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A B S T R A C T

During the service of shape memory polymer (SMP), the thermal-mechanical cycle is a necessary process.
Meanwhile, the influence of the viscoelastic properties of SMP, such as rate-dependent behaviors, can not be
ignored during the application. Consequently, a constitutive model based on the multiplicative decomposition of
the deformation gradient is proposed in this work, which can clearly describe the viscoelastic behavior and
capture the thermal-mechanical cycle process of SMP. By introducing the “phase transition” concept, SMP is
assumed as a composite composed of glassy phase and rubbery phase, and the volume fractions of each phase
vary with temperature. Furthermore, according to the different mechanical behaviors of the glassy phase and
rubbery phase, two different constitutive structures that can describe the strain sensitivity of SMP are developed
to represent the mechanical response. The developed model was verified by simulating a series of experiments,
including strain sensitivity tests and thermal-mechanical cycle experiments.

1. Introduction

Shape memory polymer (SMP) is a type of material that can recover
from a deformation state to its original shape under the appropriate
external stimulus. Compared with other smart materials, SMP exhibits
many advantages, such as lightweight, high strain recovery, easy pro-
cessing, low cost and etc. (Zhao et al., 2019; Zhao et al., 2018), which
make it has a promising application prospect in fields of aerospace
(Liu et al., 2019), medical treatment (Zhao et al., 2017), textile
(Castano et al., 2014), microelectronic communication, and etc. For
decades, many kinds of SMP are developed to meet different require-
ments and endowed with a variety of functions. According to different
actuation mechanism, SMP can be divided into temperature-driven SMP
(Liu et al., 2018), electrical-driven SMP (Leng et al., 2011), magnetic-
driven SMP (Meiorin et al., 2018), light-driven SMP (Kuenstler et al.,
2019), solution-driven SMP (Urbina et al., 2019) and etc. Moreover, it
has become possible to control the glass transition temperature Tg by
adjusting the chemical composition and molecular structure with the
development of polymer science.

SMP based structures usually involve complex deformation and are
in a complicated stress state. Consequently, it is of high importance to
predict the deformation history and optimize the recovery performance

of SMP, which will contribute to the development of novel SMP and
help to understand its complex thermodynamic mechanisms. At pre-
sent, the constitutive model of SMP can be summarized into three ca-
tegories, including rheological methods based on viscoelastic theory
(Diani et al., 2012; Yin et al., 2019; Mao et al., 2019), microscopic
mechanics methods based on “phase transition concept” (Nguyen et al.,
2008; Lu et al., 2019) and the modeling methods combining the two
methods mentioned above (Qi et al., 2008; Park et al., 2016). The
constitutive model based on rheological theory can capture and clearly
describe the rate-dependent behavior of SMP, such as relaxation and
creep behavior.

Based on the traditional linear viscoelastic three-element model, the
phenomenological constitutive equation of four-element thermo-
dynamics was established by Tobushi et al. (2001), where a sliding
friction element was introduced to describe the thermomechanical be-
havior of SMP. Since the time-related parameters were not considered
in this model, which greatly limited its forecasting ability. The simu-
lation results related to temperature were not in good agreement with
the experimental results. Subsequently, a 3D constitutive model of fi-
nite deformation was proposed by Diani et al. (2012) based on the
framework of thermodynamic theory and linear viscoelastic model.
According to thermodynamic theories, when the temperature is higher
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than the transition temperature, the change of deformation energy is
mainly caused by the change of entropy. However, when the tem-
perature is lower than the transition temperature, the variation of de-
formation energy is mainly caused by the change of cohesive energy
(Xie et al., 2014). Besides, the storage and release mechanisms of strain
are not taken into account, which greatly limited the use of such
models.

However, based on the “phase transition” concept, it is possible to
interpret the strain storage and release mechanisms reasonably.
Meanwhile, related parameters can be easily obtained by mechanical
experiments or simulations. In 2006, a constitutive model considering
the microstructure of phase transition (glassy phase and rubbery phase)
was developed by Liu et al. (2006) to investigate the strain and stress
recovery behavior of SMP. Subsequently, a nonlinear viscoelastic model
was established by Chen and Lagoudas (2008) to describe the thermo-
mechanical behavior of SMP. Based on the kinematics theory, it was
assumed that SMP could realize phase transition through a series of
crystal nucleation molding. That was to say, the glassy phase and
rubbery phase of SMP could transform each other along with the
change of temperature (Lv et al., 2013). However, this type of models is
limited to the thermos-elastic theoretical framework due to specific
assumptions, and time-dependent properties can not be well explained.

Specifically, if these two types of models combine together, the
advantages are complementary. Consequently, a three-dimensional fi-
nite deformation constitutive model was developed by Qi et al. to de-
scribe the complex multi-axial thermodynamic behavior of SMP, where
the “the first-order phase transition” concept was adopted to describe
the transformation between glassy phase and rubbery phase (Qi et al.,
2008). In this work, it was assumed that SMP was composed of glassy
phase and rubbery phase, and the glassy phase could be further divided
into the initial glassy phase and frozen glassy phase according to the
different heating stages. Subsequently, based on the phenomenological
method, a thermodynamic constitutive model was proposed by kim to
predict the deformation of shape memory polyurethane, which con-
tained a viscoelastic-induced hard segment and two hyperelastic-in-
duced soft segments (Kim et al., 2010). Two soft segments were cor-
responding to the frozen phase and the active phase proposed by
Liu et al. (2006), respectively. Based on Kim's work, Gu et al. (2015)
modified this model by introducing an affine network to describe the
stress-strain behavior of the two soft segments and developed a four-
element viscoelastic model to simulate the thermal-mechanical beha-
vior of SMP.

In summary, most of the existing models focus on the description of
thermal-mechanical behavior, but some limitations still exist in the
predication of viscoelastic behavior. Even though the aforementioned
modeling methods are important for the development of SMP, some
shortcomings cannot be ignored. Under finite deformation, SMP ex-
hibits obvious nonlinear viscoelastic behaviors, including stress re-
laxation behavior, creep behavior and strain sensitivity, which are
equally important to thoroughly explore the material properties of SMP.
In existing models, nonlinear viscoelastic behavior is usually regarded
as the superposition of rate-independent equilibrium part and viscosity-
induced non-equilibrium part. However, it is found that the models that
an equilibrium part in parallel with a non-equilibrium part may not be
very effective in predicting strain sensitivity of SMP.

