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Electromechanical stability of a Mooney–
Rivlin-type dielectric elastomer with nonlinear
variable permittivity
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Abstract

The electromechanical stability of a Mooney–Rivlin-type dielectric elastomer undergoing large deformation with nonlinear
permittivity is investigated. The stability is analyzed by applying a new kind of free energy model, which couples Ogden elastic
strain energy and electric field energy density with nonlinear permittivity. Then, nominal electric field and nominal electric
displacement of the dielectric elastomer are introduced. Based on this, the electromechanical stability of the Mooney–Rivlin-
type dielectric elastomer is analyzed by simplifying the Ogden elastic strain energy. The critical breakdown electric fields under
the conditions of two stretching ratios and various material constant ratios k (n = km, where m and n are material constants in
the Ogden model, determined experimentally) are also obtained. According to the simulation results, for a larger dimensionless
constant k of the dielectric material, the critical nominal electric field is higher, the corresponding dielectric elastomer or
structure is more stable and the electromechanical stability of the dielectric elastomer is proved to be markedly enhanced
by a pre-stretching process. These results agree well with experimental data and can be used as guidance in the design and
fabrication of dielectric elastomer actuators.
c© 2010 Society of Chemical Industry
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INTRODUCTION
A dielectric elastomer (DE) film sandwiched between two
compliant electrodes, when subjected to a high electric field, will
expand in-plane and contract in the thickness direction1 – 11 due
to the electrostatic force between the two compliant electrodes.
The thickness contraction leads to a higher value of the electric
field; when the electric field reaches the critical breakdown level,
the DE becomes electromechanically unstable.

In recent years, the analysis of the electromechanical stability
of DEs has become increasingly thorough and concrete, after Suo
and Zhao and others proposed the electromechanical stability
theory of DEs.12 – 27

Zhao and Suo12 and Zhao et al.13 proposed that a discretionary
free energy function can be used to analyze the electromechanical
stability of a DE. As an example, the elastic strain energy
function with one material constant was used to analyze the
electromechanical stability of an ideal elastic elastomer subjected
to both equal biaxial stresses and unequal biaxial stresses. The
results illustrated the relation between the nominal electric
displacement and the nominal electric field. It was the first time that
the theoretical predictions concerning the fact that pre-stretching
could enhance a DE’s stability were observed experimentally.
Meanwhile, the critical breakdown electric field strength was
predicted using this method.

Norrisa used the Ogden elastic strain energy model to analyze
elastic elastomer stability.16 The relations among critical actual
electric field, nominal strain and the pre-stretching ratio of DEs
were obtained accurately. Simultaneously, as a particular case, a
model named neo-Hookean which was a simplified version of the
Ogden model was introduced to give more accurate results.

Liu et al. studied the stability of DEs using an elastic strain energy
function with two material constants and found the ratio of the two
constants could be used to represent the stability of different types
of DE.17 The relation between the nominal electric displacement
and nominal electric field of different DEs was derived directly.

Further research was done on the stability of neo-Hookean
silicone-based elastomers by Dı́az-Calleja’s group.18 The Hessian
matrix of DEs under two special conditions was deduced.
Furthermore, the stable and unstable domains of DEs were
determined. These results can help understand the stability
performance of neo-Hookean silicone more thoroughly. Recently,
we studied the stable domain of Mooney–Rivlin silicone, which
provides useful theoretical guidance for the research on this kind
of material.19

In much research work on the electromechanical stability
analysis of DE actuators, the DE permittivity is assumed to be a
constant. This is true if the DE undergoes only limited deformation.
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Figure 1. Relative dielectric constant of VHB 4910-type acrylic as it is
stretched.

In their recent paper, Zhao and Suo used a permittivity which
was a linear fitted function of experimental data in analyzing
the mechanical behavior and stability of a DE undergoing large
deformation.22

Actually, a typical DE is a kind of crosslinked polymer.
The structural symmetry of the macromolecule, the degree of
crosslinking, along with the tensile deformation can affect the
dielectric permittivity enormously. For DEs with higher degree of
crosslinking, or higher degree of molecular structural symmetry,
the permittivity is relatively low. In addition, stretching can guide
the macromolecule to be arranged in order, which can increase
the intermolecular forces and reduce the activities of polar groups;
as a result, the permittivity will decrease. However, if the degree of
crosslinking is low and the deformation is well below the extension
limit, the molecular units in the polymers can be polarized as freely
as in a polymeric liquid. In this case the corresponding permittivity
is unaffected by the deformation.

