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A B S T R A C T   

Shape memory polymer composites (SMPCs) are gradually being used in space deployable structures due to their 
unique shape memory properties and variable stiffness characteristics. Currently, the damage behavior of SMPC 
has not been systematically investigated, which affects its structural design and application. In this study, the 
damage behavior analysis of unidirectional fiber-reinforced SMPCs was investigated. The buckling deformation 
and damage modes of SMPC were analyzed theoretically. The strain energy of the matrix cracking and fiber 
fracture damage system was developed considering the compressive strain of the matrix. Additionally, the 
analytical expressions of the key parameters during bending were determined and the law of evolution was 
revealed. The damage mode analysis showed that decreasing fiber volume content and increasing thickness were 
more likely to result in matrix cracking damage. The fiber fracture would occur in the stretching region if the 
fiber volume content was less than a certain value. Finally, the experiment was performed to demonstrate the 
validity of the theoretical method. This work is significant for the design and optimization of the SMPC-based 
structure.   

1. Introduction 

Shape memory polymers (SMPs) are a kind of smart material that can 
realize the transformation between permanent shape and temporary 
shape upon exposure to an external stimulus such as thermal, magnetic 
field, electrical and light, etc [1–6]. When the external temperature is 
lower than the glass transition temperature (Tg), thermo-responsive 
SMPs are in the glassy state [7–9]. When the temperature rises above 
Tg, it transits into the rubbery state, and its modulus is hundreds of times 
lower than that of the glassy state [10–15]. It is worth noting that the 
mechanical properties such as modulus, strength, and recovery moment 
of SMPs can be greatly improved by introducing fibers [16–19]. For the 
unidirectional fiber-reinforced shape memory polymer composites 
(SMPCs), when the shear modulus of the matrix is not enough to resist 
the transverse deformation of the fiber during bending, the fiber will 
buckle [20,21]. 

Fiber-reinforced SMPCs can be applied as space deployable struc-
tures due to their excellent mechanical properties, light weight, high 
packing ratio and controllable deformation [22–24]. Some research has 
been conducted on the buckling deformation fiber-reinforced SMPCs. 

Campbell et al. [25,26] studied carbon fiber-reinforced shape memory 
epoxy, and observed the buckling deformation and damage mode by an 
electron microscope. Lan et al. [27,28] considered the strain energy in 
the compressing and non-buckling region and further studied the post- 
buckling behavior of SMPC. Some scholars also proposed a new micro-
buckling solution to study the deformation of SMPC [29,30]. Xiong et al. 
[31] theoretically studied the in-plane and out-of-plane buckling of 
fiber, and found that in-plane buckling produces the lower energy 
needed for SMPC. Gall et al. [32] observed the fiber micro-buckling 
morphology of the fiber cloth-reinforced SMPC by a microscope, and 
found that fiber fracture and matrix cracking are the main damage 
modes. Previous research concentrated on the buckling deformation 
behavior of SMPC and did not theoretically analyze the damage mech-
anism and damage behavior. This research provides a theoretical 
foundation for SMPC-based design by in-depth investigation of the 
damage mechanism and damage behavior. 

In this study, the damage behavior of unidirectional fiber-reinforced 
SMPC during bending was investigated. Firstly, the stress state analysis 
was used to determine damage modes under various parameters. Then, 
the strain energy and neutral surface position, critical buckling position, 
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critical damage position, half-wavelength, and amplitude of the matrix 
cracking damage and fiber fracture damage systems were developed 
considering the compressive strain of the matrix. Finally, a four-point 
bending test was used to validate the theoretical model. 

2. Theoretical analysis 

In this study, based on the micromechanics theory of composite 
materials, the ideal assumptions for damage analysis of unidirectional 
fiber-reinforced SMPC are as follows [33,34]: 

• Each fiber is distributed evenly in the matrix. There is no interfacial 
separation between the fiber and the matrix during bending, and the 
fiber and matrix follow the equal strain assumption; 

• When the fiber volume content is very low, the fiber is prone to 
tensile fracture in the stretching region. Since the elongation at break 
(Tg) of the matrix is much larger than that of the fiber, the load trans-
ferred to the matrix after the fiber breaks can be ignored. Therefore, it is 

assumed that the matrix will not degrade after fiber fracture; 
• When surface matrix cracking occurs in the compressing and 

buckling region, the fiber will lose its load and break (as shown in 
Fig. 3), and the compressive bearing capacity of the broken part will be 
greatly reduced or even ignored. Therefore, it is assumed that the fiber 
will not bear the load alone after matrix cracking. 

To provide a theoretical basis for the design and damage analysis of 
unidirectional fiber-reinforced SMPCs, a thermo-responsive shape 
memory epoxy (Tg = 150℃) was used as the matrix [22], which could 
achieve shape programming and shape recovery through temperature 
stimulation. The fiber selected in this study was a general low-modulus 
carbon fiber prepared by Guangwei Composite Materials Co., ltd. SMPC 
with low modulus and low fiber volume content was selected, allowing 
SMPC to achieve a high packaging ratio in engineering applications. The 
material parameters in Table 1 and the dimension parameters of SMPC 
in Table 2 would be adopted in the study unless otherwise specified. 

