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Since wind turbines operate in a complex environment for long term, the fatigue behavior of the blades can be
influenced by wind, illumination, moisture, temperature, and so forth. For wind turbine blade manufacturers,
the determination of their fatigue limit before delivery is necessary and fatigue acceleration experiments usu-
ally require a lot of labor and experimental costs. As a machine learning paradigm, deep learning focuses on the
inherent hierarchical models of data and has achieved notable success in computer vision, speech recognition,
natural language processing, etc. Aimed at reducing the time and the costs during fatigue tests, this paper stud-
ies a training‐based method for wind turbine blade stiffness prediction using time series stiffness data under
fatigue tests. Based on deep learning methods including convolutional neural network, long‐short term mem-
ory network and the hybrid network, the residual stiffness of the blade with fatigue life under fatigue tests is
obtained by combining the fatigue historical data. The obtained results show that the developed models can
learn features directly from raw stiffness data and complete the residual stiffness prediction in succession.
White Gaussian noise with different signal‐to‐noise ratios is also added to all stiffness data to demonstrate
the models’ feasibility of stiffness prediction.
1. Introduction

As a kind of renewable and clean energy, wind energy has been a
critical factor to solve the fossil fuel problem in the last decades
[1,2]. In the growing prosperity field of wind power, as the size and
complexity of wind turbine blades increase, the performance of blades,
especially the offshore wind turbine blades, should be carefully consid-
ered to enable the blades to withstand extreme loads and fatigue. Since
the fatigue performance of blades is hard to be obtained by purely the-
oretical calculation and it is also impossible to directly refer to the
existing engineering experience or knowledge from other industries,
a full‐scale fatigue test method of blades has been adopted to effec-
tively verify whether the blades can meet the design requirements
for twenty‐year service in advance [3–5]. For wind turbine blades,
the high cycle fatigue test is vital in blade qualification before delivery
to avoid the catastrophic failures, which will consume huge man-
power, material resources and time [6,7].

Blade fatigue tests are generally carried out in accordance with the
standards [3], and the damage conditions are usually evaluated by
manual observation [8], strain sensors [9], or displacement sensors
[10]. All these methods require a complete fatigue in‐situ testing pro-
cess. Proper fatigue damage evolution model is the foundation to pre-
dict the fatigue life of composites in engineering applications and is
vital for accurate prediction. Residual strength and residual stiffness
are often regarded as the characteristic parameters to quantitatively
characterize the damage state of composites and they both gradually
degrade with time [11]. Based on residual strength, the load spectrum
of the fatigue process can be obtained [12,13].

Compared with residual strength, residual stiffness can be mea-
sured without affecting the functionality of components and is more
suitable for continuously monitoring and assessing the fatigue damage
under service, especially for large composite structures [14–16]. The
general process and stiffness change of fatigue damage development
of composites is roughly illustrated in Fig. 1. Besides, strain and dis-
placement data can be converted to the stiffness of blades during fati-
gue tests. If early data could be utilized to predict the residual stiffness
of the blade in subsequent fatigue tests, the evaluation cost and time
would be significantly reduced for blade manufacturers.

The fatigue test process of blade is usually costly and time consum-
ing and brings huge amounts of data. The amount of data being gener-
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Fig. 1. The nonlinear fatigue damage development of composites.
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ated by experiments and simulations has given rise to the fourth para-
digm of science over the last few years, which is big data driven
science and it is increasingly becoming popular in all fields. Big data
brings about the discovery of new materials and new ways of solving
problems [17]. Machine learning approaches have gained increasing
interests in fault diagnosis and health condition monitoring. They
can imitate the mechanism of human learning and realize the analysis
of a large number of complex data so as to solve various practical
problems.

Machine learning methods and artificial neural networks are
adopted for signal processing progressively. By using historical data
to train models, machine learning methods can be used for damage
identification, classification, and prediction [18]. Xu [19] proposed a
complete set of methods, including the clustering analysis, the time‐
domain analysis, and the spectral analysis, to deal with the acoustic
emission signals of bonded composite joints. Qi [20] proposed a
mechanical property prediction method of carbon fiber composites
based on machine learning, in which the relationship between the
properties of carbon fiber monofilaments and the macroscopic param-
eters of composites was established by a regression tree method. Based
on a feed‐forward deep neural network (DNN), Liu [21] also gave an
initial failure strength prediction of woven composites through a yarn
failure criterion. Hu [22] presented a vibration signal processing
method of wind turbine blades based on support vector machine
(SVM), in which geometric features associated with structural charac-
teristics of impact signals were extracted from both raw vibration sig-
nals and energy distribution graph.