Based on all the research mentioned above, the Ogden elastic
strain energy function with two material constants are used to
analyze the electromechanical stability of Mooney–Rivlin-type
silicone with nonlinear variable permittivity under two special
loading conditions.

THEORETICAL
Recent experimental research results have shown that the
dielectric permittivity of a DE changes while undergoing large
deformation.5,23 Kofod et al. measured the dielectric constant at
various frequencies as a function of area increase ratio, as shown
in Fig. 1,23 which shows the decrease of the dielectric constant of
the acrylic polymer VHB 4910, from 3M Company (capable of large
strains, high energy densities, high efficiency, high responsive
speed as well as good reliability and durability; VHB 4910 has been
widely explored for use in actuators of different configurations),
approaching a limit value as the frequency and area ratio increase.
According to Kofod et al.,23 the permittivity of the DE is variable
and it is a function of the area increase ratio which depends on the
stretch ratio. In this research, we suppose that the volume of DEs
is incompressible.

An electric energy density function with variable permittivity is
introduced as follows:

W1(λ1, λ2, λ3, D∼) = D2

2ε(λ1, λ2, λ3)
(1)

where D = λ3D∼ and D is the true electric displacement. Further,
the electric energy density function W1(λ1, λ2, λ3, D∼) together

with the elastic strain energy function W0(λ1, λ2, λ3) constitute the
system’s free energy:

W(λ1, λ2, λ3, D∼) = W0(λ1, λ2, λ3)

+ W1(λ1, λ2, λ3, D∼) (2)

where λi, i = 1, 2, 3, represent the principal stretch ratio after
deformation and D∼ is the nominal electric displacement.

Based on the data of Kofod et al.23 for VHB 4910 from 3M
company is about 3MPa. And for single acrylic acid mon (The
elastic modulus for the omer, its molecular formula is C3H4O2

with a molecular weight of 72), the following relation holds
approximately:

ε(λ1, λ2, λ3)

=
{

(−0.016S∼ + 4.716)ε0 = (C1S∼ + C2)ε0, S∼ ≤ 16
4.48ε0, S∼ > 16

(3)

where ε0 is the permittivity of free space, and C1 = −0.016 and
C2 = 4.716 for VHB 4910. Note here S∼ is the area increase ratio
and has a critical value of 16, S∼ = (1 + λ1)(1 + λ2). By considering
the incompressibility of DEs, i.e. λ1λ2λ3 = 1, we get λ3 = 1/λ1λ2.

The Ogden model was proposed by Ogden in 1972. According
to this model, the elastic strain energy function can be written as

W0(λ1, λ2) =
N∑

p=1

µp

αp
(λ1

αp + λ2
αp + λ1

−αpλ2
−αp − 3) (4)

where µp is a material constant determined by experiments and
αp is a constant (positive or negative real number). For S∼ ≤ 16,
the corresponding system’s free energy function is

W(λ1, λ2, D∼) =
N∑

p=1

µp

αp
(λ1

αp + λ2
αp + λ1

−αpλ2
−αp − 3)

+ D∼2

2λ1
2λ2

2(C1S∼ + C2)ε0
(5)

Hence the nominal stress and nominal electric field can be derived
as

s1 = ∂W

∂λ1
=

N∑
p=1

µp(λ1
αp−1 − λ1

−αp−1λ2
−αp )

− D∼2

2ε0

2(C1S∼ + C2)λ1
−1 + C1(λ2 − 1)

λ1
2λ2

2(C1S∼ + C2)2 (6)

s2 = ∂W

∂λ2
=

N∑
p=1

µp(λ2
αp−1 − λ2

−αp−1λ1
−αp )

− D∼2

2ε0

2(C1S∼ + C2)λ2
−1 + C1(λ1 − 1)

λ1
2λ2

2(C1S∼ + C2)2 (7)

E∼ = ∂W

∂D∼ = D∼

ε0(C1S∼ + C2)
λ1

−2λ2
−2 (8)

The Hessian matrix is as follows:
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(9)

When S∼ > 16, the free energy, nominal stress and nominal
electric field of the system can be expressed as

W(λ1, λ2, D∼) =
N∑

p=1

µp

αp
(λ1

αp + λ2
αp + λ1

−αpλ2
−αp − 3)

+ D∼2

8.96ε0
λ1

−2λ2
−2 (10)

s1 = ∂W

∂λ1
=

N∑
p=1

µp(λ1
αp−1 − λ1

−αp−1λ2
−αp )