2.1. Fiber buckling deformation and damage modes 

Unidirectional fiber reinforced SMPC exhibits in-plane buckling 
when bending around a cylinder at Tg [27,28]. The buckling 
morphology of SMPC is shown in Fig. 1(a) and (b). Fig. 1(c) and (d) 
present detailed information about the deformation of fiber and matrix 
in the X-Y and Y-Z planes, respectively. When fiber buckling occurs, the 
cross-section of SMPC can be divided into three regions according to the 
stress state of the fiber: the compressing and buckling region (region I), 
the compressing and non-buckling region (region II) and the stretching 
region (region III) (as shown in Fig. 1(e)). zns and zcb represent the 
neutral surface and critical fiber buckling positions, respectively. 

The geometric shape of fiber buckling conforms to the sine/cosine 
wave rule, and the wave shape of the fiber can be given by the Eq. (1) 
[23]. 

y = Acos
(πx

λ

)
(1) 

Table 1 
Material parameters of the matrix and carbon fiber.  

Material Tensile 
modulus 
(MPa) 

Shear 
modulus 
(MPa) 

Poisson’s 
ratio 

Shear 
strength 
(MPa) 

Tensile 
strength 
(MPa) 

Matrix 
(Tg) 

32 11  0.45  7.8 8.2 

Fiber 45,000 –  0.3  – 1100  

Table 2 
Dimension parameters of SMPC.  

Material Thickness 
(mm) 

Width 
(mm) 

Length 
(mm) 

Fiber volume 
content (%) 

Fiber 
diameter 
(mm) 

SMPC 2 5 30 20 or 8  0.008  

Fig. 1. Buckling deformation diagram of SMPC: (a) X-Y view; (b) X-Z view; (c) Detailed information on the deformation of fiber and matrix in the X-Y plane; (e) 
Detailed information on the deformation of fiber and matrix in the X-Z plane. 
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Where λ and A are the half-wavelength and amplitude of fiber 
buckling, respectively. The amplitude of fiber can be described as fol-
lows [23]: 

A =
2λ
π

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
κ(zns − z)

√
(2) 

Where κ denotes the bending curvature. Substituting Eq. (2) into Eq. 
(1) yields the shape function of fiber buckling: 

y =
2λ
π

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
κ(zns − z)

√
cos
(πx

λ

)
(3) 

Based on the equal strain assumption of the fiber and matrix, the 
shear stress of the matrix in the X-Y plane is given by: 

τxy = Gmγxy =
Gmδy

δx
= − 2Gm

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
κ(zns − z)

√
sin
(πx

λ

)
(4) 

Where Gm is the shear modulus of the matrix. When z = 0, x = nλ/2 
(n = 0,1,2⋅⋅⋅⋅⋅⋅), the shear stress reaches the maximum. Because the 
amplitude of fiber buckling is different in the Z direction, there is shear 
deformation between two adjacent fibers in the Y-Z plane. The shear 
stress τyz can be expressed as follows: 

τyz = Gmγyz = Gm
δy
δz

=
Gmκλ

π
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
κ(zns − z)

√ cos
(πx

λ

)
(5) 

The deformation modes of the fiber during bending can be divided 
into buckling, compression and tension. The curvature of the fiber in the 
buckling region can be described as follows: 

κf =
|y′′|

(1 + y′ 2
)

3
2
=

| Aπ2

λ2 cos(πx
λ )|

[1 + A2π2

λ2 sin2(πx
λ )]

3
2

(6) 

When x = nλ and z = 0, the curvature of the fiber is the largest. At this 
time, the maximum buckling stress of the fiber can be expressed as 
follows: 

σf ,max = Ef εf ,max =
Ef dAπ2

2λ2 (7) 

Where Ef is the modulus of the fiber, and d is the diameter of the 
fiber. In the non-buckling region, the tensile/compressive stress of the 
fiber is: 

σfxx = Ef εxx = Ef κ(z − zns) (8) 

When z = t (t is the thickness), the tensile stress of the fiber reaches 
the maximum: 

σfxx,max = Ef κ(t − zns) (9) 

The neutral surface position (zns), critical buckling position (zcb) and 
half-wavelength (λ) in the non-damaged state were derived in Lan’s 
research [27]. 

zns = t −
C
κ

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
2κt
C

√

− 1

)

(10)  

zcb = zns −
2C
κ

(11)  

λ =

⎡

⎢
⎢
⎣

8π3νf Ef If

(
z2

ns −
4C2

κ2

)

νmGmd2ln
( znsκ

2C

)

⎤

⎥
⎥
⎦

1
4

(12) 

Where C = νmGm/(νmEm + νfEf), νm and νf are the volume contents of 
matrix and fiber respectively, If is the moment of inertia of the fiber area. 
Previous studies [27,35] ignored the compressive strain of the matrix in 
the buckling region. To determine whether the compressive strain can 
be ignored in this study, the compressive strain and shear strain of the 
matrix during bending are compared. The ratio of shear strain to 

compressive strain is shown in Eqs. (13) and (14). 