With the continuous improvement of computer performance and
the gradual maturity of artificial intelligence, the deep model repre-
sented by deep training structure emerges, and many researchers
applied deep learning models to process data, especially time series
data [23]. Deep learning focuses on the inherent hierarchical models
of data with less human intervention. In 2014, Takashi [24] firstly
used a deep belief network (DBN) consisting of multiple restricted
Boltzmann machines (RBM) for time series forecasting. Zhang [25]
established a multi‐period wind speed prediction model through
DBN that demonstrated DBN model provided better predictions purely
using wind speed data compared with other models. Dalto [26] com-
bined the variable selection algorithm and DBN to present an ultra‐
short‐term wind prediction model. Wan [27] also proposed a wind
speed prediction method based on DBN. Compared with various shal-
low layer networks, the consequences of the DBN network had a better
prediction accuracy.

However, the training time is too long for DBN because of the layer‐
by‐layer training procedure of the network. To reduce the training
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time and training parameters, a convolutional neural network (CNN)
is conducted with its global sharing features. The most outstanding
advantage of CNN is that it can automatically learn features from
the original images without manual selection, and realize image clas-
sification and recognition by adjusting and optimizing the parameters
of the convolution kernels through training [28]. However, the CNN
model is mainly widely applied in the field of image and video process-
ing, and the input is mostly two‐dimensional data. To process one‐
dimensional time series data using CNN models, one appropriate
method is to convert the input time series into a two‐dimensional form
and then convert the output two‐dimensional data into one‐
dimensional data, which has been realized by Wang et al. [29–31].
Although the conversion may achieve the expected results, the com-
plexity of the model is greatly increased and the prediction accuracy
is also affected by the conversion approach. In addition, the two‐
dimensional data can be converted by wavelet transform or time–fre-
quency transform, by which the obtained wavelet coefficient graph or
time–frequency graph is the input of the CNN model. Such methods
have been successfully utilized in diagnostic classification [32–35].
However, the aforementioned methods of employing two‐
dimensional CNN to study the characteristics of time‐series signals fail
to fully utilize the advantages of the automatic learning of deep learn-
ing methods. Considering the temporal relation between data, a long
short‐term memory (LSTM) model emerges. It is a kind of time recur-
rent neural network (RNN) and suitable for dealing with the problems
concerning time series data [36,37], like speech recognition.

Here, we present a stiffness prediction method considering time
series stiffness data under fatigue tests based on CNN and LSTM net-
works. A hybrid model (CNN‐LSTM) is introduced into the task of this
stiffness prediction. Due to the difficulty to obtain the stiffness at any
time, the stiffness data are obtained from the fatigue calibration tests
combining Wu’s stiffness degradation model, and the influence of
ambient temperature is converted into the change of stiffness. Taking
the historical time series data of the same blade type as training data
and test data, the variation of the residual stiffness of the blade with
fatigue life can be obtained. White Gaussian noise with different
signal‐to‐noise ratios is also added to enhance the universality of stiff-
ness data.

2. Methodology

2.1. Convolutional neural networks

As a specialized network for processing grid‐like topology, CNN has
been successfully applied in the fields of image and video processing.
The network mainly includes convolutional layers, pooling layers and
fully connected layers [38]. Among the layers, convolution is the key
step of CNN. In convolutional layers, the feature map of an input layer
interacts with a convolution kernel or multiple convolution kernels
through the convolution method to form an output. Each output fea-
ture may also be calculated by the convolution of multiple input fea-
ture maps [39]. The convolutional layer output feature map can be
expressed as,
hlj ¼ f ∑
N

n¼1
Wl

jn � hl�1
n

� �
þ bl

� �
ð1Þ
where the subscript j is the jth convolution kernel, namely the jth out-
put feature map, N is the number of input feature maps, hlj is the j th

output feature map in the lth layer, hl�1
n is the nth output feature map

in the (l − 1)th layer, namely the input feature map in the lth layer,
Wl

jn is the nth sub‐convolution kernel matrix of the jth convolution ker-

nel, and bl is the bias for the lth layer. f �ð Þ is the activation function to
increase the non‐linearity of networks. The convolutional process is



Table 1
Common activation functions in machine learning.