− D∼2

4.48ε0
λ1

−3λ2
−2 (11)

s2 = ∂W

∂λ2
=

N∑
p=1

µp(λ2
αp−1 − λ2

−αp−1λ1
−αp )

− D∼2

4.48ε0
λ1

−2λ2
−3 (12)

E∼ = ∂W

∂D∼ = D∼

4.48ε0
λ1

−2λ2
−2 (13)

The Hessian matrix is
We postulate that µ1 = k2µ2 = k3µ3 = · · · kNµN , k2, k3,

. . . , kN are material constants. By substituting them into
Eqns (6)–(8) and (11)–(13), the nominal electric field and the
nominal electrical displacement can be evaluated:
where N = [2C1(1 + λ)2 + 2C2 + C1(λ2 + λ)]/[C1(1 + λ)2 + C2]2,
P = [2C1(1 + λ)2 + 2C2 + C1(λ2 + λ)]λ3 and c = 4.48.

Equation (15) illustrates the electromechanical stability analysis
method by applying Ogden elastic strain energy when the DE
undergoes large deformation under the condition of two kinds
of stretching ratios. Evidently they are functions taking the
stretch ratio λ as the variable parameter. This means that the
relationship between the nominal electric field and the nominal
electrical displacement can be derived by changing the value of
s/µ2.

Here we consider the condition that the Ogden elastic strain
energy formulation is limited to that with two material constants.
Let N = 2, α2 = α1 = −2, µ1 = m and µ2 = n. The elastic strain
energy functional with two material constants can be written as
follows:17,19,21

(14)

(15)
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W0(λ1, λ2, λ−1
1 λ−1

2 ) = m

2
(λ1

2 + λ2
2 + λ1

−2λ2
−2 − 3)

+ n

2
(λ1

−2 + λ2
−2 + λ1

2λ2
2 − 3) (16)

where λ1, λ2 denote the in-plane principal stretching ratios,
m, n are material constants, which can be determined by
experiments, D∼ is the nominal electric displacement and ε

denotes the permittivity of the DE. According to Suo’s theory,12 – 14

s1 = ∂W/∂λ1, s2 = ∂W/∂λ2, E∼ = ∂W/∂D∼ are obtained, where
E∼ is the nominal electric field.

For S∼ ≤ 16, the electric energy density function becomes

W1(λ1, λ2, λ3, D∼) = W1(λ1, λ2, D∼)

= D∼2

2λ1
2λ2

2(C1S∼ + C2)ε0
(17)

and the corresponding system’s free energy function is

W(λ1, λ2, D∼) = m

2
(λ1

2 + λ2
2 + λ1

−2λ2
−2 − 3)

+ n

2
(λ1

−2 + λ2
−2 + λ1

2λ2
2 − 3)

+ D∼

2ε0(C1S∼ + C2)
λ1

−2λ2
−2 (18)

Hence the nominal stress and nominal electric field can be
derived as

s1 = ∂W

∂λ1
= m(λ1 − λ−3

1 λ−2
2 ) + n(−λ−3

1 + λ1λ
2
2)

− D∼2

2ε0

2(C1S∼ + C2)λ−1
1 + C1(λ2 + 1)

λ2
1λ

2
2(C1S∼ + C2)2 (19)

s2 = ∂W

∂λ2
= m(λ2 − λ−3

2 λ−2
1 ) + n(−λ−3

2 + λ2λ
2
1)

− D∼2

2ε0

2(C1S∼ + C2)λ−1
2 + C1(λ1 + 1)

λ2
1λ

2
2(C1S∼ + C2)2 (20)

E∼ = ∂W

∂D∼ = D∼

ε0(C1S∼ + C2)
λ1

−2λ2
−2 (21)

The Hessian matrix is then
Now consider a special loading case. It is assumed that the DE

film is uniformly pre-stretched, s1 = s2 = s, and S∼ ≤ 16. We
postulate that n = km, where k is constant, and factorization of
the resulting equation gives

(λ1 − λ2)

{
(1 + λ1

3λ2
3) + k(λ1

2 + λ1λ2 + λ2
2 − λ1

4λ2
4)

+ D∼2

2mε0

[
2(C1S∼ + C2)λ1λ2 + C1λ1

3λ2
3

(C1S∼ + C2)2

]}
= 0 (23)

The solution of the above equation is λ1 = λ2 = λ, which means
that the stretch ratios in the two major directions of the plane are
the same when exerting equal-axis pre-stress over the DE.

