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A dielectric elastomer is capable of large voltage-induced deformation, particularly
when the voltage is applied on the verge of snap-through instability. A model is
described which shows that the snap-through instability is markedly affected by both
the extension limit of polymer chains and the polarization saturation of dipoles. The
model may guide the search for high-performance dielectric elastomer transducers.
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1. Introduction

When subjected to a voltage through its thickness, a membrane of a dielectric elastomer
reduces in thickness and enlarges in area (Figure 1). This electromechanical coupling is
being studied intensely for diverse applications, including soft robots, adaptive optics,
Braille displays, and electric generators [1–10]. Voltage-induced strains over 100% have
been achieved in several ways, by pre-stretching an elastomer [11], by using an elastomer
of interpenetrating networks [12], by swelling an elastomer with a solvent [13], and by
spraying charge on an electrode-free elastomer [14].

When the voltage ramps up, the membrane thins down, so that the same voltage will
induce an even higher electric field. This positive feedback results in the pull-in insta-
bility [15]. The pull-in instability is commonly considered a mode of failure: the voltage
causes the elastomer to reduce the thickness drastically, possibly leading to electrical break-
down [16]. In recent years, the pull-in instability has been analyzed within the context of
dielectric elastomer transducers [17–24].

It was recognized recently, however, that an elastomer may survive the pull-in instabil-
ity without electrical breakdown, and be stabilized in a state of a much smaller thickness,
resulting in the snap-through instability [25]. This behavior is understood as follows. When
the elastomer is subject to mechanical forces (Figure 2a), on approaching the extension
limit, λlim, the elastomer stiffens steeply. When the deformation is caused by a voltage
rather than by mechanical forces, the voltage–stretch curve is typically not monotonic
(Figure 2b). The voltage attains a local maximum at stretch λc, corresponding to the onset
of the pull-in instability. As the voltage ramps up further, the membrane snaps, as indicated
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Figure 1. A membrane of a dielectric elastomer is sandwiched between two compliant electrodes.
(a) In the reference state, the dielectric is subject to neither forces nor voltage. (b) In the current
state, subject to forces and voltage, the membrane deforms, and charge flows from one electrode to
the other through the external conducting wire.

by the dashed arrow. The electrical breakdown (�B) of an equal-biaxially deformed dielec-
tric elastomer can be expressed as �B = EBL3λ

−2, [3], where EB is the electrical strength.
We sketch the breakdown curves in Figures 2b and 2c to illustrate the maximum stretch
that can be achieved with and without the instability, denoted by circles. In Figure 2b, the
dielectric elastomer cannot survive the ‘jump’, known as the ‘snap-through’ instability. In
this case, the maximum stretch is limited by the instability, which is far below the exten-
sion limit. When the instability is eliminated, the dielectric elastomer exhibits a monotonic
voltage–stretch curve, i.e. the membrane deforms continuously until reaching its electrical
strength. Indeed, giant voltage-induced stretches well above 100% are possible, so long as
the elastomer snaps to a state safe from electrical breakdown [26,27], and the maximum
strain λmax is illustrated in Figure 2c.

This paper shows that the snap-through instability can also be markedly affected by
polarization saturation (Figure 2d). When a dielectric with randomly oriented dipoles is
subject to a voltage, the dipoles rotate to align with the electric field. The polarization of
the material may saturate when the voltage is high enough [28,29]. This nonlinear dielec-
tric behavior will be incorporated in equations of state, and will be shown to modify the
voltage-stretch curve.

2. Free energy model

In the reference state (Figure 1a), the membrane is subject to neither forces nor voltage,
and is of dimensions L1, L2 and L3. In the current state (Figure 1b), subject to forces P1,
P2 and P3, and voltage �, the membrane is of dimensions l1, l2 and l3, the two electrodes
accumulate electric charges ± Q, and the Helmholtz free energy of the membrane is F.