Function
name

Function expression Function characteristics

Sigmoid σ xð Þ ¼ 1= 1þ e�xð Þ Easily to cause gradient vanishing
problem

Tanh tanh xð Þ ¼ ex � e�xð Þ= ex þ e�xð Þ Solve the problem ‘the Sigmoid
output center is not zero’, but also
easy to cause gradient vanishing
problem

ReLu
ReLuðxÞ ¼ max 0; xf g ¼ x x ⩾ 0

0 x < 0

�
Simple, fast and avoids the
gradient vanishing problem, but
causes ‘dead ReLu’

Leaky
ReLu

LeakyReLuðxÞ ¼ x x ⩾ 0
ax x < 0

�
Solve the ‘dead ReLu’ problem

ELU
ELUðxÞ ¼ x x ⩾ 0

a � expðxÞ � 1½ � x < 0

�
Solve the ‘dead ReLu’ problem
and the output mean is close to
zero, but low efficiency

Softmax σ zj
� � ¼ ezj

∑
n

k¼1
ezk

for j ¼ 1; . . . ; n Deal with multiple classification
problems
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illustrated in Fig. 2. The most common activation functions in machine
learning are listed in Table 1. Here, ReLu is adopted and formulated as,

f xð Þ ¼ max x; 0f g ð2Þ
It can be seen from the Eq. (1) that the weights of the same output

feature map are shared to effectively reduce the computer memory
occupancy rate and to improve the computation efficiency. In addi-
tion, ReLu function has also been proved to be capable of creating a
sparse representation and has a better performance than sigmoid
function.

Furthermore, the pooling layers are connected to the convolutional
layers, which reduce the size of feature maps to control overfitting.
The input feature map of a pooling layer is firstly divided into a set
of non‐overlapping sub‐regions through a filter, and then a down‐
sampling function is used to convert each sub‐region into a more con-
cise representation by,

hlj ¼ f βlj � down hl�1
j

� �
þ clj

� �
ð3Þ

The down‐sampling functions include average‐pooling and max‐
pooling, and are respectively expressed by,

down hl�1
j

� �
¼

∑
Height

i¼1
∑

Width

j¼1
∑

Length

k¼1
xi;j;k

NL
ð4Þ

down hl�1
j

� �
¼ max ∑

Height

i¼1
∑

Width

j¼1
∑

Length

k¼1
xi;j;k

 !
ð5Þ

Fig. 3 shows a diagram of a single depth 4 × 4element processing
with a 2 × 2 filter and a 3 × 3 filter through max‐pooling and
average‐pooling. Max‐pooling mainly concentrates on feature selec-
tion and highlights the characteristic features. While the background
information or the baseline will be retained by average‐pooling. Here,
we used max‐pooling Eq. (5). A generalized structure of CNN is also
shown in Fig. 4.

2.2. Long short-term memory networks

LSTM is capable of learning long‐range connections. Introduced by
Hochreiter and Schmidhuber [40], this network eliminates the prob-
lems of gradient explosion and gradient disappearance that exist in
RNN training models, and has more generalization and better perfor-
mance than gated recurrent unit (GRU) model. The structure of an
Fig. 2. The convolu

3

LSTM memory cell at each timestep t includes an input gate, a forget
gate and an output gate, as illustrated in Fig. 5 [41],

Input gate it ¼ σ Wixxt þWiaat�1 þ bið Þ ð6Þ

Forget gate f t ¼ σ Wfxxt þWfaat�1 þ bf
� � ð7Þ

Output gate ot ¼ σ Woxxt þWoaat�1 þ boð Þ ð8Þ

c
∼
t ¼ tanh Wc∼ xxt þWc∼ aat�1 þ bc∼ð Þ ð9Þ

ct ¼ f t � ct�1 þ it � c∼t ð10Þ

at ¼ ot � tanh ctð Þ ð11Þ

where Wix; Wia; Wfx; Wfa; Wox; Woa; Wc
∼
x and Wc

∼
a represent the gate

weight matrices, and bi; bf ; bo and bc∼ represent the gate bias vectors.
The three gates (it ; f t ; ot), representing vectors for the activation val-
ues, need to adjust themselves to get an appropriate cell state ct . xt
and at are the current LSTM input and output at timestep t, at�1 and
ct - 1 stand for the LSTM output and the cell state of the previous time

t � 1. σ stands for sigmoid activation function and c
∼
t stands for the can-

didate values. Symbol � denotes the Hadamard (elementwise) product.
tional process.