Accordingly, a finite strain theory combining the “phase transfor-
mation” concept and rheological method is established in this work to
predict the thermo-mechanical response and strain sensitivity behavior
based on the basic understanding of the molecular structure of SMP. In
this model, SMP is regarded as a “composite material” composed of
glassy phase and rubbery phase, which will have different volume
fractions under different temperatures. Based on the framework of the
multiplicative decomposition of the deformation gradient, the thermal-
mechanical behavior of the glassy phase is modeled by using two par-
alleled Maxwell elements and a thermal expansion element. Moreover,
the mechanical behavior of the rubbery phase is modeled by using a

spring-like hyperelastic element in parallel with a Maxwell element,
and the thermal strain was modeled by a thermal expansion element. By
introducing an evolutionary equation of volume fractions changing
with temperature, the finite strain constitutive model of SMP is devel-
oped based on the “phase transformation” assumption. The related
parameters of this model are obtained by thermal-mechanical cycle
experiments, thermal expansion experiments, dynamic mechanical
analyses, rate-dependent tests, and loading/unloading cycle tests.
Finally, simulations of the thermal-mechanical cycles and rate-depen-
dent behavior are carried out to validate the developed model.

2. Experimental methods and results

2.1. Material

The SMP material used in this work is the styrene-based thermo-
setting polymer, which is provided by the National Key Laboratory of
Science and Technology on Advanced Composites in Special
Environments, Harbin Institute of Technology. The synthetic method
can be found in reference Zhang et al. (2011). In the curing process, the
styrene solution is poured into a glass panel mold and cured in a va-
cuum oven following the recommended preparation method.

2.2. Dynamic mechanical analysis

The dynamic thermomechanical analysis (DMA) test was conducted
on a DMA Q800 (TA Corporation) machine to explore the thermal-
mechanical properties of SMP under different temperatures. The rec-
tangular sample was 2 mm in thickness, 3 mm in width and 20 mm in
length. Firstly, the specimen was heated to 20 °C in the DMA machine
chamber and stabilized for 15 min to ensure sufficient heat exchange.
Subsequently, the tension mode was adopted and a preload of 1mN was
implemented on the sample. The sample oscillated at a frequency of
5 Hz while the temperature was heated from 20 °C to 100 °C with a
heating rate of 2.5 °C/min. After the sample was heated to 100 °C, it
was stabilized for 15 mins and cooled down to 20 °C again at the same
rate. This procedure was repeated three times and the data of the last
cycle was adopted to illustrate the storage modulus and loss angle
tangent value (Tan δ) changing with temperature, as shown in Fig. 1.
From the experiment curve, it can be seen that the storage modulus
gradually decreases with the increase of temperature. For instance, the
storage modulus is about 1800 MPa at 20 °C while it is only 2 MPa at
100 °C, which reduces by about 1000 times. Furthermore, the peak
value of the Tan δ curve is identified as the glass transition temperature
Tg, which is 67°C.

Fig. 1. Results of storage modulus and tan δ from DMA with a heating rate of
2.5 °C/min and a frequency of 5 Hz.
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2.3. Thermal expansion experiment

As a type of viscoelastic material, the mechanical properties of SMP
are highly sensitive to temperature. Moreover, the temperature change
is involved throughout the thermal-mechanical cycle of SMP. With the
change of temperature, the deformation due to thermal expansion is
significant and cannot be neglected. The test of thermal expansion
performance of styrene-based SMP was performed on a DMA Q800 (TA
Corporation) machine, and the dimension of the rectangular specimen
was 2 mm × 3 mm × 20 mm. The ambient temperature was set ran-
ging from 20 °C to 100 °C with a heating rate of 1 °C/min. The specimen
was first heated to 20°C and kept for 15 min to ensure sufficient heat
exchange, and then a preload of 1 mN was applied. The deformation
due to thermal expansion changing with temperature is illustrated in
Fig. 2. It can be seen that the rate of thermal deformation shows a sharp
turn in the vicinity of Tg. When the temperature is lower than Tg, the
thermal deformation rate is slow, and when the temperature is higher
than Tg, the thermal deformation rate is fast. The parts marked by the
red dash lines at the temperature above and below Tg are used to obtain
CTE of the rubbery phase and glassy phase. The CTE below Tg is ob-
tained by using the dash lines of the curve between 30 °C and 53 °C, and
the CTE above Tg is obtained by using the dash lines of the curve be-
tween 85°C and 100 °C. Here, the corresponding coefficients of thermal
expansion for the rubbery phase and the glassy phase are
αR = 3.06 × 10−4/°C and αG = 1.29 × 10−4/°C, respectively.

2.4. Uniaxial tensile tests

2.4.1. Rate-dependent tests
Generally, rate-dependent behavior is one of the most important

properties of viscoelastic material. Due to the difference in molecular
microstructure, the polymer exhibits different mechanical responses
under different loading rates and shows great dispersion. When the
loading rate is high, the stress-strain response is less affected by the
microstructure of molecules. Otherwise, the microstructure of mole-
cules will be the dominant factor in the stress-strain response. With the
increase of loading rate, the deformation due to viscosity will decrease
under the same strain while elastic deformation will increase.
Consequently, the sample with a lower loading rate will need a greater
load to generate the same deformation comparing with the sample with
a higher loading rate.

As a typical viscoelastic material, SMP exhibits obvious rate-de-
pendent behavior under different loading rates. Even at elevated tem-
perature, the strain sensitivity is still evident. The rate-dependent test
was performed on a ZWICK-010 universal testing machine with a
temperature-controlled cabinet, and the dumbbell-shaped samples were
prepared according to the standard of ASTM D638, Type IV

(115 mm × 5.8 mm × 2.8 mm). SMP Sample was first heated to 90 °C
in a temperature-controlled cabinet and stabilized for 15 min to ensure
sufficient heat exchange. Subsequently, the sample was tested with
loading rates of 1 mm/min, 500 mm/min and 1000 mm/min, respec-
tively. Experimental results exhibited obvious rate-dependent property
as shown in Fig. 3. For instance, mechanical strength was 1.96 MPa,
1.75 MPa and 1.16 MPa with the loading rates being 1 mm/min,
500 mm/min and 1000 mm/min, respectively.

Furthermore, under the same condition and standard, the samples
were tested with loading rates of 1 mm/min and 100 mm/min at the
temperature of 30 °C, 40 °C and 50 °C as shown in Fig. 4. The rate-
dependent behavior is extremely obvious, and the load at a loading rate
of 100 mm/min is much higher than that of 1 mm/min under the same
strain. Furthermore, the difference between them becomes increasingly
obvious with the increase of temperature, which indicates that the
strain sensitivity is enhanced in the vicinity of Tg.