γxy,max

εxx,max
=

̅̅̅̅̅̅̅̅κzns
√

2
(13)  

γyz,max

εxx,max
=

λ
πzns

̅̅̅̅̅̅
2C

√ (14) 

Fig. 2 displays the evolution of the ratio of shear strain to compres-
sive strain during bending without considering damage. When the 
bending curvature is small, the compressive strain can be ignored due to 
the small compressive strain of the matrix. When the high packing ratio 
of SMPC is studied, the compressive strain of the matrix cannot be 
ignored. 

By analyzing the matrix stress in the buckling region, the maximum 
stress appears at z = 0 or z = zcb. At z = 0, the shear stress of the matrix 
can be given as Eq. (15). When x = nλ/2, the shear stress τz=0 reaches the 
maximum (as shown in Eq. (16)). 

τz = 0 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(σxx

2

)2
+ τ2

xy

√

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
4
(Emκzns)

2
+ 4G2

mκznssin2
(πx

λ

)
√

(15)  

τz = 0,max =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(σxx,max

2

)2
+ τ2

xy,max

√

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
4

E2
mκ2z2

ns + 4G2
mκzns

√

(16) 

When z = zcb, the shear stress of the matrix can be given as Eq. (17). 
When × = nλ, the shear stress τz=cb reaches the maximum (as shown in 
Eq. (18)). 

τz=zcb =
G2

mκλ2

π2(zns − zcb)
cos2

(πx
λ

)
(17)  

τz=zcb ,max =
Gmκλ
π
̅̅̅̅̅̅
2C

√ (18) 

According to the stress analysis of the fiber and matrix, there may be 
four damage modes: matrix cracking, delamination, fiber tensile frac-
ture and fiber buckling fracture. The matrix cracking and delamination 
are caused by the matrix reaching its ultimate strength at z = 0 and z =
zcb, respectively. The fiber fracture is primarily caused by fibers attain-
ing tensile strength at z = 0 or z = t. In this study, the maximum shear 
stress criterion was used to assess matrix cracking and delamination, and 
the maximum tensile stress criterion was used to assess fiber fracture. 
The damage mode of SMPC can be determined by comparing the stress 
states of the matrix and fiber at the dangerous position. 

The influence of thickness and fiber volume content on the damage 
mode is shown in Fig. 3(a). There are three damage modes: 

Fig. 2. Evolution of the ratio of shear strain to compressive strain during 
bending without considering the damage. 
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delamination, surface matrix cracking, and fiber tensile fracture. 
Notably, the distribution of damage modes in Fig. 3(a) is dependent on 
the data in Tables 1 and 2. When the fiber volume content is less than 
8.57 %, the fiber tensile fracture damage will occur in the stretching 
region. This is due to the fact that as the fiber volume content decreases, 
the neutral surface position moves away from the stretching surface 
during bending, increasing the stress on the fiber in the stretching region 
(as shown in Fig. 3(b)). When the fiber volume content is above 8.57 %, 
the higher the fiber volume content is, the easier the delamination 
damage occurs. This is because as the fiber volume content increases, the 
shear stress ratio at z = 0 and z = zcb of the matrix gradually decreases, 
resulting in prone to delamination damage at z = zcb (as shown in Fig. 3 
(c)). In the case of the same fiber volume content, the higher the 
thickness is, the easier the matrix cracks. This is because with the in-
crease of thickness, the ratio of matrix shear stress at z = 0 and z = zcb 
increases, resulting in more prone to matrix cracking at z = 0 (as shown 
in Fig. 3(d)). At the same time, when the surface matrix cracking occurs, 
the fiber buckling fracture will occur at the peak or trough of the fiber 
buckling. This is because the buckled fiber loses the load of the matrix. 

2.2. Strain energy of matrix cracking damage system 

According to the damage mode analysis, when the fiber volume 
content is 20 %, matrix cracking damage will occur during bending. 
When the shear stress of the matrix in the buckling region exceeds the 
shear strength, matrix cracking damage will occur at z = 0. According to 
the stress state of the fiber, the cross-section can be divided into four 
regions: damage region, compressing and buckling region, compressing 
and non-buckling region and stretching region (as shown in Fig. 4). zfa 
represents the critical damage position. 