Fig. 3. A diagram of max-pooling and average-pooling with filters.

Fig. 4. A generalized schematic diagram of the convolutional neural network.

Fig. 5. The schematic diagram of an LSTM memory cell.
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Fig. 6. The wind turbine blade fatigue test.
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When processing time‐series input, the features are rendered in the
LSTM network time by time. The gates serve as filters for the cell state,
fulfilling the information discard, addition, and output. According to
Eqs. (6)–(11), the input is processed by the network. Once the last ele-
ment of the sequence is processed, the final output is returned. Finally,

the output at can be converted to the predicted output y
∼
t , expressed as,

y
∼
t ¼ Wtat ð12Þ
where Wt is a matrix to reduce the dimension of at .

2.3. Performance assessment

In the training process, stochastic gradient descent (SGD) is utilized
as the loss of the objective function. We used loss functions, including
mean square error (MSE), mean absolute error (MAE), root mean
square error (RMSE) and mean absolute percentage error (MAPE), as
listed in Table 2, for time series prediction.

MAPE and RMSE metrics are chosen to assess the prediction
performance.

3. Case study and results

In fatigue tests, the blade stiffness is required to be no less than
90% of initial value to satisfy the design criteria for the equivalent
20 years’ fatigue life through 2 million vibration tests. According to
the stiffness requirement of blade fatigue tests, we focused on the fati-
gue test data.

In this section, the feasibility of stiffness prediction based on deep
learning methods in the fatigue test was verified through the blade
fatigue tests with composite fatigue stiffness degradation model. The
influence of different deep learning network structures and input
sequences on prediction accuracy was studied. The structures included
CNN, LSTM network and the hybrid (CNN‐LSTM) network.

3.1. Data pre-processing

The fatigue test data were obtained through blade fatigue tests, as
shown in Fig. 6. Depending on the test rule [3,42], adopting the
scheme of uniaxial constant stress loading, the blade was fixed trans-
versely on the fatigue test bench through the flange bolts. Calibration
tests were conducted by the side‐pull equipment and tension sensors
during and after the fatigue test to obtain the stiffness changes of
the dangerous section. If the stiffness change was lower than 10%
and there was no obvious damage, crack, and partial blade instability,
it was considered that the blade met the design requirements. The
analysis of such anisotropic composite materials in wind turbine
blades is relatively complicated. For simplicity, the blade is regarded
as a cantilever beam with isotropic material properties under constant
loading, and the stiffness can be expressed as,

E ¼ F
L

ð13Þ
Table 2
Common loss functions.

Function name Evaluation indexes

MSE
MSE ¼ 1

n ∑
n

t¼1
yt � y

∼
t

� �2
MAE

MAE ¼ 1
n ∑

N

t¼1
yt � y

∼
t

			 			
RMSE

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n ∑

N

t¼1
yt � y

∼
t

� �2s

MAPE
MAPE ¼ 100%

n ∑
n

t¼1

yt�y
∼
t

yt
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where E is the blade static stiffness, F is the concentrated calibration
loading of the blade, L is the measured displacement of the dangerous
section. In fact, the change of displacement directly reflects the change
of stiffness under the same loading F.

Based on the previous work of Kou [43], a concentrated load was
applied to a 52.5 m glass fiber reinforced plastic (GFRP) wind turbine
blade (commercial product of Sinoma Wind Power Blade Co. Ltd) for
loading calibration. Some of the parameters of the blade are listed in
Table 3. Rigorous finite element analysis was performed before the
fatigue test of the blade to determine the critical section, and the sen-
sors were attached at several key locations of the blade during fatigue
tests. This calibration test was performed 6 times and at the location of
42 m from the root. The measured displacement of the dangerous sec-
tion was recorded. According to the experience and this 2.5 MW blade
structural design, 32 m was the most dangerous point and this position
was chosen as an example for stiffness prediction.