2.4.2. Loading/unloading cycle tests
Guided by similar developments in the field of rate-dependent

model for polymer (Qi et al., 2005), loading-unloading experiments
with a wide range of loading rates were conducted in this work. The
samples (ASTM D638, Type IV, 115 mm × 5.8 mm × 2.8 mm) were
first placed in a temperature-controlled cabinet and heated to 35 °C.
After stabilizing for 15 min, the samples were stretched by 3.07 × 10−2

true strain and unloaded it with the same loading rate until the stress
reduced to zero. The loading rates of five group tests were 1 mm/min,
5 mm/min, 10 mm/min, 20 mm/min and 50 mm/min, as shown in
Fig. 5. From the experimental results, it can be obtained that under the
same strain, the higher the loading rate is, the greater the load is. The
maximum loads are 23.01 MPa, 22.06 MPa, 16.16 MPa, 12.97 MPa and
9.65 MPa when the strain is 3.07 × 10−2. Furthermore, it is worth
mentioning that when the stress reduces to zero in the unloading pro-
cess, the strain is not fully recovered, which is caused by viscosity de-
formation.

2.5. Thermo-mechanical cycle experiment

According to the theory of thermodynamics, there are two types of
deformation mechanism of SMP: conformational entropy motion and
the non-conformational motion. When SMP is in the rubbery state, the
entropy will decrease with the increase of deformation. However, when
SMP is in the glassy state, the conformational position of polymer
chains will be frozen. Moreover, entropy change induced by deforma-
tion will be stored in the form of free energy, and reheating SMP to a
high temperature, the free energy will be released again. The thermo-
mechanical cycle experiment perfectly reproduces the storage and re-
lease process of free energy.

Fig. 2. Thermal expansion experiment to obtain the coefficient of thermal ex-
pansion of the shape memory polymer.

Fig. 3. Rate-dependent tests at 90 °C with loading rates being 1 mm/min,
500 mm/min and 1000 mm/min.
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In this work, the thermal-mechanical cycle experiment was per-
formed on a ZWICK-010 universal testing machine with a sample di-
mension of 115 mm × 5.8 mm × 2.8 mm (ASTM D638, Type IV). The
whole process of thermal-mechanical cycle was set as: Step 1-Heat the
sample to 90 °C with a heating rate of 2 °C/min and stabilize for 15 min;
Step 2-Apply 15% strain on sample with a loading rate of 2 mm/min;
Step 3-Cool down the temperature to 20 °C with a cooling rate of 2 °C/
min while restrain the deformation; Step 4-Unload the stress until it
reduces to zero; Step 5-Reheat the sample to 90 °C with a heating rate of
2 °C/min. From the experimental results (Fig. 6), it can be seen that the
initial stress is about 0.1 MPa (step 2), and after the cooling process
(step 3), the stress increases to 1.8 MPa as shown in Fig. 6(a) and (b).
The thermal contraction of SMP under the confined boundary condition
results in the increase of stress. Besides, the shape recovery ratio of SMP
is close to 100% as shown in Fig. 6(c).

3. Constitutive model

3.1. Overall model description

The schematic of the proposed constitutive model is presented in
Fig. 7. Here, SMP is assumed as a composite material, which is com-
posed of the rubbery phase and glassy phase as shown in Fig. 7(a).
Moreover, the volume fractions of the two phases will change in re-
sponse to temperature. The whole strain (ε) consists of thermal strain
(ɛT), mechanical strain (ɛM) and shape memory strain (ɛsm) as shown in
Fig. 7(b), where the thermal expansion elements are arranged in series
with mechanical elements. Two groups of Maxwell elements, i.e. an
elastic element in series with a viscous element, are introduced to si-
mulate the mechanical behavior of the glassy phase while a hyper-
elastic network in paralleled with a Maxwell network are used to de-
scribe the mechanical behavior of rubbery phase. The network re-
presenting the glassy phase and the parallel network representing the
rubbery phase are combined together to characterize the mechanical
behavior of SMP. Moreover, another element representing shape
memory strain is introduced into the model of the glassy phase. During
the cooling process, the mechanical deformation at the rubbery state
will be transformed to shape memory strain and stored in this compo-
nent. For simplicity, the multiplicative split of the deformation gradient
into thermal and mechanical components is introduced to separate
thermal deformation and mechanical deformation:

=F F FM T (1)

where F is the total deformation gradient, the notation FM is mechanical
deformation gradient and FT is thermal deformation gradient.

3.2. Constitutive equations for volumetric deformation

The volumetric deformation can be divided into mechanical com-
ponent and thermal deformation component, which can be expressed
as: =Θ Θ ΘM T. Without loss of generality, it is assumed that the thermal
expansion deformation of SMP is isotropic and independent of the

Fig. 4. Rate-dependent tests at (a) 30 °C (b) 40 °C and (c) 50 °C with strain rates being 1 mm/min, 100 mm/min.

Fig. 5. Rate-dependent tests at 35 °C with loading rates being 1 mm/min,
5 mm/min, 10 mm/min, 20 mm/min and 50 mm/min.
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mechanical properties, which can be expressed as:

=F IΘT T
1/3 (2)

where I is the second-order identity tensor and = FΘ det( )T T is volume
deformation caused by thermal expansion, which can be obtained by

=ΘT
V T

V
( )
0
.

The CTE is different for the glassy phase and rubbery phase, as
shown in Fig. 2. When the temperature is below Tg, SMP is in the glassy
state, and CTE is αG = 1.29 × 10−4/ °C. However, when the tem-
perature is above Tg, SMP is in the rubbery state, and CTE is
αR = 3.06 × 10−4/ °C. The volume ratio ΘT in the different states can
be expressed as follows. For the rubbery phase of SMP, the thermal
expansion deformation ΘTR can be expressed as:

= = + −V T
V

α T TΘ ( ) [1 ( )]T R
0

0
3

R (3)

where T0 is reference temperature, and V0 represents reference volume
at T0. Expand it according to Taylor's equation and take the first order:

= + −α T TΘ 1 3 ( )T R 0R (4)

For the glassy phase of SMP, the thermal expansion deformation ΘTG
is of the form:

= = + −V T
V

α T TΘ ( ) [1 ( )]T G
0

0
3

G (5)

Expand it according to Taylor's equation and take the first order:

= + −α T TΘ 1 3 ( )T G 0G (6)

3.3. Evolution rule for volume fractions

According to the “phase transition” assumption, the volume frac-
tions of the rubbery phase and glassy phase change with temperature.
In order to obtain the evolution law of volume fraction, the experiment
data in thermal-mechanical cycle tests are used to fit the model para-
meters. The volume fraction of the glassy phase ΦG can be captured by
Eq. (7):