The equation of nominal stress can be rewritten in another form
as

D∼
√

mε0
=

√
2(λ6 − 1)

N
+ 2k(λ8 − λ2)

N
− 2sλ5

Nm
(24)

where

N = [2C1(1 + λ)2 + 2C2 + C1(λ2 + λ)]

[C1(1 + λ)2 + C2]2

Hence the nominal electric field is

E∼√
m/ε0

=

√√√√√√
2(λ − λ−5) + 2k(λ3 − λ−3)

[2C1(1 + λ)2 + 2C2 + C1(λ2 + λ)]λ3

− 2s
m[2C1(1 + λ)2 + 2C2 + C1(λ2 + λ)]λ3

(25)

RESULTS
When k is assigned different values, for the variables in the
stretch ratio λ, we can analyze the electromechanical stability
of various DEs undergoing large deformation processes. Figure 2
shows the relationship between D∼/

√
mε0 and E∼/

√
m/ε0 when

k = 1, 1/2, 1/4 and 1/8. In each case, s/m is set different values
(0, 0.5, 1, 1.5, 2, 2.5) so that E∼ will reach peak values. The
curves to the left-hand side of these peaks make the Hessian
matrix positive, and, conversely, to the right-hand side make the
Hessian matrix negative; however, the peaks make the Hessian
matrix det (H) = 0. With s/m increasing, the nominal electric
field decreases for the various values of the constant k. This
shows that pre-stretch can be enforced to improve the stability
of DEs.

When k = 1, 1/2, 1/4 and 1/8, respectively, the correspond-
ing critical nominal values of electric field are 0.4536

√
m/ε0,

0.3760
√

m/ε0, 0.3303
√

m/ε0 and 0.3057
√

m/ε0. Let the represen-
tative parameters m = 1 × 106 Pa, ε0 = 8.85 × 10−12 F m−1, then
critical nominal values of electric field are 1.53 × 108, 1.26 × 108,
1.11 × 108 and 1.02 × 108 V m−1. The critical nominal electric field
of DEs not only corresponds to the results that Suo et al. calculated,
but also corresponds to the experimental value of the breakdown
electric field which has been imposed on the DE material.12,13

(22)
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Figure 2. Nominal electric field versus nominal electric displacement when λ1 = λ2 = λ, S∼ ≤ 16.
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Figure 3. Nominal electric field versus stretch ratio when λ1 = λ2 = λ, S∼ ≤ 16.

This stretch ratio point can be obtained as 1.37, 1.32, 1.27 and
1.25, corresponding to thickness strains of 46, 42, 38 and 36%,
respectively, which agrees with the fact that it cannot exceed 40%
of the experimental value.12

As k increases, the critical electric field increases, indicating that
a larger value of k for the DE material leads to higher electrical
and mechanical stability; the corresponding threshold that can
be achieved is higher and the thickness tensile strain rate is also
higher.

Figure 3 shows the relation between stretching rate and nominal
electric field for various values of k (1, 1/2, 1/4, 1/8). It shows that
when s/m increases, E∼/

√
m/ε0 becomes smaller; that is, as the

nominal stress increases, the nominal electric field decreases. This
shows that imposing pre-tension to DEs can significantly improve
their electromechanical stability. The electrostriction experiments

on the pre-stretching of DEs by Kofod’s group showed that when
the two in-plane pre-stretch ratios increase from 0 to 500%,
the breakdown electric field increases from 18 to 218 MV m−1,
amounting to 1100%.23 This means that the electromechanical
stability is evidently enhanced. Our numeric model applying the
Mooney–Rivlin elastic strain energy function produces the same
result as obtained by Kofod’s group,23 as well as by Zhao and
Suo.12

Similarly, for S∼ > 16, we have

W1(λ1, λ2, λ3, D∼) = W1(λ1, λ2, D∼) = D∼2

8.96λ2
1λ

2
2ε0

(26)

Then the free energy, nominal stress and nominal electric field of
the system can be expressed as
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Figure 4. Nominal electric field versus nominal electric displacement when λ1 = λ2 = λ, S∼ > 16.