The ambient temperature and humidity affect the stiffness during
the fatigue test. To take the influence of temperature and humidity
into consideration, simultaneous training of stiffness, temperature
and humidity will be required. According to Bai's work [44], the stiff-
ness change can reflect the influence of temperature and humidity
after treatment. Therefore, using the stiffness is sufficient to evaluate
the fatigue of the wind turbine blade. In this way, the complexity of
the training network can be reduced, and the depth of the network
can be increased conveniently, resulting in better results.
Table 3
Parameters of the tested turbine blade.

Name Value

Power 2.5 MW
Blade length 52.2 m
The length of the blade root 2.4 m
Blade mass 10968 kg
maximum chord length 3 m
Position of maximum chord length 3.8 m from the blade root
Airfoil DU/NACA
rated speed 23 rpm
Main material Glass fiber reinforced epoxy resin



Table 4
The measured blade stiffness of different fatigue life cycle ratios.

Loading level Percent of life (n/N)

0 0.145 0.250 0.315 0.750 1

20% 1 0.9887 0.9847 0.9821 0.9729 0.9568
40% 1 0.9829 0.9800 0.9781 0.9675 0.9526
60% 1 0.9831 0.9795 0.9779 0.9649 0.9488
80% 1 0.9830 0.9891 0.9767 0.9628 0.9470
100% 1 0.9826 0.9788 0.9771 0.9616 0.9421

Fig. 8. The stiffness degradation curves under different loadings.

Table 5
The bladed damage index of different fatigue life cycle ratios.

Loading level Percent of life (n/N)

0 0.145 0.250 0.315 0.750 1

20% 0 0.26157 0.35417 0.41435 0.62731 1
40% 0 0.36076 0.42194 0.46203 0.68565 1
60% 0 0.33008 0.40039 0.43164 0.68555 1
80% 0 0.32075 0.20566 0.43962 0.70189 1
100% 0 0.30052 0.36615 0.39551 0.66321 1

Fig. 7. The damage development curves under different loadings.
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Table 4 shows the measured stiffness after different calibration load-
ings and fatigue life cycle ratios. According to Wu’s stiffness degradation
model of composites [45], the damage index can be described as,

D nð Þ ¼ E0 � En

E0 � Ef
¼ 1� 1� n

N

� �b� �a
ð14Þ

where E0 is the original Young’s modulus, Ef is the failure Young’s mod-
ulus, En is the Young’s modulus undergoing the nth cyclic loading, n is the
corresponding cycle number, N is the fatigue life, and a and b are the
material parameters that are fitted from test results. D nð Þ represents
the fatigue damage index, with D 0ð Þ ¼ 0 indicating the undamaged state
and D Nð Þ ¼ 1 indicating the fully damaged state. By Eq. (4), the stiffness
data in Table 3 are converted into the damage index and listed in Table 5.

Coupled with Wu’s stiffness degradation model, the fitting curves
of different fatigue life cycle ratios under different loadings are plotted
in Fig. 7. And then, the stiffness degradation models under different
loading levels can be formulated as,

D20% nð Þ ¼ 1� 1� n
N

� �0:30605� �0:40864
ð15Þ

D40% nð Þ ¼ 1� 1� n
N

� �0:21575� �0:4105
ð16Þ

D60% nð Þ ¼ 1� 1� n
N

� �0:2778� �0:44747
ð17Þ

D80% nð Þ ¼ 1� 1� n
N

� �0:48915� �0:57912
ð18Þ

D100% nð Þ ¼ 1� 1� n
N

� �0:31582� �0:44042
ð19Þ

where D20% nð Þ, D40% nð Þ, D60% nð Þ, D80% nð Þ and D100% nð Þ stand for the
damage index corresponding to different fatigue life cycles under the
loading level of 20%, 40%, 60%, 80%, 100%, respectively. Substituting
the Eqs. (15)–(19) into the Eq. (14), the stiffness of different fatigue life
cycle ratios can be obtained as follows,

E20% nð Þ ¼ 0:9568� 1� 1� n
N

� �0:30605� �0:40864( )

þ 1� n
N

� �0:30605� �0:40864
ð20Þ
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E40% nð Þ ¼ 0:9526� 1� 1� n
N

� �0:21575� �0:4105( )