⎜ ⎟= ⎛
⎝

−
− ⎞

⎠
α exp

T T
β

Φ ·G
r1

(7)

where Tr1 represents reference temperature, α and β are fitting para-
meters. Here, the volume fractions of the glassy phase and rubbery
phase should satisfy:

+ =Φ Φ 1R G (8)

3.4. Structural relaxation of the rubbery phase

Structural relaxation time is a physical quantity to describe the
micro-movement of a molecular network, which is related to the mo-
lecular structure, viscosity, modulus and temperature. During the glass
transition process, the molecular chains tend to move significantly and
reach a balance, in response to the change of ambient temperature
(Lendlein and Kelch, 2002). To obtain the best fitting effect and facil-
itate to adjust the model parameters, the Adam-Gibbs model
(Nguyen et al., 2008) is adopted to describe the evolution law of the
structural relaxation time of SMP. Meanwhile, the Williams-Landel-
Ferry (WLF) equation (Williams et al., 1955) was employed to derive
the parameters of SMP in the rubbery phase. The structural relaxation
time τR of the rubbery phase can be expressed as:

⎜ ⎟⎜ ⎟= ⎛

⎝
− ⎛

⎝

− + −
+ −

⎞
⎠

⎞

⎠
τ τ exp c

loge
c T T T T T

T c T T
( ) ( )

( )R Rr
v r

v r

1 2

2

2

2 (9)

where τRr is the structural relaxation time measured at the reference
temperature Tr2. The material parameters c1,c2 and Tr2 can be obtained
by conventional thermal-mechanical test. Specific discussions about the
fitting method of material parameters are presented in Appendix A.

3.5. Deformation and stress of the rubbery phase

When the temperature is much higher than Tg, SMP is entirely
composed of the rubbery phase. Consequently, the stress-strain re-
sponses are determined by the constitutive relation of the rubbery
phase represented by networks C and D, as shown in Fig. 8. In this case,

Fig. 6. Thermo-mechanical cycle experiments: (a) stress history (b) stress history changes with temperature (c) strain history.
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the total deformation gradient F can be multiplicatively decomposed
into the mechanical deformation part FR

M and thermal deformation part
FR

T . Further, the mechanical deformation part can be split into elastic
deformation part FR

e and viscous deformation part FR
υ :

= = =F F F F F F F, , υ
R
M

R
T

R1
M

R
e

R R
e

1 1 2 (10)

where Fυ
R1 is the relaxed configuration after removing the elastic con-

figuration FR
e

1(network C), the notation FR
e

2 is the deformation gradient
of network D and FR

T is the thermal deformation gradient.
Moreover, the rate of deformation tensors of total deformation ḞR

M ,
elastic part ḞR

e and viscous part ḞR
υ are introduced as follows.

= = =F L F F L F F L F˙ , ˙ , ˙R
M

R
M

R
M

R
e

R
e

R
e

R
υ

R
υ

R
υ (11)

The stress caused by viscoelastic deformation can be obtained by the
following equation:

= + −L L F L FR
M

R
e

R
e

R
υ

R
e 1 (12)

where Lυ
R is the viscous spatial velocity gradient. Without loss of gen-

erality, the effect caused by viscous spin is neglected during the de-
formation process. Therefore, the viscous stretch rate tensor can be
expressed as:

Fig. 7. Schematics of the proposed constitutive model (a) SMP is assumed as a composite comprised of a glassy phase and of a rubbery phase (b) overall framework of
the constitutive model.

Fig. 8. Schematic of the constitutive relation of the rubbery phase.
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= = = −D L L L F F, ˙υ υ υ υ υ υ
R R R

T
R R R

1 (13)

where Dυ
R represents viscous stretch rate tensor, the notation Lυ

R is
viscous spatial velocity gradient and notation Fυ

R is viscous deformation
gradient tensor. The elastic deformation tensor De

R can be expressed as:

= − −D F C F1
2

˙e
k
e T

k
e

k
e

R
1

(14)

with the relation of =C F FT .

3.5.1. Mooney-Rivlin elasticity of rubbery phase
As shown in Fig. 8, the rubbery phase network is composed of two

hyperelastic elements and a viscous element. Mooney-Rivlin model is
adopted to describe the mechanical behavior of the hyperelastic net-
work, which exhibits good applicability in the prediction of moderate
deformation conditions. The strain energy density function for the
Mooney-Rivlin model is given by:

= − + −W c cI I(¯ 3) (¯ 3)3 1 4 2 (15)

where c3 and c4 are the material parameters related to distortion re-
sponse which can be obtained from the tensile experiment. Besides,
notation I1 and I2 are the first and second invariant of = −B B B(det ) 1

3 :

= = = + +−J λ λ λI I I B¯ , trace( )1
2
3 1 1 1

2
2
2

3
2 (16a)

= = = + +−J λ λ λ λ λ λI I I B B¯ , trace( · )2
4
3 2 2 1

2
2
2

2
2

3
2

3
2

1
2 (16b)

= =J λ λ λFdet( ) 1 2 3 (16e)

where λi represents stretch ratio in the principal planar directions, and
F is the deformation gradient. Cauchy stress of the two Mooney-Rivlin
models can be given by:

= ⎡
⎣⎢

⎛
⎝

+ ⎞
⎠

− ⋅ ⎤
⎦⎥

+ ⎡
⎣⎢

− ⎛
⎝

+ ⎞
⎠

⎤
⎦⎥

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

σ I B B B

I I I

¯

¯ 2¯

R J J

W W

J

W

W
J J

W W

I I I

I I

2 1
¯ 2 ¯ R

1
¯ R R

2
3 1

R
¯ 2 ¯

1 2
3

1

1
R1

1

2
R1 1 4

3

1

2
R1 1 1

1 1 1

1
R1

1

2
R1 (17-a)

= ⎡
⎣⎢

⎛
⎝

+ ⎞
⎠

− ⋅ ⎤
⎦⎥

+ ⎡
⎣⎢

− ⎛
⎝

+ ⎞
⎠

⎤
⎦⎥

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

σ I B B B

I I I

¯

¯ 2¯

R J J

W W

J

W

W
J J

W W

I I I

I I

2 1
¯ 2 ¯ R

1
¯ R R

2
3 1

R
¯ 2 ¯

2 2
3

2

1
R2

2

2
R2 2 4

3

2

2
R2 2 2

2 2 1

1
R2

2

2
R2 (17-b)

with
= = = = = − +∂

∂
∂
∂

∂
∂

∂
∂

−c c c c B B B I B I I, , , , ·W W W W
I I I I¯ 3

R
¯ 4

R
¯ 3

R
¯ 4

R
R

1
R R 1

R
R 2

R1
1

1 1
2

1 2
1

2 2
2

2
1 1 1

1
1

1

and = − +−B B B I B I I·R
1

R R 2
R

R 2
R

2 2 2
2

2
2

3.5.2. Viscous flow rule of the rubbery phase
From the rate-dependent test results, as shown in Fig. 3, it can be

seen that stress shows great strain sensitivity even at high temperatures.
Consequently, it can be concluded that the viscoelasticity response
cannot be neglected. A governing equation of viscous flow is introduced
to describe its viscoelastic behavior. For the viscous flow of the rubbery
phase, it is assumed that the deformation process conforms to the
change law of nonlinear Newtonian fluid. The viscous strain rate can be
expressed as (Holzapfel et al., 1999):

