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Abstract
The dielectric elastomer minimum energy structure (DEMES) can realize large angular
deformations by a small voltage-induced strain of the dielectric elastomer (DE), so it is a suitable
candidate to make a rotary joint for a soft robot. Dynamic analysis is necessary for some
applications, but the dynamic response of DEMESs is difficult to model because of the
complicated morphology and viscoelasticity of the DE film. In this paper, a method composed of
theoretical analysis and experimental measurement is presented to model the dynamic response
of a DEMES rotary joint under an alternating voltage. Based on measurements of equivalent
driving force and damping of the DEMES, the model can be derived. Some experiments were
carried out to validate the equivalent dynamic model. The maximum angle error between model
and experiment is greater than ten degrees, but it is acceptable to predict angular velocity of the
DEMES, therefore, it can be applied in feedforward–feedback compound control.

Keywords: dielectric elastomer, dielectric elastomer minimum energy structure (DEMES),
dynamics analysis, artificial muscles, soft robotics

(Some figures may appear in colour only in the online journal)

1. Introduction

Dielectric elastomers (DEs) have been considered to be the
best candidate for artificial muscle because of their high-strain
response [1–3], high energy densities [4] (seventy times
higher than conventional electromagnetic actuators), and high
energy conversion efficiencies [5] (60%–90%). Among the
different kinds of DE structures, dielectric elastomer mini-
mum energy structures (DEMESs) can realize rotational
flexibly. The operational mechanism of DEMES is shown in
figure 1, in which unique conformations result from the
minimization of the free energy of the DE. After adhering a
pre-stretched DE film to a thin elastic frame such as poly-
ethylene terephthalate (PET) [6, 7], acrylonitrile butadiene
styrene [8], or polyvinyl chloride [9], the restoring force of
the film bends the elastic frame into a minimum energy state.
When an adequate electric field is applied across the DE, the

frame flattens out and the bending angle decreases. In this
way, dynamically changing the voltage can dynamically and
continuously alter the joint angle.

To better improve the application of DEMESs to flying
and mobile robots, a dynamic model should be established.
Thus we can adjust the angular displacement and angular
velocity with feedforward control through the model. Typi-
cally, the static analysis of DEMESs is partially realized by a
free energy function model [11], a combination of the
Arruda–Boyce and Neo-Hookean models [12], a hybrid
Arruda–Boyce strain energy function augmented with an
electrostatic energy density [13], and an extended dynamic
relaxation method [14]. The morphology of the DEMES
devices is a saddle [9] as shown in figure 2.

The saddle has a complicated stress distribution, so a
dynamic model of a DEMES cannot be established by the
above methods. In this paper, we will focus on only the
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macroscopic character of the DE film and consider the DE
film as a variable stiffness spring. As a result, only two factors
will influence the dynamic response: the torque of the DE on
the frame and the damping of the DEMES. With this
assumption, the complicated stress of the DE film can be
avoided and the dynamic response can still be analyzed
because of the measurable torque and damping of the
DEMES. A method composed of theoretical and experimental
results is presented as follows to analyze the dynamic
response of DEMESs.

2. Structure and parameters of the DEMES

To restrict frame bending to only one axis, the rigidity of the
non-bending edges was enhanced by mounting two stiffening
beams as shown in [6] and figure 3, because the DE film is
biaxially pre-stretched to ensure sufficient voltage-induced
strain.

Let us define the parameters of the structure above as in
figure 4; the thicknesses of the primary frame, film, and
stiffening frame are greatly exaggerated to show the structure
more clearly.

3. Dynamic model of the DEMES

The thickness of the DE film (VHB™ 4910) is 40–50 μm
after 400% biaxial prestrain. Since the length after pre-
stretching is five times the original length, assuming incom-
pressibility of the DE the calculated final thickness of the DE

film is 1000/25=40 μm. However the true final thickness
may be slightly greater than 40 μm, such as 40–50 μm as
observed by experiment. The simplified DE film and frame
deformation are shown in figure 5. Let θ be the joint bending
angle, F be the resultant force of the DE film to the primary
frame, and α be the tangent angle between F and the frame. In
an idealized case, the deformation of the DEMES would be as
shown in figure 5.

Let us treat the active frames (almost half of the primary
frame and stiffening frame) as objects and ignore any defor-
mation of the stiffening frame. Then under an applied square
wave voltage, the dynamics equation for the active frame can

Figure 1. Deformation principle of the DEMES rotary joint [10].

Figure 2. Picture of the DE saddle surface morphology on a
DEMES [10].

Figure 3. The DEMES rotary joint with semicircular stiffening
elements.

Figure 4. Parameters of the structure. l=total length, w=total
width, t=thickness of primary frame (exaggerated), p=thickness
of stiffening frame (exaggerated), q=width of each stiffening
frame, s=spacing between the stiffening frame, and r=radius of
each semicircle [10].