þ 1� n
N

� �0:21575� �0:4105
ð21Þ

E60% nð Þ ¼ 0:9488� 1� 1� n
N

� �0:2778� �0:44747( )

þ 1� n
N

� �0:2778� �0:44747
ð22Þ

E80% nð Þ ¼ 0:9470� 1� 1� n
N

� �0:48915� �0:57912( )

þ 1� n
N

� �0:48915� �0:57912
ð23Þ

E100% nð Þ ¼ 0:9421� 1� 1� n
N

� �0:31582� �0:44042( )

þ 1� n
N

� �0:31582� �0:44042
ð24Þ

where E20% nð Þ, E40% nð Þ, E60% nð Þ, E80% nð Þ and E100% nð Þ stand for the stiffness
of blades after different fatigue life cycles under the loading level of 20%,
40%, 60%, 80%, 100%, respectively. Fig. 8 plots the stiffness degradation
curves based on the experimental data of the blade under different loadings.

Here, Wu's stiffness degradation model is chosen just to expand the
data set. Since Wu's model is a general model for composites, the cali-
brated data are fitted to the model to obtain the engineering stiffness
model formula of the blade, thus obtaining a large number of data points.
Table 6
MAPE and RMSE for different models and sequence lengths.

Number of neurons Sequence length = batch size

m = 1 m

MAPE (%) RMSE M

16 0.032 0.00040 0.
32 0.036 0.00042 0.
64 0.030 0.00035 0.
128 0.049 0.00056 0.
128 + 16 0.124 0.00133 0.
64 + 8 0.192 0.00210 0.

Fig. 9. The stiffness data

7

Since the stiffness data measured by the calibration experiment are
limited and deep learning methods rely on abundant sample data sets,
the stiffness degradation curve data are treated as training data and
test data to verify the feasibility of this stiffness prediction method.

In the following study, all proposed training network models are
implemented using Keras and executed on Nvidia GeForce GTX
1070. GPU has powerful computing ability and memory bandwidth
and the usage of GPU instead of CPU to train certain fatigue loading
tests and evaluation can reduce plenty of computing time.

Since the feature value range of the original data varies in a wide
range, data normalization is particularly important, especially when
multiple features are compared. Voluminous data normalization meth-
ods can be employed, such as normalization, mean normalization,
standardization. Here, normalization is used to scale the feature range
in [0, 1], and expressed as

x0 ¼ x �min Xð Þ
max Xð Þ �min Xð Þ ð25Þ

where x represents an original value of X, x0 represents the correspond-
ing normalized value of X.

The stiffness data organization strategy is depicted in Fig. 9. All
stiffness data are available from the stiffness degradation curves. For
example, 1000 stiffness data can be acquired from a single stiffness
degradation curve. Taking the aggregate of 5000 stiffness data from
the five curves into consideration, the total data are separated into
90% training data and 10% test data. In addition, 15% of the training
data act as the validation set.

The losses of the training set and verification set are reduced grad-
ually through back propagation method to optimize the training net-
work during the training process. The input series is the anterior m
= 5 m = 10

APE (%) RMSE MAPE (%) RMSE

061 0.00065 0.035 0.00055
018 0.00027 0.057 0.00070
032 0.00045 0.133 0.00155
019 0.00021 0.069 0.00079
018 0.00020 1.042 0.01136
054 0.00060 0.059 0.00061

organization strategy.



Fig. 10. Double LSTM layers model structure diagram.

Fig. 11. The prediction results of the stiffness data based on the LSTM model.

Fig. 12. An optimized CNN model structure diagram.
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samples (sequence length) and the output prediction series is the fol-
lowing n predicted samples. According to Qin’s work [46], the perfor-
mance of the network will be declined with the growth of forecast
prospect in most cases. So making n much smaller is beneficial for net-
work training and prediction. It can be observed in Fig. 8 (b), 1000
data have been changed into 995 datasets when m = 5, n = 1.
8

In the test process, the test set is made available for the trained net-
work and the predicted results are obtained according to the training
model. The training network is assessed by comparing the difference
between the forecast values and the actual values of the test set.

3.2. Training and evaluating LSTM models

In this section, different models based on LSTM are trained and
evaluated combining the stiffness data. The stiffness data are divided
as shown in Fig. 9(a) and the stiffness data of 100% load, 80% load,
40% load, 20% load, half of 60% load are treated as training data
(4500 data points). The data of the other half of 60% load are treated
as test data (500 data points).

