulus at α = 0 is more significant than that at α = 1, owning to 
the thickness of the horizontal cell wall of the former is twice that of the 
latter. In some cases, the shear modulus can be increased by adjusting 
the length of the cell wall and the cell inner angle. There are some dif-
ferences between the analytical results and the FE simulation results 
caused by ignoring the shear force, the deformation of the horizontal cell 
wall, and the torque in the inclined cell wall during the theoretical 
analysis. 

5. Conclusions 

In this work, a novel cellular structure is designed and investigated, 
whose inclined cell walls are tilted to deviate from the original vertical 
plane. The designed honeycomb structure exhibits local out-of-plane 
deformation motivated by the in-plane tensile load. The introduced 
tilt angle influences the mechanical properties of the honeycomb 
structure with an out-of-plane internal force, which is not involved in 
the previous honeycomb in-plane mechanics analysis. The in-plane 
elastic performances of the proposed cellular structure are theoreti-
cally analyzed, including the equivalent modulus along with both hor-
izontal and vertical directions and the equivalent shear modulus. The FE 
models are established to verify the rationality of the theoretical anal-
ysis. A set of experimental tests are carried out to validate the analytical 
and FE models. The three obtained results are generally in good agree-
ment with each other. Furthermore, the theoretical prediction and 

simulation methods are used to analyze the impact of cell parameters on 
elastic properties, showing that it is possible to acquire a wide range of 
mechanical performance for diverse applications by controlling the va-
riety of the unit cell geometric parameters. 
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Fig. 17. Non-dimensional modulus Gyx/Es vary with the cell angle for 
different α. 
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