The shape memory resin (Tg) and fiber adopted in this study can be 
regarded as linear elastic materials [27], so the total strain energy of the 
system is given by: 

UT =
1
2

∫

εijσijdv =
1
2

∫
(
εxxσxx + εyyσyy + εzzσzz + τxyγxy + τyzγyz + τxzγxz

)
dv

(19) 

According to the buckling deformation analysis of SMPC, the strain 
energy of the matrix cracking damage system is given as follows: 

Um
T = Um

xx +Um
xy +Um

yz +Um
fb +Um

mxx (20) 

Where Um T denotes the total strain energy of the matrix damage 
system; Um xx denotes the strain energy in the non-buckling region; Um 
xy and Um xz denote the strain energy caused by the shear strain γxy and 
γxz, respectively; Um fb denotes the strain energy of buckling fiber; Um 
mxx denotes the compressive strain energy of the matrix in the buckling 
region. The strain energy in the non-buckling region of the matrix 
damage system can be represented as follows: 

Um
xx =

1
2

∫ t

zcb

∫ b

0

∫ l

0
Eε2

xxdxdydz

=
blEκ2

6
[
(t − zns)

3
+ (zns − zcb)

3 ]
(21) 

Where E = νfEf + νmEm, b and l represent the width and length of 

Fig. 3. (a) Influence of thickness and fiber volume content on damage mode (I: delamination damage mode; II: matrix cracking damage mode; III: fiber tensile 
fracture damage mode); (b) Variation of relative neutral surface position with fiber volume content; (c) Variation of shear stress ratios at z = 0 and z = zcb with fiber 
volume content; (d) Variation of shear stress ratios at z = 0 and z = zcb with thickness. 

Fig. 4. Schematic diagram of the cross-section of the matrix cracking damage.  
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SMPC, respectively. The strain energy caused by the shear strain γxy of 
the matrix cracking damage system is: 

Um
xy =

1
2

∫ zcb

zfa

∫ b

0

∫ l

0
νmGmγ2

xydxdydz

=
blνmGmκ

2

[(
zns − zfa

)2
− (zns − zcb)

2
]

(22) 

The strain energy caused by the shear strain γyz can be calculated as 
follows: 

Um
yz =

1
2

∫ zcb

zfa

∫ l

0

∫ b

0
νmGmγ2

yzdxdydz

=
blνmGmλ2κ

4π2 ln
(

zns − zfa

zns − zcb

) (23) 

The strain energy of fiber buckling can be given by: 

Um
fb =

1
2

∫ zcb

zfa

b
h2νf Ef If

∫ l

0

(
d2y
dx2

)

dxdz

=
2blπ2νf Ef If κ

d2λ2

[(
zns − zfa

)2
− (zns − zcb)

2
]

(24) 

Where h represents the distance between adjacent fibers. The 
compressive strain energy of the matrix in the buckling region can be 
expressed as follows: 

Um
mxx =

1
2

∫ zcb

zfa

∫ b

0

∫ l

0
vmEmε2

xxdxdydz

=
blvmEmκ2

6

[(
zns − zfa

)3
− (zns − zcb)

3
]

(25) 

Substituting Eqs. (21)-(25) into Eq. (20) gives the total strain energy 
of the matrix cracking damage system: 

Um
T =

blEκ2

6
[
(t − zns)

3
+ (zns − zcb)

3]
+

blvmEmκ2

6

[(
zns − zfa

)3
− (zns − zcb)

3
]

+
blνmGmκ

2

[(
zns − zfa

)2
− (zns − zcb)

2
]
+

blνmGmλ2κ
4π2 ln(

zns − zfa

zns − zcb
)

+
2blπvf Ef If κ

d2λ2

[(
zns − zfa

)2
− (zns − zcb)

2
]

(26) 

When zfa = 0, we can obtain the strain energy of the non-damage 
system: 

UT =
blEκ2

6
[
(t − zns)

3
+ (zns − zcb)

3]
+

blνmEmκ2

6
[
z3

ns + (zns − zcb)
3 ]

+
blvmGmκ

2
zcb(2zns − zcb) +

blνmGmλ2κ
4π2 ln

(
zns

zns − zcb

)

+
2πblvf Ef If κ

λ2d2 zcb(2zns − zcb)

(27) 

When κ = κ0 (κ0 > κfc), SMPC is bent again after shape recovery. In 
this case, the positions of the neutral surface, critical buckling and 
critical damage can be expressed as zfa0, zns0 and zcb0, respectively. 
Hence, the strain energy of the system with damage can be described as 
follows: 

Um
T0 =

blEκ2

6
[
(t − zns0)

3
+(zns0 − zcb0)

3]
+

blvmEmκ2

6

[(
zns0 − zfa0

)3
− (zns0 − zcb0)

3
]

+
blνmGmκ

2

[(
zns0 − zfa0

)2
− (zns0 − zcb0)

2
]
+

blνmGmλ2κ
4π2 ln

(
zns0 − zfa0

zns0 − zcb0

)

+
2blπvf Ef If κ

d2λ2

[(
zns0 − zfa0

)2
− (zns0 − zcb0)

2
]

(28)  

2.3. Strain energy of fiber fracture tensile damage system 

When the fiber volume content is less than 8.57 %, the fiber tensile 
fracture damage is prone to occur during bending (as shown in Fig. 3). 
The fiber fracture will begin from the stretching region at this point. The 
schematic diagram of the cross-section of the fiber fracture damage 
system is shown in Fig. 5. 

