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Abstract
We here propose a new method to analyze the thermo-electro-mechanical instability of
dielectric elastomers. The equilibrium equations in this thermodynamic system at different
temperatures are initially established. We then obtained the critical nominal electric field and
the critical stretch under various mechanical and thermal loads, involving the effects of different
stretch regimes on the system stability, i.e. the equal-biaxial stretch, the unequal-biaxial stretch
and the thickness elongation. Finally, numerical results showed that as the temperature
increases, the critical nominal electric field and the stretch of the dielectric elastomer are
strengthened, which consequently stabilize the system. The results provide guidance to the
design and synthesis of dielectric elastomer-based devices, especially for those operating at
various temperatures.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Dielectric elastomers are a subgroup of electroactive polymer
materials that are capable of undergoing very large defor-
mations while subject to an electric field, benefiting from
attractive advantages such as large deformation, high elastic
energy density, excellent conversion efficiency and high
responsive speed [1, 3–10]. Such properties have enabled
a variety of applications including actuators, sensors, energy
harvests, refreshable Braille displays, active tactile displays,
medical devices and space robotics [1–10].

The dielectric elastomer actuators have a relatively high
failure rate [2], which greatly prevents practical application
of dielectric elastomer materials [4, 5]. The types of
failure of dielectric elastomer include the pull-in electro-

6 Authors to whom any correspondence should be addressed.

mechanical instability, material strength rupture and dielectric
strength [3, 4, 11, 13–27, 30–41, 43–46, 50]. Among
these failure modes, electro-mechanical instability is the
most concerned failure type, especially when the dielectric
elastomer actuates in the absence of pre-stretch [2, 13, 27].
The research on dielectric elastomers’ failure and nonlinear
electro-mechanical stability has been an interesting topic in
recent years [10–41, 43, 44]. Zhao and Suo proposed a
general method using the free energy function of dielectric
elastomers to analyze their electro-mechanical stability. Their
theoretical study proved that the critical electric fields for
electro-mechanical stability of dielectric elastomers can be
improved by pre-stretch. The critical electric fields evaluated
by the method are consistent with experimental results [10].
Dı́az-Calleja’s and Suo’s groups investigated the electro-
mechanical stable domain of dielectric elastomer [15, 22, 23].
The influence of different material models such as the
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neo-Hookean model [11, 15, 18, 20, 22–26, 38], Ogden
model [21], Mooney–Rivlin model [14, 16, 19] and Arruda–
Boyce model [13, 27] on the electro-mechanical stability of
dielectric elastomer is then investigated by Suo’s, Norrisa’s
and Liu’s groups. Bifurcation and chaos in a thermodynamic
system of dielectric elastomer was investigated by Dı́az-
Calleja, Zhu, Cai and Suo [11, 26]. Zhao and Suo
proposed the programmable designing method of dielectric
elastomer actuator [25]. Also, the electro-mechanical
stability of dielectric elastomer undergoing homogeneous or
inhomogeneous large deformation has been investigated by
Zhao and He [18, 24]. The failure of dielectric elastomer
will cause negative influence on its applications. It therefore
highlights the research on the failure model and designing
guidance.

In the research mentioned above, the dielectric elastomer
is assumed to be in an isothermal environment. In this
paper, we involved the influence of temperature on the
thermodynamic system of dielectric elastomer, established the
nonlinear thermodynamics equilibrium equation, and analyzed
its thermo-electro-mechanical instability. We presented three
groups of conjugated variable: nominal electric field and
displacement, nominal stress and stretch, nominal volume
entropy and temperature. We investigate the effects of three
loading conditions, an equal-biaxial stretch, an unequal-biaxial
stretch and a thickness elongation, on the thermo-electro-
mechanical instability of dielectric elastomers’ membranes.
Besides, we also calculated the critical nominal electric field
and critical stretch ratio under different parameters. The results
show that along with the increase in temperature and material
constant ratio α (C2 = αC1, where C1 and C2 are material
constants), or the decrease in the ratio between principal planar
stretches, and nominal stress, the critical nominal electric field
will be developed and the systemic thermo-electro-mechanical
performance will be improved as well, which implies that its
thermo-electro-mechanical stability is enhanced.

2. Thermo-electro-mechanical coupling system

We consider membranes of lengths L1, L2 and L3 in a
homogeneous state of deformation and of electrification, as
illustrated in figure 1, in a thermo-electro-mechanical system
of dielectric elastomers, in a reference state at temperature T0

and in the absence of applied mechanical forces and voltage.
The system is in a current state with a temperature T , subject to
mechanical forces F1, F2 in the plane principal directions and
subject to voltage U between the two electrodes. The dielectric
elastomer membrane deforms to λ1 L1, λ2 L2 and λ3 L3, and the
magnitude of the electric charge on either electrode is Q, where
λ1, λ2 and λ3 are the principal stretches and S is the entropy of
the dielectric elastomer. The dielectric elastomer is taken to be
incompressible, λ3 = 1/(λ1λ2).