Figure 5. Cross section of the DEMES joint in static equili-
brium [10].
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be written as

( ) ̈ ( )q q q q q- - - =k U k c T J, , 1DE film f s a f

where, kDE is the equivalent rotational rigidity of the DE film
as a function of voltage and θ, Ufilm is the voltage applied
across the DE film, kf is the rotational stiffness of the DEMES
rotary joint (which is approximately equal to the rotational
stiffness of the primary frame with units of Newton-meters
per radian), cs is the damping coefficient of the system
(including the damping of the primary frame and the DE
film), Ta is the resistance torque that the air exerts on the
frame, and Jf is the rotational inertia of the active frames.
Parameters in equation (1) can be calculated as follows
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where E is the Young’s modulus of the primary frame and w,
r, t, s, l, and p are defined in figure 4. rf and ra are the density
of frame and of air, respectively. Cd is the drag coefficient of
air on the frame, and for this DEMES Cd=1.15 [15].

In equation (1), kDE is difficult to describe by a theor-
etical model because the morphology of the DE film is a
saddle surface, the stress distribution is quite complicated,
and the viscoelasticity of DE film is hard to model. The
parameter cs in equation (1) is difficult to model as well, but
we can consider the resultant torque of the DE film and frame
as the driving torque Td. Td and cs can be measured by
experiment, so equation (1) can be calculated.

Furthermore, to calculate equation (1), let

( ) ( ) ( )q q= +T T T_ , 5Dd film frame

where, Td can be regarded as a driving torque, and
( ) ( )q q q=T k U_ , ,film D DE film ( )q q=T k .frame f Tfilm_D is the

torque of DE film to frame during dynamic deformation.
Therefore, to calculate equation (1), the parameters cs and Td
would need measured, and during this process the relationship
between the torques of the DE film during dynamic and static
deformations can be analyzed.

4. Measurement of cs and Td

4.1. Measurement of cs

The damping coefficient cs can be calculated by equations (6),
(2), (3) and (7) as
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p
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where, h is a reduction factor, and Ai and Ai+1 are two
neighboring amplitudes on a decay curve of the DEMES
during free vibration. This decay curve can be obtained by
observation of the DEMES, and parameters of the DEMES
are shown in table 1.

A 400% biaxial prestrain is chosen with VHB™ 4910;
thus the film can maintain at least 254% prestrain at a 90°
initial angle of the DEMES joint [9]. The primary and stif-
fening frames are made of laser-cut PET with a Young’s
modulus of 4.25 GPa; more details of fabrication can be seen
in [6, 16].

The experimental setup for measuring damping is shown
in figure 6, in which an attached inertial mass is mounted to
the primary frame while the damping is measured. Both of the
attached masses depicted in figures 6(a) and (b) are 3 g.

The decay curve is shown in figure 7.
The damping cs can be calculated by equations (6) and

(7), where

=
´ =
´ =

- -

- -

⎧⎨⎩c
U

U

1.79 10 N s m 5 kV,

4.64 10 N s m 0.
s

5 1
film

5 1
film

Table 1. Parameters of the DEMES in experiments (unit: mm).

t p q w r s l

0.17 0.25 30 44 15 8 88

Figure 6. Experiment to measure damping.

Figure 7. Decay curve from experimental measurements.
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4.2. Measurement and calculation of Td

The measurement of Td in equation (6) was conducted by the
system shown in figure 8. The miniature load cells
(MCTG100-1 Kg) have three degrees of freedom to ensure
the tip is perpendicular to the primary frame and in contact
with the same point of the DEMES.

The parameter definitions are shown in figure 9.
Letting counterclockwise rotations be positive and

treating the moving part of the DEMES as an object, an
equation can be obtained by static equilibrium such that

( )+ + =T T F d_ 0, 8Sfilm frame m

where Tfilm_S is the torque of the DE film in the static
state. Tframe can be measured without the DE film, so Tfilm_S

when Ufilm=5 kV and Ufilm=0 can be calculated by
equation (8) using the measurement values of Fm_5 kV

and Fm_0.
Eleven experimental values were measured for Tframe

at both Ufilm=5 kV and Ufilm=0, and Tfilm_S at
Ufilm=5 kV and Ufilm=0. Their values are plotted in
figure 10.

The static torque Tfilm_S is different from the dynamic
Tfilm_D because the dynamic conformational entropy is dif-
ferent from the static conformational entropy of macro-
molecule chains even with same strain of the DE film. The
extent of the difference depends on the voltage duration and
the deformation angle. If we focus on the DEMES response
only under a quick alternating voltage (such as flapping wing
[17], then the amount of difference will depend primarily on
the deformation angle q. Let

( )= -T k T_ _ , 9film D S D film S

where kS–D can be obtained by the experimental results as
shown in figure 11 where

( )
q

= + =
= - + =

q
-

-

-
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k U
k U

0.79e 1 5 kV,
0.0027 1 0,

10S D
0.085

film
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Figure 8. (a) Measurement of Td while Ufilm=0. (b) Measurement
of Td while Ufilm=5 kV.

Figure 9.Measurement of Td. Fm_0 is the measured value of the force
sensor while Ufilm=0, and Fm_5 kV is the measured value while
Ufilm=5 kV.

Figure 10. The measured torques in experiments.

Figure 11. The relationship between dynamic and static torque of
DE film.