To train the models, an Adam optimization operator (learning
rate = 0.0001, decay = 0.001) is adopted, and the models are learned
with minimization of MSE (loss function) by back propagation
method. The optimization operator and loss function of Sections 3.3
and 3.4 are the same. As to evaluate, the efficiency is tested with
MAPE and RMSE metrics. The dropout value is set as 0.5 to prevent
gradient disappearance and gradient explosion as well as to achieve
excellent performance during the training process. The effect on the



Fig. 13. The CNN-LSTM hybrid model structure diagram.

H. Liu et al. Composite Structures 252 (2020) 112702
number of neurons and the number of network layers (1 or 2) on the
prediction results are compared under various sequence lengths.
MAPE and RMSE results for different LSTM models with different
sequence lengths are listed in Table 6.

Smaller MAPE and RMSE values indicate the higher accuracy of the
prediction models. For different sequence lengths, different LSTM
models have separate evaluation results. It can be seen in Table 6,
the sequence length m = 5 is better than m = 1, which is too short
to truly reflect the trend of the curve, or m = 10, which is too long
to show the trend obviously. Fig. 10 shows the most optimized LSTM
structure diagram (128 + 16, m = 5) with double LSTM layers in
Table 7
The prediction results of different deep learning models.

Models Results

MAE RMSE

LSTM 0.00017 0.000
CNN 0.00033 0.000
CNN-LSTM 0.00006 0.000

9

Table 6. Based on the double LSTM layers model, the prediction stiffness
data compared with training data and test data are shown in Fig. 11.

3.3. Training and evaluating CNN models

To maximize the close connection between the stiffness data, one
dimensional CNN is adopted. The input is purely the raw stiffness data
without signal processing, and would not cause the degradation of
model performance due to the human factors. Besides, the training
set, test set, optimization operator and loss function of CNN models
are exactly the same as LSTM models. Different CNN models are fur-
ther studied, but not listed below for simplicity.

Fig. 12 shows an optimized CNN structure diagram, of which MAPE
(%) is 0.0348 and RMSE is 0.00041. Compared with the double LSTM
layers model, it has been demonstrated that the prediction of the stiffness
data can also be achieved successfully. But the CNN model’s performance
is slightly worse, mainly due to the lack of correlation among data.

3.4. Training and evaluating CNN-LSTM models

Aimed at combining the benefits of CNN and LSTM, a novel hybrid
model (CNN‐LSTM) is proposed for blade stiffness prediction. Here,
the CNN part contains two convolutional layers with the kernel number
of 256, 128 and two max‐pooling layers. Two LSTM layers with 256 and
128 neurons and two fully connected layers are also adopted in the
hybrid model. The aggregate model structure is shown in Fig. 13. The
MAPE (%) result of the CNN‐LSTM model is 0.0047 and the RMSE con-
sequence is 0.00008. It shows that the model has a good performance.

Furthermore, the consequences of different proposed models in this
paper are listed in Table 7. Among all the models, the MAE, RMSE and
MAPE values of the CNN‐LSTM model are smaller than those of the
single model (LSTM, CNN), indicating that the hybrid model can gen-
erate better prediction results. Larger R2 can result in better prediction.

Based on the training data and the proposed models, the subse-
quent results can be predicted. It is clear to show the predicted results
in Fig. 14. The predicted results have the same tendency as the test
data and the CNN‐LSTM model matches better.

3.5. Enhanced data set and the training model

According to the previous discussion, the data of stiffness degradation
curves are used to generate training data and test data to verify the fea-
sibility of this stiffness prediction method. In fact, due to the errors from
the test instruments and sensors, the measured values are not completely
consistent with the stiffness degradation curves and have fluctuations. In
order to verify the universality of data set selection and reflect the advan-
tages of deep learning methods, white Gaussian noise with different
signal‐to‐noise ratio (SNR) is added to all stiffness degradation data.

Based on the CNN‐LSTM model, the predicted results of the stiff-
ness data with different SNR are compared in Table 8. With the
increase of SNR and the reduction of the noise signal, the prediction
results can be more accurate.