We define the nominal stresses by the mechanical forces
divided by the area of the elastomer in the undeformed state,
σ∼

1 = F1
L2 L3

, σ∼
2 = F2

L1 L3
, the nominal electric field by the

voltage in the deformed state divided by the thickness of the
elastomer in the undeformed state E∼ = U

L3
and define the

nominal electric displacement as the charge on an electrode in

Figure 1. The thermo-electro-mechanical coupling system of
dielectric elastomers.

the deformed state divided by the area of the electrode in the
undeformed state, D∼ = Q

L1 L2
, the nominal entropy density

by total entropy divided by the volume of the elastomer in
the undeformed state, s∼ = S

L1 L2 L3
. In contrast, the true

stresses are defined as the mechanical force divided by the
area of the elastomer in the current state, σ1 = F1

λ2λ3 L2 L3
,

σ2 = F2
λ1λ3 L1 L3

. The true electric field is defined as the voltage
divided by the thickness of the elastomer in the current state,
E = U

λ3 L3
, and the true electric displacement is defined as the

charge divided by the area of the electrode in the deformed
state, D = Q

λ1λ2 L1 L2
, the true entropy density by total entropy

divided by the volume of the elastomer in the deformed state,
s = S

λ1λ2λ3 L1 L2 L3
. For an incompressible dielectric elastomer,

s∼ = s.
Assuming that dielectric elastomer is incompressible, the

free energy function is a function of the stretch, the nominal
electric displacement and the current temperature. The
dielectric elastomer, the battery and the weights, constitute the
thermodynamic system [11], characterized by four generalized
coordinates λ1, λ2, D∼, T and four control parameters F1,
F2, U and S. When the generalized coordinates vary by
small amounts, δλ1, δλ2, δD∼ and δT , the free energy of the
thermodynamics system varies by

dW (λ1, λ2, T, D∼) = ∂W (λ1, λ2, D∼, T )

∂λ1
dλ1

+ ∂W (λ1, λ2, D∼, T )

∂λ2
dλ2 + ∂W (λ1, λ2, D∼, T )

∂ D∼ dD∼

− ∂W (λ1, λ2, D∼, T )

∂T
dT . (1)

Thermodynamics indicates that a stable equilibrium state
should minimize W (λ1, λ2, D∼, T ). Therefore, in a dielectric
elastomer thermo-electro-mechanical coupling system, the
nominal stress, σ∼

1 (λ1, λ2, T, D∼), σ∼
2 (λ1, λ2, T, D∼), the

nominal electric field, E∼(λ1, λ2, T, D∼), the nominal entropy
per unit volume, s∼(λ1, λ2, T, D∼), can be expressed
respectively by the following equations

σ∼
1 (λ1, λ2, T, D∼) = ∂W (λ1, λ2, D∼, T )

∂λ1
(2)

σ∼
2 (λ1, λ2, T, D∼) = ∂W (λ1, λ2, D∼, T )

∂λ2
(3)

2



Smart Mater. Struct. 20 (2011) 075004 L Liu et al
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Figure 2. The relationship between nominal electric field and the stretch of the thermo-electro-mechanical coupling system of dielectric
elastomers under specialized load conditions, namely λ1 = λ2 = λ. (a) T = T0, α = 1, (b) T = T0, α = 2, (c) T = 1.44T0, α = 1,
(d) T = 1.44T0, α = 2.

E∼(λ1, λ2, T, D∼) = ∂W (λ1, λ2, D∼, T )

∂ D∼ (4)

s∼(λ1, λ2, T, D∼) = −∂W (λ1, λ2, D∼, T )

∂T
. (5)

The corresponding true stresses, the true electric field and
the true entropy are

σ1(λ1, λ2, T, D∼) = λ1
∂W (λ1, λ2, D∼, T )

∂λ1
(6)

σ2(λ1, λ2, T, D∼) = λ2
∂W (λ1, λ2, D∼, T )

∂λ2
(7)

E(λ1, λ2, T, D∼) = λ1λ2
∂W (λ1, λ2, D∼, T )

∂ D∼ (8)

s(λ1, λ2, T, D∼) = −∂W (λ1, λ2, D∼, T )

∂T
. (9)

And the Hessian matrix of the dielectric elastomer thermo-
electro-mechanical coupling system is

H =

⎡
⎢⎢⎢⎢⎣

∂2W (λ1,)

∂λ2
1

∂2W (λ1,λ2,)

∂λ1∂λ2

∂2W (λ1,D∼,)

∂λ1∂ D∼
∂2W (λ1,T,)

∂λ1∂T

∂2W (λ1,λ2,)

∂λ1∂λ2

∂2W (λ2,)

∂λ2
2

∂2W (λ2,D∼,)

∂λ2∂ D∼
∂2W (λ2,T,)

∂λ2∂T
∂2W (λ1,D∼,)

∂λ1∂ D∼
∂2W (λ2,D∼,)

∂λ2∂ D∼
∂2W (D∼,)

∂ D∼2
∂2W (D∼ ,T,)

∂ D∼∂T
∂2W (λ1,T,)

∂λ1∂T
∂2W (λ2,T,)

∂λ2∂T
∂2W (D∼,T,)

∂ D∼∂T
∂2W (T,)

∂T 2

⎤
⎥⎥⎥⎥⎦

.

(10)

To obtain a stable state for the dielectric elastomer
thermo-electro-mechanical coupling system (DE-TEM-CS),
the determinant of the Hessian matrix should be posi-
tive. When the DE-TEM-CS reaches the critical point,
det(H ) = 0. Solving the determinant det(H ) = 0
of equation (10), we obtain the critical thermo-electro-
mechanical stability parameters of dielectric elastomer, such

as the critical nominal electric field E∼
max(λ1, λ2, T, D∼), the

critical true electric field Emax(λ1, λ2, T, D∼); the critical
nominal stress σ∼

c (λ1, λ2, T, D∼) and the critical true stress
σc(λ1, λ2, T, D∼); the critical nominal entropy per unit
volume s∼

c (λ1, λ2, T, D∼) and the critical true entropy per unit
volume sc(λ1, λ2, T, D∼).