W(λ1, λ2, D∼) = m

2
(λ1

2 + λ2
2 + λ1

−2λ2
−2 − 3)

+ n

2
(λ1

−2 + λ2
−2 + λ1

2λ2
2 − 3)

+ D∼2

8.96ε0
λ1

−2λ2
−2 (27)

s1 = ∂W

∂λ1
= m(λ1 − λ1

−3λ2
−2) + n(−λ1

−3 + λ1λ2
2)

− D∼2

4.48ε0
λ1

−3λ2
−2 (28)

s2 = ∂W

∂λ2
= m(λ2 − λ2

−3λ1
−2) + n(−λ2

−3 + λ2λ1
2)

− D∼2

4.48ε0
λ1

−2λ2
−3 (29)

E∼ = ∂W

∂D∼ = D∼

4.48ε0
λ1

−2λ2
−2 (30)

The corresponding Hessian matrix is
Similarly, we now consider an almost identical case except that

S∼ > 16. To ensure the stresses in the two major directions of
the plane are the same, the DE film is pre-stretched uniformly, i.e.
s1 = s2 = s.

Adopting similar processing methods to those mentioned
above, we postulate that n = km, then process the factorization:

(λ1 − λ2)


 (1 + λ1

3λ2
3) + k(λ1

2 + λ1λ2 + λ2
2 − λ1

4λ2
4)

+ D∼2

4.48mε0




= 0 (32)

The corresponding solution is λ1 = λ2 = λ, which means that
the ratios in the two major directions of the plane are the same
when applying equal-axis pre-stress over the DE:

D∼
√

mε0
=

√
4.48

[
(λ6 − 1) + k(λ8 − λ2) − s

m
λ5

]
(33)

E∼√
m/ε0

=
√

(λ−2 − λ−8)

4.48
+ k(1 − λ−6)

4.48
− s

4.48m
λ−3 (34)

The relationships between nominal electric field and nominal
electric displacement and between nominal electric field and pre-
stretch ratio are shown in Figs 4 and 5, respectively. Similar results
have been obtained as previously when S∼ ≤ 16. In this case, the
values of λC are 1.47, 1.38, 1.32 and 1.29 and the corresponding
values of strain in the thickness direction are 53, 47, 42 and
40%, and when the non-dimensional parameter is set as k = 1,
1/2, 1/4 and 1/8, the maximum values of the nominal electric
field are E∼

max = 0.5424
√

m/ε0, 0.4424
√

m/ε0, 0.3862
√

m/ε0 and
0.3562

√
m/ε0. Let m = 1 × 106 Pa, ε0 = 8.85 × 10−12 F m−1, then

critical nominal values of electric field are 1.82 × 108, 1.48 × 108,
1.29×108 and 1.19×108 V m−1, respectively. These are consistent
with experimental results23 and the conclusions of Zhao and Suo.12

(31)
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Figure 5. Nominal electric field versus stretch ratio when λ1 = λ2 = λ, S∼ > 16.

DISCUSSION
From the above analysis, it is observed that when S∼ varies from
0 to a finite value, the permittivity of the DE film decreases
linearly until it approaches a constant of 4.48ε0. For both of
the two situations S∼ ≤ 16 and S∼ > 16, it is clear that if
the DE film is pre-stretched, its permittivity will decrease and
the critical nominal electric field will increase. (For example,
for k = 1, the critical nominal electric fields under the two
kinds of stretch ratio are 0.4536

√
m/ε0 and 0.5424

√
m/ε0,

respectively.) Hence, the DE treated by pre-stretching shows
better electromechanical stability. This conclusion is consistent
with experimental results and the theoretical results of Zhao and
Suo.12

CONCLUSIONS
The electromechanical stability of a Mooney–Rivlin-type DE un-
dergoing large deformation has been investigated. The nonlinear
expression of permittivity as a function of the stretch ratio
is also proposed. In our study, the electromechanical stabil-
ity is analyzed using a free energy model consisting of Ogden
elastic strain energy and electric field energy with nonlinear per-
mittivity. Based on the model, the relations between nominal
electric displacement and nominal electric field are evaluated.
Further, the simple form of Ogden elastic strain energy, with
only two material constants, is applied to investigate the sta-
bility performance of a Mooney–Rivlin-type DE and the critical
breakdown electric fields of various DEs are evaluated. The
results show that the proportionality constant k is beneficial
for representing the stability of different types of DE. For a
larger dimensionless constant k of the dielectric material, the
nominal value of electric breakdown field is higher, the cor-
responding DE or structure is more stable and the pre-stretch
deformation can notably improve the film’s electromechanical
stability. These results match the experimental data well and
can be applied as guidance in the design and fabrication of DE
actuators.
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