According to the buckling deformation analysis of SMPC, we get the 
strain energy of the fiber fracture damage system: 

Uf
T = Uf

xx +Uf
xy +Uf

yz +Uf
fb +Uf

mxx + Uf
fmxx (29) 

Where Uf T denotes the total strain energy of the fiber damage sys-
tem; Uf xx denotes the strain energy in the non-buckling region; Uf xy 
and Uf xz denote the strain energy caused by the shear strain γxy and γxz, 
respectively; Uf fb denotes the strain energy of fiber buckling; Uf mxx 
and Uf fmxx denote the compressive strain energy of the matrix in the 
buckling and damage regions, respectively. 

The strain energy in the non-buckling region of the fiber fracture 
damage system can be evaluated as follows: 

Uf
xx =

1
2

∫ zfa

zcb

∫ b

0

∫ l

0
Eε2

xdxdydz

=
blEκ2

6

[(
zfa − zns

)3
+ (zns − zcb)

3
]

(30) 

The strain energy caused by the shear strain γxy of the fiber damage 
system can be calculated as follows: 

Uf
xy =

1
2

∫ zcb

0

∫ b

0

∫ l

0
νmGmγ2

xydxdydz

=
blνmGmκ

2
[
z2

ns − (zns − zcb)
2 ]

(31) 

The strain energy caused by the shear strain γyz of the fiber damage 
system is obtained as follows: 

Uf
yz =

1
2

∫ zcb

0

∫ l

0

∫ b

0
νmGmγ2

yzdxdydz

=
blνmGmλ2κ

4π2 ln
(

zns

zns − zcb

) (32) 

The strain energy of fiber buckling in the fiber damage system is 
calculated as follows: 

Uf
fb =

1
2

∫ zcb

0

b
h2Ef If

∫ l

0

(
d2y
dx2

)

dxdz

=
2blπ2Ef If κ

d2λ2

[
z2

ns − (zns − zcb)
2 ]

(33) 

The compressive strain energy of the matrix in the buckling region of 
the fiber damage system is: 

Fig. 5. Schematic diagram of the cross-section of the fiber fracture dam-
age system. 
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Uf
mxx =

1
2

∫ zcb

0

∫ b

0

∫ l

0
vmEmε2

xdxdydz

=
blvmEmκ2

6
[
z3

ns − (zns − zcb)
3 ]

(34) 

The tensile strain energy of the matrix in the damaged region is given 
as follows: 

Uf
fmxx =

1
2

∫ t

zfa

∫ b

0

∫ l

0
vmEmε2

xdxdydz

=
blvmEmκ2

6

[
(t − zns)

3
−
(
zfa − zns

)3
]

(35) 

Substituting Eqs. (30)-(35) into Eq. (29) gives the total strain energy 
of the fiber fracture damage system: 

Uf
Tf =

blEκ2

6

[(
zfa − zns

)3
+ (zns − zcb)

3
]
+

blvmEmκ2

6

[
(t − zns)

3
−
(
zfa − zns

)3
]

+
blvmEmκ2

6
[
z3

ns − (zns − zcb)
3 ]

+
blνmGmκ

2
[
z2

ns − (zns − zcb)
2 ]

+
blνmGmλ2κ

4π2 ln
(

zns

zns − zcb

)

+
2blπ2νf Ef If κ

d2λ2

[
z2

ns − (zns − zcb)
2 ]

(36) 

When κ = κ0 (κ0 > κfc), SMPC is bent again after shape recovery. At 
this point, the strain energy of the system with damage can be obtained 
as the same as that of the matrix fracture system. 

3. Key parameters analysis 

3.1. Key parameters of the matrix cracking damage system 

When matrix cracking occurs, the shear stress of the matrix first 
reaches the shear strength at z = 0. The following equation can be 
obtained: 

τz = 0,max =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
4
E2

mκ2z2
ns + 4G2

mκzns

√

= τs (37) 

Where τs is the shear strength of the matrix. The critical curvature of 
the matrix cracking can be determined as: 

κfc =
a +

̅̅̅̅̅̅̅̅̅
2aC

√

t
(38) 

Wherea =
− 8G2

m+2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
16G4

m+E2
mτ2

s

√

E2
m

. The relationship between zns and zfa is 
given as follows: 

κ
(
zns − zfa

)
= a (39) 

The compressing and non-buckling region is very small [27]. When 
the compressing and non-buckling region is ignored, the strain energy 
can be approximated as Eq. (40). The relationship between the strain 
energy and zns/t is shown in Fig. 6(a). It can be noted that Um xx and Um 
xy are much larger than other strain energies. Therefore, when solving 
zns and zcb, the strain energy can be simplified to Eq. (41). At the same 
time, Um xx + Um xy has minimum energy, so zfa, zns and zcb can be 
derived by the minimum energy principle and combining Eq. (39) (as 
shown in Eq. (42)). 