The predicted results of the stiffness data with SNR at 65 dB and
75 dB are shown in Fig. 15 as examples to verify the generality of data
set selection. The predicted results of the CNN‐LSTM model have the
same tendency with the test data although with slight fluctuation. In
MAPE (%) R2

20 0.018 0.9987
41 0.035 0.9942
08 0.0047 0.9997



Fig. 14. The prediction results of different proposed models (a) data with
65 dB noise (b) data with 75 dB noise.
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fact, when the obtained time series data fluctuates greatly, some
denoising methods can be used for data denoising.

3.6. Accuracy of the predictions under different training sets

In this section, different training sets and test sets based on CNN‐
LSTM are trained and evaluated combining the stiffness data.
Fig. 15. The prediction results of the stiffn

Table 8
The prediction results of the stiffness data with different SNR.

SNR (dB) Results

MAE RMSE

65 0.00047 0.0006
70 0.00031 0.0004
75 0.00017 0.0002
80 0.00016 0.0002

10
Case1:The stiffness data of 80% load, 60% load, 40% load, 20% load,
half of 100% load are treated as training data (4500 data
points). The data of the other half of 100% load are treated as
test data (500 data points).

Case2:The stiffness data of 100% load, 60% load, 40% load, 20% load,
half of 80% load are treated as training data (4500 data points).
The data of the other half of 80% load are treated as test data
(500 data points).

Case3:The stiffness data of 100% load, 80% load, 40% load, 20% load,
half of 60% load are treated as training data (4500 data points).
The data of the other half of 60% load are treated as test data
(500 data points).

Case4:The stiffness data of 100% load, 80% load, 60% load, 20% load,
half of 40% load are treated as training data (4500 data points).
The data of the other half of 40% load are treated as test data
(500 data points).

Case5:The stiffness data of 100% load, 80% load, 60% load, 40% load,
half of 20% load are treated as training data (4500 data points).
The data of the other half of 20% load are treated as test data
(500 data points).

The results of different cases are listed in Table 9. The prediction
results obtained under different sets prove the feasibility and robust-
ness of this method.
ess data with SNR at 65 dB and 75 dB.

MAPE (%) R2

0 0.049 0.9872
0 0.033 0.9942
6 0.019 0.9976
1 0.017 0.9983



Table 9
The prediction results of different data sets with CNN-LSTM model.

Case Results

MAE RMSE MAPE (%) R2

Case1 0.00011 0.00013 0.0067 0.9991
Case2 0.00008 0.00012 0.0059 0.9993
Case3 0.00006 0.00008 0.0047 0.9997
Case4 0.00012 0.00014 0.0070 0.9990
Case5 0.000007 0.00011 0.0053 0.9995

H. Liu et al. Composite Structures 252 (2020) 112702
4. Conclusions

In this paper, a wind turbine blade stiffness prediction method
based on the deep learning networks is proposed. Three types of train-
ing models (CNN, LSTM, CNN‐LSTM) are applicable to realize this
effective prediction considering the historical fatigue stiffness data.
Various input sequence lengths are conducted to show the effective-
ness of our models. The prediction results prove that the models can
learn features directly from raw stiffness data and well predict the
residual stiffness.

Three types of training models (CNN, LSTM, CNN‐LSTM) are also
compared and evaluated. The prediction performance of the CNN‐
LSTM model is preferable when compared to that of a single model
(CNN, LSTM) under the uniform data set. Combining the advantages
of different network models, these models can be connected together
to surmount the weakness of a single network. The CNN units are usu-
ally used to get the spatial features, and the LSTM units are to get the
connection among series data. Therefore, the predictive performance
of the CNN‐LSTM model is better.

White Gaussian noise with different signal‐to‐noise ratio (SNR) is
added to all stiffness data to verify the universality of data set selec-
tion. The prediction results of the CNN‐LSTM model are slightly differ-
ent from the test data, but the overall trend is completely consistent,
due to the random noise. Five cases of different data sets are also stud-
ied in this paper. The predicted results are close to the test results and
the method is proved to be feasible. Better predictions can be obtained
by increasing the diversity of training data samples.

Combining the deep learning methods, the subsequent stiffness
evolution of a blade can be predicted through learning the empirical
mode from the sample base, which is established based on the historic
stiffness change data from previous blade fatigue tests, and the early
test data. Thus the cost for evaluating newly fabricated blades can
be significantly reduced.
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