When the dimensions of the membrane change by δl1, δl2 and δl3, the forces do work
P1δl1 + P2δl2 + P3δl3. When a small quantity of charge δQ flows through the conducting
wire, the voltage does work �δQ. In equilibrium, the combined work equals the increase
in the free energy of the membrane:

δF = P1δl1 + P2δl2 + P3δl3 + �δQ. (1)

Define the specific Helmholtz free energy by W = F/ (L1L2L3), stretches by
λ1 = l1/L1, λ2 = l2/L2 and λ3 = l3/L3, stresses by σ1 = P1/ (l2l3), σ2 = P2/ (l1l3) and
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Figure 2. (a) Stress–stretch curve of a membrane of an elastomer under biaxial stresses. The curve
stiffens steeply upon approaching the extension limit. (b) Voltage–stretch curve of a membrane of a
dielectric elastomer is typically not monotonic. (c) Dielectric elastomer of monotonic voltage–stress
relation is capable of large deformation until electrical breakdown. (d) For a dielectric that contains
randomly oriented dipoles, as the electric field increases the dipoles rotate to align with the electric
field and the electric displacement saturates.
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σ3 = P3/ (l1l2), electric field by E = �/l3, and electric displacement by D = Q/ (l1l2).
The amount of charge on either electrode relates to the electric displacement by Q = Dl1l2,
so that the variation of the charge is

δQ = Dl2δl1 + Dl1δl2 + l1l2δD. (2)

The elastomer is taken to be incompressible — that is, the volume of the material
remains unchanged during deformation, l1l2l3 = L1L2L3, so that

λ1λ2λ3 = 1. (3)

This assumption of incompressibility places a constraint among the three stretches. We
regard λ1 and λ2 as independent variables, so that λ3 = λ−1

1 λ−1
2 , and δλ3 = −λ−2

1 λ−1
2 δλ1 −

λ−1
1 λ−2

2 δλ2. Divide both sides of Equation (1) by the volume of the membrane, L1L2L3, and
using Equations (2) and (3), we obtain that

δW = (σ1 − σ3 + DE) λ−1
1 δλ1 + (σ1 − σ3 + DE)λ−1

2 δλ2 + EδD. (4)

For an incompressible dielectric, the condition of equilibrium Equation (4) holds for
arbitrary and independent variations δλ1, δλ2 and δD.

As a material model, the specific free energy is taken to be a function of the three
independent variables, W (λ1, λ2, D), so that Equation (4) is equivalent to the following
equations:

σ1 − σ3 = λ1
∂W (λ1, λ2, D)

∂λ1
− ED, (5)

σ2 − σ3 = λ2
∂W (λ1, λ2, D)

∂λ2
− ED, (6)

E = ∂W (λ1, λ2, D)

∂D
. (7)

Electromechanical coupling may be classified into two kinds: the geometric coupling
characterized by Equation (2), and the material coupling characterized by the function
W (λ1, λ2, D).

We next focus on a model known as ideal dielectric elastomers [25]. An elastomer is a
three-dimensional network of long and flexible polymer chains, held together by crosslinks.
Each polymer chain consists of such a large number of monomers that the crosslinks affect
polarization of the monomers negligibly, i.e. the elastomer can polarize nearly as freely
as a polymer melt. As an idealization, we may assume that the dielectric behavior of an
elastomer is exactly the same as that of a polymer melt, so that the relation between the
electric field is a function of the electric displacement independent of deformation:

E = f (D) . (8)

Holding λ1 and λ2 fixed, and integrating Equation (4) with respect to D, we obtain

W (λ1, λ2, D) = Ws (λ1, λ2) +
∫ D

o
f (D) dD. (9)
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The constant of integration, Ws (λ1, λ2), is the Helmholtz free energy associated with the
stretching of the elastomer. Equations (5) and (6) become

σ1 − σ3 = λ1
∂Ws (λ1, λ2)

∂λ1
− ED, (10)

σ2 − σ3 = λ2
∂Ws (λ1, λ2)

∂λ2
− ED. (11)

The four equations, Equations (3), (8), (10) and (11), constitute the equations of
state for an incompressible, ideal dielectric elastomer, provided the functions f (D) and
Ws (λ1, λ2) are given.

When the model of ideal dielectric elastomers was proposed [25], the elastomer was
taken to be a linear dielectric, E = D/ε, where ε is the permittivity. To study the effect
of polarization saturation, here we assume that the elastomer is a nonlinear dielectric,
characterized by the function [29]

D = Ds tanh (εE/Ds) , (12)

where Ds is the saturated electric displacement. When electric field is low, εE/Ds << 1,
Equation (12) recovers the linear dielectric behavior, E = D/ε. When the electric field is
high, εE/Ds » 1, Equation (12) becomes D = Ds.