Um
T =

blEκ2

6
(t − zns)

3
+

blνmGmκ
2

(
zns − zfa

)2
+

blνmEmκ2

6
(
zns − zfa

)3

+
blνmGmλ2κ

4π2 ln
[4
(
zns − zfa

) ̅̅̅̅
vf

√

d
̅̅̅
π

√

]

+
2blπvf Ef If κ

λ2d2

(
zns − zfa

)2 

(40). 

ÛTf − r(zcb, zns) = Uxx− r +Uxy− r (41)  

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂Û(zcb, zns)

∂zcb
= 0

∂Û(zcb, zns)

∂zns
= 0

(42) 

Combining Eq. (39) and Eq. (42), we obtain the following results: 

zns = t −
̅̅̅̅̅̅̅̅̅
2aC

√

κ
(43)  

zcb = t −
2C +

̅̅̅̅̅̅̅̅̅
2aC

√

κ
(44)  

zfa = t −
a +

̅̅̅̅̅̅̅̅̅
2aC

√

κ
(45) 

According to Eq. (26), only Um yz and Um f are related to half- 
wavelength. The relationship between strain energy and half- 
wavelength of the matrix damage system is shown in Fig. 6(b). As the 
half-wavelength changes, the strain energy has a minimum. Therefore, 
the half-wavelength can be derived by the minimum energy principle (as 
shown in Eq. (46)). 

λ =

⎡

⎢
⎢
⎣

8π3vf Ef If
(
a2 − 4C2

)

d2νmGmκ2ln
(

2a2

C

)

⎤

⎥
⎥
⎦

1
4

(46) 

Inserting Eq. (46) into Eq. (2), the amplitude of the fiber can be 
obtained. When the bending curvature reaches κ0 (κ0 > κfc), the critical 
damage position reaches zfa0 at this time. SMPC is bent again after shape 

Fig. 6. (a) Relationship between the strain energy and the neutral surface position (λ = 0.7, к=0.07 mm− 1, zfa = 0.4 mm); (b) Relationship between strain energy and 
half-wavelength (к=0.07 mm− 1). 
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recovery. The relationship between the critical damage position zfa0 and 
the curvature κ0 can be described as follows: 

zfa0 = t −
̅̅̅̅̅̅̅̅̅
2aC

√
+ a

κ0
(47) 

The neutral surface position and critical buckling position of the 
rebending system can be obtained by the minimum energy principle (as 
shown in Eqs. (48) and (49)). 

zns0 = t −
C
κ

⎛

⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
2κ
(
a +

̅̅̅̅̅̅̅̅̅
2aC

√ )

Cκ0

√

− 1

⎞

⎠ (48)  

zcb0 = zns0 −
2C
κ

(49) 

When zcb0 = zfa0, the critical buckling of the fiber occurs in the 
damaged state, and the critical buckling curvature can be obtained as 
follows: 

κbc0 =
4C

t − zfa0
(50) 

The strain energy of the rebending system with matrix cracking 
damage can be obtained by substituting Eqs. (47)-(49) into Eq. (28). At 
this time, the half-wavelength and amplitude of the rebending system 
can be expressed by the minimum energy principle. 

The bending moment and equivalent bending stiffness can be given 
as Eqs. (51) and (52). 

Mm =
∂UT0

l∂κ

⃒
⃒
⃒
⃒

κ=κ -
0

(51)  

EIm
e =

Mm

lκ0
(52) 

The bending stiffness variation is used to describe the damage vari-
able in the study. The damage variable (D) can be obtained as follows: 

D = 1 −
EIm

e

EIe
= 1 −

(
∂UT0

κ0∂κ

⃒
⃒
⃒
⃒

κ=κ -
0

)
/
(

∂UT

κ∂κ

)

(53)  

3.2. Key parameters of the fiber tensile fracture damage system 

In this study, the fiber fracture damage behavior of SMPC with 8 % 
fiber volume content was investigated. When the fiber stress reaches the 
tensile strength, the following equation can be obtained. 

σf = Ef κ(t − zns) = σsf (54) 

Where σsf is the tensile strength of the fiber. The critical curvature of 
the fiber fracture damage can be derived as follows: 

κfc =
σ2

s + 2σsf Ef C
2E2

f Ct
(55) 

The relationship between zns and zfa can be described as follows: 

κ
(
zfa − zns

)
= σsf /Ef (56) 

When ignoring the compressing and non-buckling region, the 
calculation method of fiber fracture damage system is consistent with 
that of the matrix fracture damage system. The expressions of neutral 
surface position, critical buckling position, critical damage position, and 
half-wavelength of fiber fracture damage system can be derived by the 
minimum energy principle. 