3. Constitutive relation

Due to the dielectric elastomer’s incompressibility and
considering the effect of the temperature on the dielectric
elastomer thermodynamic system, the free energy function can
be expressed as follows [10–41]:

W (λ1, λ2, λ
−1
1 λ−1

2 , T, D∼) = ξ(λ1, λ2, λ
−1
1 λ−1

2 , T )

+ η(λ1, λ2, λ
−1
1 λ−1

2 , D∼). (11)

In equation (11), W (λ1, λ2, λ
−1
1 λ−1

2 , T, D∼) is the free
energy of the DE-TEM-CS as a function of the three
generalized coordinates, the stretch, λ1 and λ2, the current
temperature, T , and the nominal electric displacement,
D∼. ξ(λ1, λ2, λ

−1
1 λ−1

2 ) is the thermo-elastic strain energy,
η(λ1, λ2, λ

−1
1 λ−1

2 , D∼) is the electric field energy. In the
thermodynamics system, to simplify this work but without
losing its physical picture, we take the following assumptions:
the system is an adiabatic process, the dielectric elastomers are
ideal hyperelastic elastomers, the electrode is the ideal fluid
and compliant, the temperature varies linearly. Therefore, the
thermo-elastic strain energy can be expressed as

ξ(λ1, λ2, λ
−1
1 λ−1

2 , T ) = T

2T0
[C1(λ

2
1 + λ2

2 + λ−2
1 λ−2

2 − 3)

+ C2(λ
−2
1 + λ−2

2 + λ2
1λ

2
2 − 3)]

+ c0

[
(T − T0) − T ln

T

T0

]
. (12)

3
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Figure 3. The relationship between the nominal electric field and the nominal electric displacement of the thermo-electro-mechanical
coupling system of dielectric elastomers under specialized load conditions, namely λ1 = λ2 = λ. (a) T = T0, α = 1, (b) T = T0, α = 2,
(c) T = 1.44T0, α = 1, (d) T = 1.44T0, α = 2.

In the right-hand side of equation (12), the first item
is the thermal hyperelastic energy. The second item is
the thermal contribution [29]. We employ a Mooney–
Rivlin model with two material constants to describe the
hyperelastic performances (Mooney and Rivlin assumed the
rubbery polymer was isotropic, so that the strain energy is only
a function of stretch in both directions, thus we have the model:
W = C1(λ

2
1 +λ2

2 +λ−2
1 λ−2

2 − 3)+ C2(λ
−2
1 +λ−2

2 +λ2
1λ

2
2 − 3).

According to the experimental validation, this model is able
to capture the stress–strain behavior when the strain is under
200%. Since our critical stretch is under 200%, so that we
select this model in our study [42]), where C1, C2 are material
constants determined by experiments. T0 is the reference
temperature. c0 is the specific heat for dielectric elastomers.

The material is assumed to be an ideal dielectric elastomer,
where the dielectric behavior of the elastomer is taken to be
liquid-like, unaffected by deformation. The true electric field
and the true electric displacement are in linear relation. The
electric field energy is [10, 11]

η(λ1, λ2, λ
−1
1 λ−1

2 , D∼) = D∼2

2ε
λ−2

1 λ−2
2 (13)

ε is the relative permittivity of the dielectric elastomer, ε =
3.5 × 10−11 F m−1 [13, 23].

Substituting equations (11)–(13) into (2)–(5), we obtain
the nominal stresses, the nominal electric field and the nominal
entropy per unit volume of dielectric elastomer as

σ∼
1 (λ1, λ2, T, D∼) = T

T0
[C1(λ1 − λ−3

1 λ−2
2 )

+ C2(λ1λ
2
2 − λ−3

1 )] − D∼2

ε
λ−3

1 λ−2
2 (14)

σ∼
2 (λ1, λ2, T, D∼) = T

T0
[C1(λ2 − λ−2

1 λ−3
2 )

+ C2(λ2λ
2
1 − λ−3

2 )] − D∼2

ε
λ−2

1 λ−3
2 (15)

E∼(λ1, λ2, D∼) = D∼

ε
λ−2

1 λ−2
2 (16)

s∼(λ1, λ2, T ) = c0 ln
T

T0
− 1

T0

[
C1

2
(λ2

1 + λ2
2 + λ−2

1 λ−2
2 − 3)

+ C2

2
(λ−2

1 + λ−2
2 + λ2

1λ
2
2 − 3)

]
. (17)

Correspondingly, the true stresses, the true electric field
and the true entropy are

σ1(λ1, λ2, T, D∼) = T

T0
[C1(λ

2
1 − λ−2

1 λ−2
2 )

+ C2(λ
2
1λ

2
2 − λ−2

1 )] − D∼2

ε
λ−2

1 λ−2
2 (18)

σ2(λ1, λ2, T, D∼) = T

T0
[C1(λ

2
2 − λ−2

1 λ−2
2 )

+ C2(λ
2
1λ

2
2 − λ−2

2 )] − D∼2

ε
λ−2

1 λ−2
2 (19)

E(λ1, λ2, D∼) = D∼

ε
λ−1

1 λ−1
2 (20)

s(λ1, λ2, T ) = c0 ln
T

T0
− 1

T0

[
C1

2
(λ2

1 + λ2
2 + λ−2

1 λ−2
2 − 3)

+ C2

2
(λ−2

1 + λ−2
2 + λ2

1λ
2
2 − 3)

]
. (21)

4
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4. Thermo-electro-mechanical instability

When a mechanical force field, together with an electric
field and a thermal field are applied to a layer of a
dielectric elastomer, the membrane reduces in thickness and
expands in area. As the electric field, the mechanical
force field and the thermal field increase, the elastomer
thins down, so that the same voltage will induce an even
higher electric field. The positive feedback may cause the
elastomer to thin down drastically, resulting in an even larger
electric field. When the electric field exceeds the critical
value, the electrical breakdown takes place and the actuator
fails. This process is called here thermo-electro-mechanical
instability.