= −γ
η

˙ s
v

R (18)

where γ̇v is viscous strain rate of the rubbery phase, notation ηR re-
presents the viscosity parameter of SMP in rubbery state, and s re-
presents the equivalent stress of non-equilibrium state (network C),
which can be obtained by the equation = = ∥ ∥σ σ σs [ : ] ¯ / 2R R R

1
2

1
2 . Since

the viscosity coefficient varies greatly with temperature, the time-
temperature shift factor is introduced into the model to describe the
viscosity changing with temperature based on Eyring's work
(Westbrook et al., 2011). The extended viscous flowing control

equation can be expressed as:

⎜ ⎟⎜ ⎟= ⎡
⎣⎢

− ⎛
⎝

−
+ −

⎞
⎠

⎤
⎦⎥

⎛
⎝

⎞
⎠

γ
η

exp c
loge

T T
c T T

sinh Q
T

s
s

˙
s

2
·v

y

sr

r

r

s

y

1

2 (19)

where ηsr is the viscosity coefficient at the reference temperature Tr, sy
represents the yield stress and Qs is activation energy under the stress-
free state. For SMP in the rubbery state, the molecular chain is near
equilibrium and satisfies s → 0. Set = − −

+ −Q exp [ ( )]c
loge

T T
c T T

g

g
1

2
, the equa-

tion can be further simplified as:

=γ
η

Q σ˙ 1
2υ

R

neq

(20)

Since the viscosity coefficient equation is a function of temperature,
the parameter values in the rubbery state at any temperature can be
obtained by fitting the stress-strain curve. Based on the Newton fluid
assumption, the viscous flow direction is identical to Mandel stress,
which can be considered as the driving stress of viscous deformation:

= ηM Dυ
R R R (21)

where =M C S: dev( )eR is Mandel stress (Chen et al., 2014), =C F Fe e
T

e is
the right Cauchy-Green deformation tensor, and = − −J σS F F¯e R e

T
R
e 1 is the

second Piola-Kirchoff stress tensor. The control equation of viscous
deformation can be further expressed as:

= −
η

F M F˙ 1
R
υ υ

R
R R

(22)

3.6. Deformation and stress of the glassy phase

In this work, the concept of the modified equilibrium path is in-
troduced to describe the viscoelastic behavior of the glassy phase.
Generally, the Zener type (Qi et al., 2005) model (a Maxwell model in
parallel with a spring) is widely used because it can effectively describe
the nonlinear viscoelastic behavior of the polymer. According to the
Zener type model, the stress-strain curve of the loading-unloading ex-
periment can be divided into two parts: the equilibrium path part and
the overstress contribution part. The mechanical response represented
by the equilibrium path is the rate-independent part and corresponds to
the average value of stress-strain. Taking the mid-path of the loading-
unloading curve, the two parts can be determined (Bergström et al.,
1998) after a series of calculations. Generally, the mechanical con-
tribution of the rate-independent part can be described by a spring-like
element while the rate-dependent part is described by a Maxwell ele-
ment.

The average stress-strain curves corresponding to the equilibrium
path can be calculated by the loading-unloading experiment as shown
in Fig. 5. However, the experimental results indicated that the me-
chanical response of the glassy phase was not consistent with the
characteristic of the Zener type model. The identified equilibrium paths
were closely related to loading rates, and its change trend conformed to
a power-law relation. Consequently, it can be concluded that the me-
chanical behavior of styrene-based SMP does not conform to the me-
chanical response described by the “equilibrium path” of the Zener type
model.

Due to the apparent rate-dependent behavior of the contribution
represented by the so-called “equilibrium path” part, a modified model
is introduced in this work, where the single spring element in the Zener
type model is substituted by another Maxwell element. As shown in
Fig. 9, two paralleled Maxwell elements are employed to describe the
nonlinear viscoelastic behavior of SMP in the glassy state. The con-
tribution of the elastic part is illustrated by network A while the visc-
osity-induced hysteresis response is represented by network B. Besides,
the component of shape memory strain is added in this model, which
represents the transformed strain of rubbery phase during the cooling
process.

W. Zhao, et al. Mechanics of Materials 143 (2020) 103263

7



The total deformation gradient can be multiplicatively decomposed
into the mechanical deformation gradient FG

Mand thermal deformation
gradientFG

T . Furthermore, the coupling deformation of the elastic part
and the viscoelastic part is considered as the main cause of the me-
chanical deformation of SMP. According to Taylor assumption, the
mechanical deformation gradient F can be further decomposed into an
elastic part FG

e and a viscous part Fυ
G:

= = =F F F F F F F F, υ
G G

υ
G
M

G
T

G
M

G
e

G
e

1 1 2 2 (23)

where FG
e

1 and FG
e

2 are the elastic deformation part of network A and B
while Fυ

G1 and FG
υ

2 are the viscous deformation part of network A and B,
respectively.