Fig. 7. Evolution of the matrix cracking damage system during bending: (a) τz=0,max/τz=cb,max-к and zfa-r/t-к; (a) zcb/t-к; (b) zns/t-к; (d) λ-к; (e) λ-к; (f)A-к; (f)U-к; (g)M- 
к; (h)EI-к; (i)D-к. 
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zns =
σ2

s

2CE2
f κ

(57)  

zcb = zns −
2C
κ

(58)  

zfa = zns +
σs

Ef κ
(59)  

λ =

⎡

⎢
⎢
⎣

8π3νf Ef If

(
z2

ns −
4C2

κ2

)

νmGmd2ln
( znsκ

2C

)

⎤

⎥
⎥
⎦

1
4

(60) 

Substituting Eq. (2) into Eq (60), the amplitude of the fiber damage 
system can be obtained. When the bending curvature reaches κ0 (κ0 >

κfc), the critical damage position reaches zfa0. At this time, SMPC is bent 
again after shape recovery. The relationship between the zfa0 and κ0 can 
be described as follows: 

zfa0 =
σ2

s + 2CEf σs

2CE2
f κ0

(61) 

The neutral surface position and critical buckling position of the 
rebending system can be determined by the minimum energy principle 
(as shown in Eqs (62) and (63)). Similarly, the half-wavelength and 
amplitude of the rebending system can be obtained. 

zns0 = zfa0 −
C
κ

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
2κzfa0

C

√

− 1

)

(62)  

zcb0 = zns0 −
2C
κ

(63)  

4. Results and analysis 

4.1. Matrix cracking damage behavior 

Fig. 7 illustrates the evolution of the fiber fracture damage system 
during bending (Vf = 20 %). The evolution of τz=0,max/τz=cb,max and zfa/t 
of the matrix cracking damage system during bending is shown in Fig. 7 
(a). When к less than 0.15, the shear stress ratio τz=0,max/τz=zcb,max is 
greater than 1, which means that only the matrix cracking damage will 
occur during bending. The critical damage position increases gradually 
after the damage occurs. Fig. 7 (b) and (c) display the evolution of the 
zns/t and zcb/t during bending. As the curvature increases, zns and zcb 
gradually approach the outside of the stretch. When κ > κfc, the change 
rate of zns/t and zcb/t is further accelerated due to matrix cracking. 

The evolution of half-wavelength and amplitude during bending is 
shown in Fig. 7(d) and (e). When the fiber buckling occurs, the half- 
wavelength jumps from infinity to 1.08 mm. If the SMPC is not 
damaged, the half-wavelength gradually stabilizes, and the increase rate 
of amplitude slows down with the increase of bending curvature. When 
κ > κfc, as the matrix cracking grows, the amplitude and half-wavelength 
at the critical buckling position are gradually reduced. Fig. 7(f) and (g) 
illustrate the evolution of strain energy and bending moment. When κ <
κfc, the strain energy and bending moment gradually raise with the in-
crease of bending curvature. When κ > κfc, with the increase of bending 
curvature, the matrix cracking propagation leads to the decrease of 
strain energy and bending moment. The evolution of equivalent bending 
stiffness and damage variable is shown in Fig. 7(h) and (i). In the un-
damaged state, the equivalent bending stiffness of SMPC decreases due 
to fiber buckling. When the matrix cracking occurs, the equivalent 
bending stiffness further reduces. At the same time, the rising rate of 
damage variable gradually slows down. 

Fig. 8. Evolution of the fiber fracture damage system during bending: (a) τz=0,max/τz=cb,max-к and zfa-r/t-к; (a) zcb/t-к; (b) zns/t-к; (d) λ-к; (e) λ-к; (f)A-к; (f)U-к; (g)M-к; 
(h)EI-к; (i)D-к. 
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4.2. Fiber tensile fracture damage behavior 

Fig. 8 illustrates the evolution of the fiber fracture damage system 
during bending (Vf = 8 %). When the fiber volume content is 8 %, only 
fiber tensile fracture damage will occur. The evolution of εm,z=t and zfa/t 
during bending is illustrated in Fig. 8(a). εm,z=t represents the tensile 
strain of the matrix at z = t. As the bending moment increases, the zfa 
gradually approaches the compressed surface, and the tensile strain εm, 

z=t is almost linearly increased. Since the elongation at break of the 
matrix at Tg was very high, the matrix cracking damage was not 
considered in this study. Fig. 8(b) and (c) plot the zcb/t and zns/t values 
during bending, respectively. Different from the matrix cracking dam-
age, zcb/t and zns/t suddenly drop when κ > κfc. This is due to the stiffness 
reduction caused by fiber fracture in the stretching region. 