The Hessian matrix of dielectric elastomer thermo-electro-
mechanical coupling system can be expressed as

H =

⎡
⎢⎢⎢⎢⎣

∂σ∼
1 (λ1,λ2,T,D∼)

∂λ1

∂σ∼
1 (λ1,λ2,T,D∼)

∂λ2

∂σ∼
2 (λ1,λ2,T,D∼)

∂λ1

∂σ∼
2 (λ1,λ2,T,D∼)

∂λ2

∂ E∼(λ1,λ2,D∼)

∂λ1

∂ E∼(λ1,λ2,D∼)

∂λ2

∂s∼(λ1,λ2,T )

∂λ1

∂s∼(λ1,λ2,T )

∂λ2

∂σ∼
1 (λ1,λ2,T,D∼)

∂ D∼
∂σ∼

1 (λ1,λ2,T,D∼)

∂T
∂σ∼

2 (λ1,λ2,T,D∼)

∂ D∼
∂σ∼

2 (λ1,λ2,T,D∼)

∂T
∂ E∼(λ1,λ2,D∼)

∂ D∼
∂ E∼(λ1,λ2,D∼)

∂T
∂s∼(λ1,λ2,T )

∂ D∼
∂s∼(λ1,λ2,T )

∂T

⎤
⎥⎥⎥⎥⎦

(22)

where

∂σ∼
1 (λ1, λ2, T, D∼)

∂λ1
= T

T0
[C1(1 + 3λ−4

1 λ−2
2 )

+ C2(λ
2
2 + 3λ−4

1 )] + 3
D∼2

ε
λ−4

1 λ−2
2

∂σ∼
1 (λ1, λ2, T, D∼)

∂λ2
= ∂σ∼

2 (λ1, λ2, T, D∼)

∂λ1

= 2
T

T0
(C1λ

−3
1 λ−3

2 + C2λ1λ2) + 2
D∼2

ε
λ−3

1 λ−3
2

∂σ∼
1 (λ1, λ2, T, D∼)

∂ D∼ = ∂ E∼(λ1, λ2, D∼)

∂λ1
= −2

D∼

ε
λ−3

1 λ−2
2

∂σ∼
1 (λ1, λ2, T, D∼)

∂T
= ∂s∼(λ1, λ2, T )

∂λ1

= 1

T0
[C1(λ1 − λ−3

1 λ−2
2 ) + C2(λ1λ

2
2 − λ−3

1 )]
∂σ∼

2 (λ1, λ2, T, D∼)

∂λ2
= T

T0
[C1(1 + 3λ−2

1 λ−4
2 )

+ C2(λ
2
1 + 3λ−4

2 )] + 3
D∼2

ε
λ−2

1 λ−4
2

∂σ∼
2 (λ1, λ2, T, D∼)

∂ D∼ = ∂ E∼(λ1, λ2, D∼)

∂λ2

= 2
D∼

ε
λ−2

1 λ−3
2

∂σ∼
2 (λ1, λ2, T, D∼)

∂T
= ∂s∼(λ1, λ2, T )

∂λ2

= 1

T0
[C1(λ2 − λ−2

1 λ−3
2 ) + C2(λ2λ

2
1 − λ−3

2 )]

Figure 4. Entropy of the thermo-electro-mechanical coupling system
of dielectric elastomers at different temperatures and stretches under
specialized load conditions, namely λ1 = λ2 = λ: (a) α = 1;
(b) α = 2.

∂ E∼(λ1, λ2, D∼)

∂ D∼ = 1

ε
λ−2

1 λ−2
2

∂ E∼(λ1, λ2, D∼)

∂T
= ∂s∼(λ1, λ2, T )

∂ D∼ = 0

∂s∼(λ1, λ2, T )

∂T
= c0

T
.

Consider equation (22), by solving det(H ) = 0, we ob-
tain E∼

max(λ1, λ2, D∼), Emax(λ1, λ2, D∼), σ∼
c (λ1, λ2, T, D∼),

σc(λ1, λ2, T, D∼), s∼
c (λ1, λ2, T ) and sc(λ1, λ2, T ).

4.1. Effect of equal-biaxial stretch on thermo-electro-
mechanical instability

In order to investigate the thermo-electro-mechanical
instability of a dielectric elastomer, we postulate that C2 =
αC1, where α is a material constant ratio [14, 16, 19].
Evidently, the material constant ratios are different for different
dielectric elastomer materials (such as BJB TC-A/B-C, 3M
VHB 4905/4910, VHB 4910-HDDA, VHB 4905-TMPTMA
CF19-2186 silicone, Dow Corning HS3 silicone, Nusil CF19-
2186 silicone, Dow Corning Sylgard 186 [3–5]).