3.6.1. Hencky's elasticity of glassy phase
Hencky's strain-energy function (Hencky, 1928) is widely used to

predict the moderate deformation of metal and elastomers, which is in
good agreement with experimental results (Anand, 1979). In this work,
the mechanical behavior of the elastic element of the glassy phase is
described by the Hencky model. The strain ɛ in classical Hooke's law is
substituted by natural logarithm ln λ, which λ represents a stretch ratio.
The nonlinear strain energy equation describing material elasticity can
be expressed as:

∏ ∏= + ⎛

⎝
⎜

⎞

⎠
⎟W μ

k
2G G

G
G

G

2 1

2

1 1

1
1

1

(24a)

∏ ∏= + ⎛

⎝
⎜

⎞

⎠
⎟W μ

k
2G G

G
G

G

2 1

2

2 2

2
2

2

(24b)

where μG and k
2

are Lame elastic constant, and
∏ = + + =λ λ λ i(ln ) (ln ) (ln ) , 1, 2, 3i

i i i
1 2 3 is Hencky variable. The

corresponding finite stress-strain relation can be expressed as:

∏ ∏= = ∂
∂ ∏

= + =τ σJ W k J μI C(ln ) 2 :G G G
1
G

1

G

0
G

1

G

1 1 1 1

1
1

1

(25a)

∏ ∏= = ∂
∂ ∏

= + =τ σJ W k J μI C(ln ) 2 :G G G
1
G

1

G

0
G

1

G

2 2 2 2

2
2

2

(25b)

where =J λ λ λ1 2 3 is the volume ratio of deformation, τG1 and τG2 re-
present Kirchhoff stress tensors of network A and B, σG1 and σG2 are the
Cauchy stress tensors of network A and B, respectively. Besides, C0 is
isotropic elasticity tensor and takes the form:

= ⊗ + μC I Ik 2 IIG0 (26)

with = +δ δ δ δII ( )ijkl ik jl il jk
1
2 .

Utilizing the isochoric part of Hencky's strain energy function, the
strain energy equation can be simplified as:

= ( ) ( )μ U UW ln : lnG GG G
e e

1 1 1 1 (27a)

= ( ) ( )μ U UW ln : lnG GG G
e e

2 2 2 2 (27b)

where elastic extension tensor can be determined by polar decom-
position from elastic deformation gradient, which satisfies

=F R UG
e

G
e

G
e

1 1 1 with =R R IG
e

G
e T

1 1 and =F R UG
e

G
e

G
e

2 2 2 with =R R IG
e

G
e T

2 2 .
Consequently, the deviatoric part of the Cauchy stress tensor can be
further given by:

= =( ) ( )
μ
J

μ
J

T R U R T R U R
2

ln ,
2

lnG G
e

G
e T

G G
e

G
e T

G
G e

G
G e

1
1

1 1 1 2
2

2 2 2 (28)

3.6.2. Viscous flow rule of the glassy phase
The contribution of network A to viscoelastic response increases

monotonically with the increase of deformation. Furthermore, re-
searches indicate that the relationship between stress and strain ex-
hibits a certain power-law relation. Consequently, a power-law relation
equation is introduced to describe the evolution law of nonlinear vis-
coelastic deformation:

⎜ ⎟= = − ⎛
⎝

⎞
⎠

M η D P expξ
D
D

3
2

( 1)G A G G
G

n

0
A

A

1 1
1

(29)

where ηA represents viscosity, PGA represents viscous parameter, ξ is
scalar deformation, D0 is reference strain rate, and nA characterizes the
rate sensitivity of network A.

The overall viscoelastic response of network B is similar to the

Fig. 9. Schematic of the constitutive relation of the glassy phase.

Fig. 10. Identification of the model parameters for phase transition process.

Fig. 11. Comparisons between simulated results and uniaxial tensile experiments at 90°C with loading rates of (a) 1000 mm/min (b) 1 mm/min.
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Maxwell model composed of a spring (of Young's modulus E) and a
dashpot (of viscosity η). The viscoelastic response of a Maxwell model
can be expressed as (Brinson et al., 2008):

= ⎡
⎣

− ⎛
⎝

− ⎞
⎠

⎤
⎦

σ Eτε exp ε
τε

˙ 1
˙ (30)

where =τ η
E is the relaxation time, and ε̇ represents the strain rate. By

introducing a rate sensitivity parameter, the equation can be further
expressed as:

= ⎡
⎣

− ⎛
⎝

− ⎞
⎠

⎤
⎦

σ ηε exp ε
τε

˙ 1
˙

n

(31)

Fig. 12. Identification of the model parameters (a) Comparison between the predicted results and experimental results (b) Variation of parameter Q defined by
Eq. (20) changes with temperature.

Fig. 13. Estimations of the viscous behavior of SMP at 35 °C with different loading rates (a) 1 mm/min (b) 5 mm/min (c) 10 mm/min (d) 20 mm/min (e) 50 mm/
min.
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with = −η S
γυ
.

Inspired by the one-dimensional Maxwell equation (Eq. (31)), the
expression of three-dimensional deformation of network B is given by:

⎜ ⎟ ⎜ ⎟= ⎛
⎝

⎞
⎠

⎧
⎨⎩

− ⎡
⎣⎢

− ⎛
⎝

⎞
⎠

⎤
⎦⎥

⎫
⎬⎭

= −
−

( )M μ H
D
D

exp
ζ

H
D
D

ζ tr C1 , 3G G G
G

G

G
n

G
e

0 0

B

2 2
2 2

2

(32)

where ζ is scalar deformation, =C F FG
Te

2 is the right Cauchy-Green
tensor, and HG represents viscous parameter of network B.

4. Identification of the model parameters

4.1. Constitutive equations for uniaxial loading condition

For uniaxial loading, the macroscopic stress tensor can be expressed
as:

= ⊗σ σ e e1 1 1 (33)

The macroscopic deformation gradient can be expressed as:

= ⊗ + ⊗ + ⊗λ λF e e e e e e( )tot 1 1 1 2 2 2 3 3 (34)

with = =J det F λ λ( )tot 1 2
2. The deviatoric part of the deformation gra-

dient can be further expressed as a function of λ:

⎜ ⎟= ⊗ + ⊗ + ⊗ = ⎛
⎝

⎞
⎠

λ
λ

λ λ
λ

F e e e e e e1 ( ),1 1 2 2 3 3
1

2

2
3

(35)

The general stretch deformation can be further divided into an
elastic part (λ λ λ, ,G G

e
R
ee

1 2 1 and λR
e

2 ) and a viscous part (λ λ,G
υ

G
υ

1 2 and λR
υ
1):

= =λ λ λ λ λ λ,G
M

G
T

R
M

R
T (36-a)

= = = =λ λ λ λ λ λ λ λ λ,G
M

G
e

G
υ

G
e

G
υ

R
M

R
e

R
υ

R
e

1 1 2 2 1 1 2 (36-b)

On this basis, kinematic variables in the constitutive model can be
expressed as the equation of elastic and viscous stretch, as well as the
derivatives of time:

= + = +( ) ( )tr λ
λ

tr λ
λ

C C2 , 2
G
e

G
e

G
e G

e
G
e

G
e

2 2
1 1

1
2 2

2 (37)

= ⎛
⎝

⊗ − ⊗ − ⊗ ⎞
⎠

λU e e e e e eln ln 1
2

1
2G

e
G
e

1 1 2 2 3 31 1 (38a)

= ⎛
⎝

⊗ − ⊗ − ⊗ ⎞
⎠

λU e e e e e eln ln 1
2

1
2G

e
G
e

1 1 2 2 3 32 2 (38b)

= + −ζ λ
λ
2 32

(39)

Fig. 14. Identification of the viscoelastic model para-
meters of glassy phase model (a) Estimations of the
mechanical behavior of Network A using the modified
equilibrium path concept (b) Estimations of the me-
chanical behavior of Network B using the modified
equilibrium path concept (c) Equivalent Mandel stress
changes with scalar deformation ζ.