Fig. 8(d) and (e) show the evolution of the half-wavelength and 
amplitude, respectively. The half-wavelengths of critical buckling and 
critical damage are 0.85 mm and 0.7 mm, respectively. It can be noted 
that the changing trend of the half-wavelength and amplitude of the 
fiber fracture damage is consistent with that of the matrix cracking 
damage. Fig. 8(f) and (g) display the evolution of strain energy and 
bending moment, respectively. In contrast to matrix cracking, when κ >
κfc, as the bending curvature increases, the strain energy first decreases 
and then increases, and the rate of variation of bending moment de-
creases gradually. This is because the fiber fracture does not cause the 
matrix cracking. When the bending curvature reaches a certain value, 
the strain energy begins to increase. The evolution of the equivalent 
bending stiffness and damage variable during bending is shown in Fig. 8 

(h) and (i). Similar to matrix cracking damage, the equivalent bending 
stiffness drops to varying degrees with increasing bending curvature due 
to the increase of fiber buckling and damage. The changing trend of the 
damage variable of the fiber fracture damage system was generally 
consistent with that of the matrix cracking damage system. 

5. Experimental verification 

Four-point bending tests on unidirectional fiber-reinforced SMPC at 
150 ◦C were performed to validate the theoretical model. The testing 
specimen’s dimensions were 200 mm × 5 mm × 2 mm. The fiber volume 
content was 22 % and 8 % respectively, which corresponded to the 
matrix cracking and delamination damage respectively. The prepreg 
method was used to manufacture SMPC. In particular, the thickness of 
SMPC was controlled by placing a 2 mm hard silicone strip around the 
unidirectional fiber prepreg, and then the fiber volume content was 
controlled by balancing the proportions of fiber prepreg and shape 
memory epoxy film. We chose a support span of 50 mm, a loading span 
of 25 mm, and a loading rate of 2 mm/min to investigate the high folding 
ratio of SMPC during the test. The maximum deformation deflection 
during the loading process was 53 mm. 

Fig. 9 compares of the moment–curvature curves of the theoretical 
model and the experimental test. The results show that the trend of the 
theoretical model prediction is generally consistent with that of the 
experimental test curve. However, the theoretical prediction curve is 
higher than the experimental curve before damage occurs. The main 
reason is that the theoretical model is based on the equal strain 

Fig. 9. Comparison of moment–curvature curves between the theoretical model and the experimental test.  
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assumption of the fiber and matrix. However, the combination of fiber 
and matrix may not be ideal in the actual material manufacturing pro-
cess, resulting in the critical damage curvature in the experiment being 
greater than that in the theory. At the same time, the fiber and matrix in 
the theoretical model are based on the equal strength assumption, so the 
load change suddenly after damage, but it is a smooth transition in the 
experiment. 

6. Applications in structural design 

The space deployable structure based on SMPCs has the advantages 
of lightweight simple, controllable deployment and low impact. The 
damage mechanism and damage behavior of SMPC are systematically 
discussed in this study, which provides a theoretical foundation for 
structural design. When designing the size parameters, the thickness and 
bending radius of the SMPC structure should be considered. Taking the 
fiber volume content of 30 % as an example, the structural dimensions of 
SMPC were designed by using the material parameters in Table 1. By 
comparing Eqs. (7), (9), (16) and (18) with the strength of matrix and 
fiber, the relationship curve between thickness and bending curvature in 
design can be obtained (as shown in Fig. 10). Region I is the safety 
allowable area in the design. When the structural thickness and bending 
radius are below the curve, damage can be effectively avoided. It is 
worth noting that the SMPC-based lenticular tube was designed ac-
cording to the theoretical analysis in this study, and the flexible solar 
array system based on the lenticular tube was successfully deployed in 
orbit for the first time in the world (as shown in Fig. 11) [36]. 

7. Conclusions 

In this study, the damage behavior of unidirectional fiber-reinforced 
SMPC was investigated. The influence of fiber volume content and 
thickness on the damage mode was obtained through the deformation 
analysis of fiber buckling. The results revealed that increasing fiber 
volume content and decreasing fiber thickness are more likely to cause 
delamination damage at the critical buckling position. Conversely, it 
was easier to cause matrix cracking damage, but when the fiber volume 
content fell below a certain value, only fiber tensile fracture damage 
mode occurred. Considering the compressive strain of the matrix, the 
strain energy of matrix cracking and fiber fracture damage systems was 

Fig. 10. Relationship curve between thickness and bending curvature in the 
structural design: I represents the safety allowable region; II represents the 
dangerous region. 

Fig. 11. Flexible solar array systems based on SMPCs lenticular tube: (a) on orbit demonstrate; (b) lenticular tube based on SMPCs; (c) Concept application of future 
super large flexible solar array system based on SMPCs. 
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calculated, and then the analytical expressions of the key parameters 
under different damage systems were solved using the minimum energy 
principle. Key parameters include neutral surface position, critical 
buckling position, critical damage position, half-wavelength, and 
amplitude. Subsequently, the expressions and evolution rules of the 
bending moment, the equivalent bending stiffness, and the damage 
variable during the damage propagation process were obtained. Finally, 
the correctness of the theoretical analysis was verified by the bending 
test. Notably, the theoretical results of this study have been applied to 
design an SMPC-based lenticular tube. In the future, this study will serve 
for the design and optimization of super-large SMPC-based deployable 
structures. 
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