5
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Figure 5. The relationship between nominal electric field and the stretch of the thermo-electro-mechanical coupling system of dielectric
elastomers under specialized load conditions, namely λ2 = pλ1 = pλ. (a) T = T0, α = 1, p = 0.8, (b) T = T0, α = 2, p = 0.8,
(c) T = 1.44T0, α = 1, p = 0.8, (d) T = T0, α = 1, p = 1.2, (e) T = T0, α = 2, p = 1.2, (f) T = 1.44T0, α = 1, p = 1.2.

D D

D

D

DD

Figure 6. The relationship between the nominal electric field and nominal electric displacement of the thermo-electro-mechanical coupling
system of dielectric elastomers under specialized load conditions, namely λ2 = pλ1 = pλ. (a) T = T0, α = 1, p = 0.8, (b) T = T0, α = 2,
p = 0.8, (c) T = 1.44T0, α = 1, p = 0.8, (d) T = T0, α = 1, p = 1.2, (e) T = T0, α = 2, p = 1.2, (f) T = 1.44T0, α = 1, p = 1.2.

Subsequently, we study the effect of equal-biaxial stretch
on the thermo-electro-mechanical instability of dielectric
elastomers. Let λ2 = λ1 = λ, according to the

equations (14)–(17), the nominal electric field, the nominal

electric displacement and the nominal entropy per unit volume

can be derived as follows:

6
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Figure 7. Entropy of the thermo-electro-mechanical coupling system of dielectric elastomers at different temperatures and stretches under
specialized load conditions, namely λ2 = pλ1 = pλ. (a) α = 1, p = 0.8, (b) α = 2, p = 0.8, (c) α = 1, p = 1.2, (d) α = 2, p = 1.2.

D∼
√

C1ε
=

√
T

T0
[(λ6 − 1) + α(λ8 − λ2)] − σ∼

2C1
λ5 (23)

E∼
√

C1/ε
=

√
T

T0
[(λ−2 − λ−8) + α(1 − λ−6)] − σ∼

2C1
λ−3

(24)
s∼

C1/T0
= c0

C1/T0
ln

T

T0
−1

2
[(2λ2+λ−4−3)+α(2λ−2+λ4−3)].

(25)
In the following analysis session, representative parame-

ters are selected, T0 = 293 K, Tmax = 423 K [4], c0 =
1.7×106 J km−3, C1 = 0.33×106 Pa, and hence dimensionless
parameter c0

C1/T0
= 1.5 × 103.

Under equal-biaxial stretch conditions and different tem-
peratures, the relationships among dimensionless parameters
of the dielectric elastomer thermo-electro-mechanical coupling
system are presented in figures 2–4, namely the relationship
between nominal electric field and nominal electric displace-
ment, the relationship between nominal electric field and
stretch and the relationship among entropy, temperature and
stretch.

Figure 2 plots the E∼√
C1/ε

as a function of λ when α = 1, 2
and T = T0, 1.44T0, respectively. In each curve, with the
increase in stretch λ, the nominal electric field E∼√

C1/ε
increases.

When the critical nominal electric field is reached, the nominal
electric field decreases and approaches a constant value.

Figure 3 shows the relationship between E∼√
C1/ε

and D∼√
C1ε

when α = 1, 2 and T = T0, 1.44T0, respectively. In

each curve, σ∼
C1

takes different values such as 0–4 and E∼
reaches its peak values. Before E∼ reaches its peak value, the
Hessian matrix is positive definite while after the peak value,
the Hessian matrix is negative definite. Simply speaking, in
the peak point, det(H ) = 0. As the value σ∼

C1
increases, the

nominal electric field decreases.
Figure 4 illustrates the entropy of a dielectric elastomer

thermo-electro-mechanical coupling system of different dielec-
tric elastomer materials (α = 1, 2) under the loading condition
as λ1 and T . As shown in figure 4, the entropy of the
thermodynamics system decreases with the increase in stretch
or with the decrease in temperature.

4.2. Effect of unequal-biaxial stretch on thermo-electro-
mechanical instability

Unequal-biaxial experiments on dielectric elastomers are
common [41]. Furthermore, what we need in many cases
is the biaxial stretching in accordance with the specific ratio
between two axes. The equal-biaxial stretch is a specific
case of unequal-biaxial stretch and many dielectric elastomer
devices operate under different conditions [47, 48], for
instance, the apex of an inflating membrane and an expanding
balloon [6, 26, 49]. As a matter of fact, an equal-biaxial
stretch plane is an ideal case [47, 48] that cannot be satisfied
perfectly in experiments. Therefore we have to consider the
biaxial stretching in accordance with the specific ratio between
two axes, namely unequal-biaxial. Let λ2 = pλ1, with p >

7
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λ

λλ

λλ

λ λ

λ

Figure 8. The relation between nominal electric field and the stretch of the thermo-electro-mechanical coupling system of dielectric
elastomers under specialized load conditions, namely λ3 = λ, λ1 = qλ−1/2 and λ2 = λ−1/2/q . (a) T = T0, α = 1, q = 1, (b) T = T0, α = 2,
q = 1, (c) T = 1.44T0, α = 1, q = 1, (d) T = 1.44T0, α = 2, q = 1, (e) T = T0, α = 1, q = 0.8, (f) T = 1.44T0, α = 1, q = 0.8,
(g) T = T0, α = 1, q = 1.2, (h) T = 1.44T0, α = 1, q = 1.2.