Table 1
Summary of model parameters.

Parameter Value Physical meaning

αG 1.29 × 10−4 /°C CTE of glassy phase
αR 3.06 × 10−4 /°C CTE of rubbery phase
Tg 67 °C Glass transition temperature
c1 15.44 WLF parameter
c2 75.62 WLF parameter

c R
3

2 1.8 MPa Mooney-Rivlin model constant

c R
4

2 −1.1 MPa Mooney–Rivlin model constant

c R
3

1 1.65 MPa Mooney-Rivlin model constant

c R
4

1 −0.95 MPa Mooney-Rivlin model constant

HG 2.9 Model parameter
nB 0.0966 Sensitivity control parameter
nA 0.16 Sensitivity control parameter
μG1 316.28 MPa Hencky model constant

μG2 242.13 MPa Hencky model constant

ηR 9.562 × 103 Pa s−1 Viscosity in the rubbery state
Q 2.5 Model parameter
pGA 5.6 MPa Viscous coefficient

pGB 411.4 MPa Viscous coefficient
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= =D
λ
λ

D
λ
λ

˙
,

˙
G

G
υ

G
υ G

G
υ

G
υ1

1

1
2

2

2 (40)

Utilizing Eqs. (33)-(40) and the constitutive models of each net-
work, the simplified constitutive relations under uniaxial loading can
be obtained:

(1) The hydrostatic stress caused by volume deformation can be ex-
pressed as:

= −σ k
J

(Θ 1)M (41)

where = +
−k μ υ

υ
2 (1 )
3(1 2 ) is volume modulus and can be obtained by shear

modulus = +μ μ μΦ ΦG G R R and Poisson ratio υ.

(1) Mooney-Rivlin elasticity of rubbery network

For the two hyperelastic elements of the rubbery phase, the Cauchy
stress under uniaxial loading can be calculated as:

Fig. 15. Comparisons between simulations and experiments of loading-unloading cycles (a) 1 mm/min (b) 5 mm/min (c) 10 mm/min (d) 20 mm/min (e) 50 mm/
min.

Fig. 16. Comparison between simulated and experimental results of the rub-
bery phase with a loading rate of 500 mm/min.
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Fig. 17. Comparisons between simulated and experimental results with different temperatures and loading rates (a) Stress-strain curves at 25 °C (b) Stress-strain
curves at 35 °C (c) Stress-strain curves at 45 °C.

Fig. 18. Comparisons between simulated results and experiments of thermo-mechanical cycle experiments (a) stress history changes with time (b) stress history
changes with temperature (c) strain history changes with time.
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⎜ ⎟⎜ ⎟= ⎛
⎝

+ ⎞
⎠

⎛
⎝

− ⎞
⎠

σ c
c

λ
λ

λ
2

2 1
R

R
R

R
R

R
3

4 21
1

1
1

1 (42-a)

⎜ ⎟⎜ ⎟= ⎛
⎝

+ ⎞
⎠

⎛
⎝

− ⎞
⎠

σ c
c

λ
λ

λ
2

2 1
R

R
R

R
R

R
3

4 22
2

2
2

2 (42-b)

(1) Mechanical behavior of nonlinear viscous of the rubbery phase

For the viscous element in rubbery phase, the Cauchy stress can be
expressed as:

=σ η λ
λ
˙

R R
R

R (43)

where λR and λ̇R represents the stretch ratio and the time derivative of
stretch ratio, respectively.

(1) Hencky elasticity in the glassy phase branch

For the two hyperelastic elements of the glassy phase, the con-
stitutive relation of Cauchy stress can be calculated as:

=σ
μ
J

lnλ
3

G
G

G1
1

1 (44a)

=σ
μ
J

lnλ
3

G
G

G2
2

2 (44b)

(1) The nonlinear viscous response of network A

For the viscous element in network A, the Cauchy stress can be
expressed as:

⎜ ⎟= − ⎛
⎝

⎞
⎠

σ p expζ
D
D

( 1)G G
G

n

0
A A

A
1

(45)

(1) The nonlinear viscous response of network B

For the viscous element in network B, the Cauchy stress can be
expressed as:

⎜ ⎟ ⎜ ⎟= ⎛
⎝

⎞
⎠

⎧
⎨⎩

− ⎡
⎣⎢

− ⎛
⎝

⎞
⎠

⎤
⎦⎥

⎫
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−

σ p H
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D
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ς D

D
1

HG G G
G
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B
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(46)

Set =ς H ( )G
D
D

nG
υ

0
, then the equation can be simplified to:

= ⎡

⎣
⎢ − ⎡

⎣⎢
− ⎤

⎦⎥
⎤

⎦
⎥σ μ ς exp

ς
ς

1G G
G (47)

The total Cauchy stress of the model can be rewritten as:

= + + + +σ σ σ σ σ pIΦ ( ) Φ ( )G G G R R R1 2 1 2 (48)

where σ is Cauchy stress, σR and σG are the stresses of the glassy phase
and rubbery phase, respectively, and p represents hydrostatic stress.
The overall strain-stress response can be calculated as:

= + + + −

+ − − − + − − −
( ) ( )( )σ lnλ lnλ c λ

k J α T T k J α T T

Φ Φ 2

Φ [ 1 3 ( )] Φ [ 1 3 ( )]

G
μ

J G
μ

J G R
c
λ λ

G G G R R R

3 3
3

2 2 1

0 0

G G1
1

2
2

4

(49)

4.2. Determination of the model parameters of the phase transition process

According to the assumption of the “phase transition” concept, the
transition process between the rubbery phase and the glassy phase will
be continuous with the change of temperature, and the macroscopic
display is shape memory effect. Based on the thermal-mechanical cycle
test, the model parameters in Eq. (7) can be determined by the

nonlinear fitting. The comparison between experiment and simulation
is shown in Fig. 10, which reveals that Eq. (7) can approximately
characterize the volume fraction of the glassy phase changing with
temperature.