The free energy due to the stretching of the elastomer, Ws (λ1, λ2), may be selected
from a large menu of well-tested functions in the theory of rubber elasticity. To account for
the extension limit, here we adopt the Gent model [30]

Ws = −μJlim

2
log

(
1 − λ2

1 + λ2
2 + λ2

3 − 3

Jlim

)
, (13)

where μ is the shear modulus, and J lim is a constant characterizing the exten-
sion limit. The stretches are restricted as o ≤ (

λ2
1 + λ2

2 + λ2
3 − 3

)
/Jlim < 1. When(

λ2
1 + λ2

2 + λ2
3 − 3

)
/Jlim → o, the Gent model recovers the neo-Hookean model, Ws =

(μ/2)
(
λ2

1 + λ2
2 + λ2

3 − 3
)
. When

(
λ2

1 + λ2
2 + λ2

3 − 3
)
/Jlim → 1, the free energy Equation

(13) diverges, and the elastomer approaches the extension limit.
Electromechanical instability can be affected by the stress–stretch behavior of the elas-

tomer. The Gent model is an idealized model, and may not describe actual stress–stretch
behavior accurately. Whereas the method of analysis in this paper can be used to study
electromechanical instability of elastomers of any stress–stretch behavior, to limit the
scope of the paper, we limit our analysis to the Gent model. Furthermore, we will ignore
time-dependent processes, such as viscoelasticity, dielectric relaxation, and electrical con-
duction. The effects of these time-dependent processes on electromechanical instability
have been explored in recent studies [31] and [32].

3. Numerical results and discussion

The theory is now used to study a membrane of a dielectric elastomer subject to fixed
forces P1 = P2 = P and P3 = o, as well as voltage �. Write the three stretches as λ1 = λ2

= λ and λ3 = λ−2. Specializing Equation (10), we obtain
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P

μL2L3
= λ − λ−5

1 − (2λ2 + λ−4 − 3)/Jlim
− Dsλ�

μL3
tanh

(
λ2�ε

DsL3

)
. (14)

We may normalize the voltage as �/
(
L3

√
μ/ε

)
, and the force as P/(μL2L3). The exten-

sion limit of polymer chains is represented by the dimensionless parameter J lim, and the
polarization saturation of dipoles is represented by the dimensionless parameter Ds/

√
με.

Figure 3 plots the voltage–stretch relation at several levels of the applied equal-biaxial
forces. When the forces are small, the voltage-stretch curve exhibits a local maximum.
As the voltage ramps up, the membrane undergoes the snap-through instability. When
the applied forces are large, the local maximum disappears, leading to a monotonic
voltage–stretch curve. Before the voltage is applied, the applied forces pull the membrane
toward the extension limit, so that the steep stiffening removes the local maximum of
the voltage–stretch curve. This mechanism may explain why mechanical forces enhance
voltage-induced deformation [11].

The effect of polarization saturation is appreciated by inspecting the equations of state,
Equations (10) and (11). When the dielectric behavior is linear, D = εE, the term DE
recovers the Maxwell stress εE2. As polarization saturates, however, the term DE becomes
DsE, which increases with the electric field linearly. Consequently, polarization saturation
makes the stress associated with voltage rise less steeply, an effect that tends to stabilize
the elastomer. This effect is illustrated in Figure 4a, where the voltage–stretch curves are
plotted for elastomers without the extension limit (J lim = ∞) and subject to no applied
forces. The local maximum is eliminated when Ds/

√
με is small. Setting P = o and J lim =

∞ in Equation (14), we note that the voltage approaches a limiting value �lim = μL3/Ds

as λ → ∞.
Figure 4b plots the voltage–stretch curves for elastomers with J lim = 100 and several

values of Ds/
√

με. Such a diagram suggests various routes to achieve large voltage-
induced deformation. For instance, a large value of permittivity both reduces the level of

Figure 3. Voltage–stretch curves of a dielectric elastomer subject to equal biaxial forces.
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(a)

(b)

Figure 4. (a) Voltage–stretch curves for a dielectric elastomer without extension limit (J lim = ∞),
but with several levels of polarization saturation. (b) Voltage–stretch curves for a dielectric elastomer
with an extension limit (J lim = 100), and with several levels of polarization saturation.

the voltage needed for actuation and stabilizes the voltage–stretch curve. A large shear
modulus increases the level of the voltage needed for actuation, but helps to stabilize
the voltage-stretch curve. Of course, to achieve large deformation by applying voltage on
the verge of the snap-through instability, one must ensure that the voltage will not cause
electrical breakdown [26,27].

4. Conclusion

In summary, we have developed a model of electromechanical coupling to account for
nonlinear elastic and dielectric behavior. Both extension limit and polarization saturation
can significantly affect the snap-through instability. The model may aid the search for high-
performance dielectric elastomer transducers.
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