0, which is the ratio between principal planar stretches, and
p = 1 recovers the equal-biaxial condition. To simplify the
formulation, let λ1 = λ, then the nominal electric field, the
nominal electric displacement and the nominal entropy per unit
volume can be derived as follows:

D∼
√

C1ε
=

{
T

2T0
{[(1 + p2)p2λ6 − 2]

+ α[2p4λ8 − (p2 + 1)λ2]} − σ∼

2C1
p2λ5

}1/2

(26)

E∼
√

C1/ε
=

{
T

2T0
{[(p−2 + 1)λ−2 − 2p−4λ−8]

+ α[2 − (p−2 + 1)λ−6]} − σ∼

2C1
p−2λ−3

}1/2

(27)

s∼

C1/T0
= c0

C1/T0
ln

T

T0
− 1

2
{[(1 + p2)λ2

+ p−2λ−4 − 3] + α[(1 + p−2)λ−2 + p2λ4 − 3]}. (28)

The thermodynamic performance of dielectric elastomer
at different temperatures under the unequal-biaxial stretch
condition is described in figures 5–7. Figures 5–7 show
the relationship among the stretch and the nominal electric
field, the nominal electric displacement and the nominal
electric field, the temperature and the entropy of a dielectric
elastomer with different values of the material constant
ratio α, the ratio between principal planar stretches p,
the temperature T/T0 and the nominal stress σ∼/C1,
respectively.

From figures 5 and 6, with the increase in T/T0 and α, or
the decrease in p and σ∼/C1, the critical nominal electric field
of a dielectric elastomer thermo-electro-mechanical system is
improved. That is to say the system becomes more stable.
For figure 5, with the increase in stretch, the nominal electric
field increases. When the critical nominal electric field is
reached, the nominal electric field decreases and approaches
a constant value. Clearly, the critical stretch of a dielectric

8
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(d)

(e)

DD

D

DD

D D

D

Figure 9. The relationship between the nominal electric field and nominal electric displacement of the thermo-electro-mechanical coupling
system of dielectric elastomers under specialized load conditions, namely λ3 = λ, λ1 = qλ−1/2 and λ2 = λ−1/2/q . (a) T = T0, α = 1, q = 1,
(b) T = T0, α = 2, q = 1, (c) T = 1.44T0, α = 1, q = 1, (d) T = 1.44T0, α = 2, q = 1, (e) T = T0, α = 1, q = 0.8, (f) T = 1.44T0, α = 1,
q = 0.8, (g) T = T0, α = 1, q = 1.2, (h) T = 1.44T0, α = 1, q = 1.2.

elastomer increases along with the increase in the temperature.
However, with the increase in p and α, the critical stretch
decreases. These results coincide with a recent conclusion
on the instability of dielectric elastomer when unequal-biaxial
stretched [41].

The critical nominal electric field and critical stretch are
listed as follows. When T/T0 = 1, α = p = 1 and σ∼/C1 =
0, the critical nominal electric field is 1.15E∼/

√
C1/ε, the

corresponding critical stretch is 1.47. Let T/T0 = 1.44, the
critical nominal electric field and the corresponding critical

stretch are 1.38E∼/
√

C1/ε and 1.49, respectively. When p =
1.2, the critical nominal electric field and the critical stretch are
1.13E∼/

√
C1/ε and 1.41, respectively.

In figure 7, the ratio between principal planar stretch
values are 0.8 and 1.2, respectively. Evidently, along with the
increase in temperature, the entropy of a dielectric elastomer
thermo-electro-mechanical coupling system increases. At a
specified temperature, the system entropy decreases with the
increase in stretch. Along with the materials constant ratio α

increases and the entropy decreases.

9
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Figure 10. Entropy of the thermo-electro-mechanical coupling system of dielectric elastomers at different temperatures and stretches under
specialized load conditions, namely λ3 = λ, λ1 = qλ−1/2 and λ2 = λ−1/2/q . (a) α = 1, q = 0.8, (b) α = 2, q = 0.8, (c) α = 1, q = 1,
(d) α = 2, q = 1, (e) α = 1, q = 1.2, (f) α = 2, q = 1.2.

4.3. Effect of thickness direction stretch on
thermo-electro-mechanical instability

We next focus on the effect of thickness direction stretch on the
thermo-electro-mechanical instability of dielectric elastomers.
Supposing λ3 = λ, if the boundary of dielectric elastomer
membrane is free, consider the equibiaxial planar stretch case,
λ1 = λ2 = λ−1/2. Consider the unequal-biaxial planar
stretch case, λ1 = qλ−1/2 and λ2 = λ−1/2/q , according
to equations (11)–(13), the free energy of a thermodynamic
system can be given by

W (λ, T, D∼) = T

2T0
{C1[(q2 + q−2)λ−1 + λ2 − 3]

+ C2[(q2 + q−2)λ + λ−2 − 3]}
+ c0

[
(T − T0) − T ln

T

T0

]
+ D∼2

2ε
λ2. (29)

Applying a similar method of investigation, we express
the non-dimensional nominal electric displacement, the non-
dimensional nominal electric field and the non-dimensional
nominal entropy as:

D∼
√

C1ε
=

{
T

T0

{[
(q2 + q−2)

2
λ−3 − 1

]

+ α

[
λ−4 − (q2 + q−2)

2
λ−1

]}
+ σ∼

C1
λ−1

}1/2

(30)

E∼
√

C1/ε
=

{
T

T0

{[
(q2 + q−2)

2
λ − λ4

]

+ α

[
1 − (q2 + q−2)

2
λ3

]}
+ σ∼

C1
λ3

}1/2

(31)

s∼

C1/T0
= c0

C1/T0
ln

T

T0
− 1

2
{[(q2 + q−2)λ−1 + λ2 − 3]

+ α[(q2 + q−2)λ + λ−2 − 3]}. (32)
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Under different temperatures and considering the free
or constrained boundary condition, figures 8–10 describe the
relationship among thermodynamics parameters of dielectric
elastomers in the thickness stretch direction, including the
nominal electric field and the stretch, the nominal electric
field and the nominal electric displacement, the entropy and
the temperature. Here, we only consider the stress free state,
namely σ∼

C1
= 0.