Figure 12. The measured and fitted torques in experiments.
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Based on figure 10 and equation (10), the dynamic torque
of the DE film Tfilm_D can be obtained and fitted as shown in
figure 12.

The polynomial function to fit the measured Tframe is
given by

( )q q q= - + +T 0.2 0.1 1.8 . 11frame
3 2

The polynomial function to fit the measured Tfilm_D is

( )

q
q q
q
q q

= -
+ + + =
=
- + + =
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⎩
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T

U
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_ 0.26

0.48 0.24 0.39 5 kV,

_ 0.30

1.5 2.7 0.30 0,

12

film D
3

2
film

film D
3

2
film

Figure 13. Theoretical and experimental response and error between them with different system parameters.

Table 2. Parameters in the eight groups of experiments.

Parameters of the DEMES (mm)

Group number Voltage (kV) Frequency (Hz) Prestrain (%×%) t p q w r s l

1 5 1.587 400×400 0.17 0.25 30 44 15 8 88
2 5 1.587 350×350 0.17 0.25 30 42 15 8 88
3 5 1.587 400×400 0.17 0.25 30 48 16 8 88
4 5 1 400×400 0.19 0.25 29 40 15 8 86
5 5 4 400×400 0.19 0.25 29 40 15 8 86
6 4 1 400×400 0.19 0.25 29 40 15 8 86
7 5 1 300×300 0.19 0.25 28 40 15 10 86
8 5 1 250×250 0.19 0.25 27 40 15 13 86
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The polynomial fitting is working only by one function,
so it has the advantage of comparison with splined fitting to
describe characteristics of the torque.

Based on equations (11), (12) and (5), the driving torque
Td can then be calculated.

5. Comparison between theoretical and experimental
results

5.1. Calculation of the dynamic model

Based on above analysis and experimental results, the
dynamic model of the DEMES with the parameters in table 1
is

̈
̈

( )

q q q

q q q

- - ´ = =

- - ´ = =

-

-

⎪

⎪

⎧
⎨
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T U

T U

10 1.79 2.97 10 4.03 5 kV,

10 4.64 2.97 10 4.03 0,

13

5
d

3 2
film

5
d

3 2
film

where Td has already been calculated in section 4.2.
Equation (13) contains two nonlinear differential equations
for which it is difficult to obtain analytical solutions. In this
paper, we numerically solve these equations by the ‘ode45’
function of MATLAB™ (MathWorks). Comparison of the
dynamic response between theoretical calculations and
experimental measurements during a voltage cycle are given
as follows.

5.2. Comparison of response between theoretical model and
experiments

To obtain the response of the DEMES and validate the
theoretical model, eight groups of experiments were carried
out with different parameters (e.g., dimensions of the
DEMES, and the amplitude and frequency of the voltages
applied to the DE film). The waveform of voltage is a square
wave with duty cycle of 0.5, because the model applies only
to a square wave, which is commonly used and allows for the
quickest actuation response.

The theoretical and experimental responses, as well as
the error between them, are shown in figures 13(a)–(h); the
former is shown at left and the latter is shown at right. The
system parameters are given in table 2.

5.3. Error analysis

The error can be attributed to several aspects. Firstly, mea-
surement of the driving torque Td results in a slight error. The
error of the force sensor is smaller than 0.1 mN, so the total
error of Td is about 0.005 mNm. The error distribution is
symmetrical.

Additionally, the measurement of the damping coeffi-
cient cs results in a slight error as well. The damping coeffi-
cient cs was measured by the laser sensor whose error is
smaller than 0.01 mm, that makes slight errors of response
measurement with symmetrical distribution. Moreover, the
small deformation of the stiffening frame was ignored, that
makes the calculation of kf larger than the real value. Finally,

the coefficient kS–D is just a macroscopic and equivalent
similarity that maybe brings strong errors.

Actually, the viscoelasticity of VHB™ 4910 is quite high
[18], his static viscoelastic creep can be eliminated by pre-
programmed voltage, but dynamic viscoelastic performance is
pretty complicated, therefore, dynamic response is difficult to
be modeled precisely.

To sum up, the error of deformation angle is not negli-
gible, but it is acceptable to velocity prediction of feedfor-
ward–feedback compound control for a flapping wing,
because the error can be compensated by the feedback
controller.

6. Conclusion

The dynamic model of the DEMES is difficult to be con-
structed because of the complicated morphology and vis-
coelasticity of the DE film. In this paper, composing
theoretical analysis and experimental measurement, an
equivalent dynamic model of a DEMES rotary joint was
established. Computation of the model depends upon the
measurements of driving torque and of the damping coeffi-
cient. The error of angular displacement is not small, but it is
acceptable to feedforward–feedback compound control, such
as for flapping wings or other devices actuated by the
DEMES rotary joint.

This model ignores the internal stress of the DE film and
simply focuses on the macroscopic characteristics. As a result,
this model is not a pure dynamic model, but rather can be
applied to feedforward control of the DEMES, as well as to
design other similar complicated structures.

In addition, this method composed of theoretical analysis
and experimental measurement can be applied to model
complicated dynamic responses in similar systems.
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