4.3. Determination of material parameters of the rubbery phase

According to the characteristics of viscoelastic materials, when the
loading rate is large enough, the viscous response can be ignored. In
order to obtain the model parameters of the rubbery phase, the ex-
periment data with a loading rate of 1000 mm/min are adopted to fit
the parameter. It is assumed that the effect of viscoelastic response can
be neglected under this loading rate. For the rubbery phase model, due
to ≅F FR

e
R
M , the model parameters of c R

3
2 and c R

4
2 in the Mooney-Rivlin

model can be determined from the best fitting of the stress-strain curve.
The other model parameters c R

3
1 and c R

4
1 can be obtained by fitting the

stress-strain curve with a loading rate of 1 mm/min. Meanwhile, by
using the remaining experimental results with other loading rates, the
deformation gradient FR

e can be obtained. Based on the relationship
=F F FR

υ
R
M

R
e , the viscoelastic response of the rubbery phase can be fur-

ther derived. From the fitting results, as shown in Fig. 11, it can be seen
that this model can reproduce the experimentally observed results. On
the basis, it can be obtained =c 1.8 MPaR

3
2 , = −c 1.1 MPaR

4
2 ,

=c 1.65 MPaR
3

1 and = −c 0.95 MPaR
4

1 .
The viscoelastic response of the rubbery phase can be captured by

Eq. (20). The variation tendency of parameter Q changing with tem-
perature can be obtained by the DMA curve (More details can be found
in the Supporting Information, Appendix A). The comparison between
simulation and experiment is shown in Fig. 12(a). Based on the simu-
lation result, the corresponding parameters including c1, c2 and re-
laxation time can be determined. Subsequently, the model parameter Q
changing with temperature can be further calculated as shown in
Fig. 12(b). According to the phase transition hypothesis, when the
temperature is higher than Tg, SMP shows a more obvious characteristic
of the rubbery phase. Consequently, parameter Q can take an arbitrary
value with a temperature higher than Tg. Here, it takes Q = 2.5 with a
temperature of 90 °C.

4.4. Determination of material parameters of the glassy phase

According to the modified “equilibrium path” assumption, the
contribution of elastic dominated deformation is presented by Network
A while the contribution of viscous dominated deformation is re-
presented by Network B. Consequently, the test curves can be divided
into two parts bounded by the modified equilibrium path as shown in
Fig. 13(a)–(e). It is not hard to see that stress under the same strain
changes dramatically with the increase of loading rate. Exemplified by
the limit loads under different loading rates, the maximum stress is
9.62 MPa with a loading rate of 1 mm/min and 22.96 MPa with a
loading rate of 50 mm/min.

Combined with Eqs. (36), (44), (45) and (46), the contributions of
elastic part and viscous part are shown in Fig. 14(a) and Fig. 14(b).
Model parameters μ μ H n n p p( , , , , , , )G G G A B G GA B1 2 for the glassy phase
can be determined iteratively. As mentioned above, when the loading
rate is high enough, it is considered that the viscoelastic response can
be ignored, that is, ≅λ λG

M
G
e

1 1 . Consequently, model parameters μG1 can
be estimated by the stress-strain curve with the highest loading rate
shown in Fig. 14(a). At the same time, utilizing the remaining stress-
strain curves with other loading rates, the elastic deformation λG

e
1 can

be calculated based on μG1. Subsequently, utilizing the relationship
=λ λ λG

e
G
υ

1 1 , the viscous coefficient can be determined. In the same way,
utilizing the stress-strain curves in Fig. 14(b), the model parameters
μG2, pGBand nB related to network B can be obtained. Furthermore, the
corresponding equivalent Mandel stress versus scalar deformation ζ
corresponding to each experiment can be calculated as shown in
Fig. 14(c).
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In this section, the related parameters of this model are determined
and listed in Table 1.

5. Comparisons between simulated and experimental results

Based on the proposed model, the mechanical responses such as
rate-dependent behavior, thermal-mechanical cycles and loading-un-
loading cycles are predicted. The comparisons between simulated re-
sults and experimental results indicate that the proposed model can
reproduce the stress-strain response obtained by the experiments.

Fig. 15(a)–(e) illustrates the comparisons between simulations and
experiments with different loading-unloading rates. By combining the
stress of the elastic part represented by network A and the viscous part
represented by network B, the overall stress-strain relation can be ob-
tained. The comparisons indicate that the constitutive model can re-
produce the experimental results and can capture the rate-dependent
behaviors of SMP with different loading rates. Even though there are
some differences in the maximum stress during the loading process,
evolutionary trends are the same.

When the test temperature is 90 °C, SMP is entirely composed of the
rubbery phase. The comparison between the predicted result and the
experimental result of the rubbery phase is presented in Fig. 16. Based
on the rubbery phase model of Network C and D, the predicted result
indicates that it may capture the rate-dependent behavior and re-
produce the experimental results.

The validity of the model was further verified by rate-dependent
experiments with different temperatures and loading rates, as shown in
Fig. 17(a)–(c). Loading rates were 1 mm/min and 100 mm/min with a
test temperature of 25 °C, 35 °C and 45 °C, respectively. The compar-
isons indicated that the model could capture the variation trends and
reproduce the viscoelastic behavior of SMP.

Furthermore, the predicted results of the thermal-mechanical cycle
are compared with the experiment, as shown in Fig. 18. Based on the
developed model, the simulation reproduces the thermal-mechanical
cycle process of SMP. The results indicate that the variation history of
stress changing with time (Fig. 18(a)) and temperature (Fig. 18(b)) can
be well captured by the proposed model. When SMP is reheated above
Tg, the strain recovery process will be activated. The simulation and
experiment results are found to be mostly in agreement with the pre-
sented theories, whereby the new theory is feasible as shown in
Fig. 18(c).

6. Conclusion

A constitutive model based on the multiplicative decomposition of
the deformation gradient is established to describe the mechanical re-
sponse of SMP based on the “phase transition” concept and rheological
method. Mechanical behaviors of the glassy phase and rubbery phase
are described by different constitutive structures. For the glassy phase,
the “equilibrium path” concept is introduced and amended to describe
the rate-dependent behavior of SMP. Furthermore, two Mooney-Rivlin
models and a viscous element are introduced to describe the mechan-
ical response of the rubbery phase. A series of mechanical tests in-
cluding rate-dependent experiments, loading/unloading cycle tests and
thermal-mechanical cycle tests are carried out to verify the validity of
the proposed constitutive model. The comparisons show that a re-
markable consistency exists between model predictions and experi-
ments, and the current constitutive model can capture the non-linear
viscoelastic deformation and the thermal-mechanical cycle of SMP.
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