Figure 8 plots the voltage-induced deformation of
dielectric elastomer under different temperatures. In each case,
with the decrease of stretch from 1 to 0, the voltage increases to
the critical value firstly, and then decreases to a constant value.
This variation trend is coincident with the former conclusion,
which results from the consideration of stretch in the thickness
direction.

Figure 9 illustrates the voltage-induced charge of
dielectric elastomers under different temperatures. In each
curve, with the increase of charge, the voltage increases
to the critical value firstly, and then declines to a constant
level. Notice that in the current work we do not invoke the
polarization saturation of dielectric elastomer for it falls out of
the range of this temperature or voltage load [31].

Figure 10 shows the variation trend of dielectric elastomer
entropy under different temperatures and stretches. With
the increase of temperature and stretch, the entropy of
the dielectric elastomer thermo-electro-mechanical coupling
system increases. This variation trend of the entropy is
coincident with the former conclusion.

5. Conclusions

In this paper, the equilibrium equations to describe the
thermodynamics performance of dielectric elastomer were
established by considering different temperatures. Based
on these equations, the systemic thermodynamical instability
was studied. The effects of the equal-biaxial stretch, the
unequal-biaxial stretch and the thickness elongation on the
thermo-electro-mechanical instability of dielectric elastomers
are investigated. The critical nominal electric field and the
critical stretch of the system under different material constant
ratios and various temperatures are obtained. The results
indicate that for the dielectric elastomer, the critical nominal
electric field and the critical stretch increases with the increase
in temperature and the system received an enhancement in
its stabilization. However, along with the increase in the
ratio between principal planar stretches and the unequal-biaxial
stretch, the critical nominal electric field decreases and thermo-
electro-mechanical stability is reduced. The results provide
guidance in seeking for dielectric elastomer-based transducers
with an improved performance.

Acknowledgments

The one-year visit of Liwu Liu to Harvard University was
supported by the China Scholarship Council Foundation. The
author hereby acknowledges Professor Zhigang Suo’s foresight
and sagacious guidance on the theory of dielectric elastomers.

References

[1] Pelrine R, Kornbluh R, Pei Q B and Joseph J 2000 High-speed
electrically actuated elastomers with strain greater than
100% Science 287 836–9

[2] Plante J S and Dubowsky S 2006 Large-scale failure modes of
dielectric elastomer actuators Int. J. Solids Struct.
43 7727–51

[3] Suo Z G 2010 Theory of dielectric elastomers Acta Mech.
Solida Sin. 23 549–78

[4] Brochu P and Pei Q B 2010 Advances in dielectric elastomers
for actuators and artificial muscles Macromol. Rapid
Commun. 31 10–36

[5] O’Halloran A, O’Malley F and McHugh P 2008 A review on
dielectric elastomer actuators, technology, applications, and
challenges J. Appl. Phys. 104 071101

[6] Carpi F, Raspopovic S, Frediani G and Rossi D 2010 Real-time
control of dielectric elastomer actuators via bioelectric and
biomechanical signals Polym. Int. 59 422–9

[7] Gallone G, Carpi F, Rossi D, Levita G and Marchetti A 2004
Dielectric constant enhancement in a silicone elastomer
filled with lead magnesium niobate–lead titanate Mater. Sci.
Eng. C 24 555–26

[8] Carpi F, Gallone G, Galantini F and Rossi D 2008
Silicone-poly (hexylthiophene) blends as elastomers with
enhanced electromechanical transduction properties Adv.
Funct. Mater. 18 235–41

[9] Gallone G, Galantinia F and Carpi F 2010 Perspectives for new
dielectric elastomers with improved electromechanical
actuation performance: composites versus blends Polym. Int.
59 400–6

[10] Carpi F, Frediani G, Tarantino S and Rossi D 2010
Millimetre-scale bubble-like dielectric elastomer actuators
Polym. Int. 59 407–14

[11] Zhao X H and Suo Z G 2007 Method to analyze
electromechanical stability of dielectric elastomers Appl.
Phys. Lett. 91 061921

[12] Suo Z G, Zhao X H and Greene W H 2008 A nonlinear field
theory of deformable dielectrics J. Mech. Phys. Solids
56 476–86

[13] Suo Z G and Zhu J 2009 Dielectric elastomers of
interpenetrating networks Appl. Phys. Lett. 95 232909

[14] Liu Y J, Liu L W, Zhang Z, Shi L and Leng J S 2008 Comment
on ‘Method to analyze electromechanical stability of
dielectric elastomers’ Appl. Phys. Lett. 93 106101

[15] Dı́az-Calleja R, Riande E and Sanchis M J 2008 On
electromechanical stability of dielectric elastomers Appl.
Phys. Lett. 93 101902

[16] Liu Y J, Liu L W, Sun S H, Shi L and Leng J S 2009 Comment
on ‘Electromechanical stability of dielectric elastomers’
Appl. Phys. Lett. 94 096101

[17] Liu Y J, Liu L W, Leng J S, Yu K and Sun S H 2009
Electromechanical stability of dielectric elastomer Appl.
Phys. Lett. 94 211901

[18] Zhao X H and Suo Z G 2008 Electrostriction in elastic
dielectrics undergoing large deformation J. Appl. Phys.
104 123530

[19] Liu Y J, Liu L W, Yu K, Sun S H and Leng J S 2009 An
investigation on electromechanical stability of dielectric
elastomer undergoing large deformation Smart Mater. Struct.
18 095040

[20] Zhao X H, Hong W and Suo Z G 2007 Electromechanical
coexistent states and hysteresis in dielectric elastomers Phys.
Rev. B 76 134113

[21] Liu Y J, Liu L W, Sun S H and Leng J S 2010
Electromechanical stability of Mooney–Rivlin-type
dielectric elastomer with nonlinear variable dielectric
constant Polym. Int. 59 371–7

11

http://dx.doi.org/10.1126/science.287.5454.836
http://dx.doi.org/10.1016/j.ijsolstr.2006.03.026
http://dx.doi.org/10.1002/marc.200900425
http://dx.doi.org/10.1063/1.2981642
http://dx.doi.org/10.1016/j.msec.2004.02.005
http://dx.doi.org/10.1002/adfm.200700757
http://dx.doi.org/10.1063/1.2768641
http://dx.doi.org/10.1016/j.jmps.2007.05.021
http://dx.doi.org/10.1063/1.3272685
http://dx.doi.org/10.1063/1.2979236
http://dx.doi.org/10.1063/1.2972124
http://dx.doi.org/10.1063/1.3089808
http://dx.doi.org/10.1063/1.3138153
http://dx.doi.org/10.1063/1.3031483
http://dx.doi.org/10.1088/0964-1726/18/9/095040
http://dx.doi.org/10.1103/PhysRevB.76.134113


Smart Mater. Struct. 20 (2011) 075004 L Liu et al

[22] Koh S A, Zhao X H and Suo Z G 2009 Maximal energy that
can be converted by a dielectric elastomer generator Appl.
Phys. Lett. 94 262902

[23] Moscardo M, Zhao X H, Suo Z G and Lapusta Y 2008 On
designing dielectric elastomer actuators J. Appl. Phys.
104 093503

[24] He T H, Zhao X H and Suo Z G 2009 Equilibrium and stability
of dielectric elastomer membranes undergoing
inhomogeneous deformation J. Appl. Phys. 106 083522

[25] Zhao X H and Suo Z G 2008 Method to analyze programmable
deformation of dielectric elastomer layers Appl. Phys. Lett.
93 251902

[26] Zhu J, Cai S Q and Suo Z G 2010 Nonlinear oscillation of a
dielectric elastomer balloon Polym. Int. 59 378–83

[27] Zhao X H and Suo Z G 2010 Theory of dielectric elastomers
capable of giant deformation of actuation Phys. Rev. Lett.
104 178302

[28] Liu Y J, Liu L W, Zhang Z and Leng J S 2009 Dielectric
elastomer film actuators: characterization, experiment and
analysis Smart Mater. Struct. 18 095024

[29] Horgan C O and Saccomandi G 2006 Phenomenological
hyperelastic strain stiffening constitutive models for rubber
Rubber Chem. Technol. 79 152–69

[30] Liu L W, Liu Y J, Zhang Z, Li B and Leng J S 2010
Electromechanical stability of electro-active silicone filled
with high permittivity particles undergoing large
deformation Smart Mater. Struct. 19 115025

[31] Li B, Liu L W and Suo Z G 2011 Extension limit, polarization
saturation, and snap-through instability of dielectric
elastomers Int. J. Smart Nano Mater. 2 59–67

[32] Liu Y J, Liu L W, Zhang Z, Jiao Y, Sun S H and Leng J S 2010
Analysis and manufacture of an energy harvester based on a
Mooney–Rivlin-type dielectric elastomer Europhys. Lett.
90 36004

[33] Xu B X, Mueller R, Classen M and Gross D 2010 On
electromechanical stability analysis of dielectric elastomer
actuators Appl. Phys. Lett. 97 162908

[34] He T H, Cui L L, Chen C and Suo Z G 2010 Nonlinear
deformation analysis of a dielectric elastomer
membrane–spring system Smart Mater. Struct. 19 085017

[35] Zhao X H, Adrian Koh S and Suo Z G 2011 Nonequilibrium
thermodynamics of dielectric elastomers Int. J. Appl. Mech.
at press

[36] Zhu J, Li T F, Cai S Q and Suo Z G 2011 Snap-through
expansion of a gas bubble in an elastomer J. Adhes. at press

[37] Zhu J, Stoyanov H, Kofod G and Suo Z G 2010 Large
deformation and electromechanical instability of a dielectric
elastomer tube actuator J. Appl. Phys. 108 074113

[38] Zhu J, Cai S Q and Suo Z G 2010 Resonant behavior of a
membrane of a dielectric elastomer Int. J. Solids Struct.
47 3254–62

[39] Adrian Koh S, Keplinger C, Li T F, Bauer S and Suo Z G 2011
Dielectric elastomer generators: how much energy can be
converted IEEE/ASME Trans. Mechatron. 16 33–41

[40] Liu Y J, Liu L W, Sun S H and Leng J S 2010 Stability analysis
of dielectric elastomer film actuator Sci. China E 52 2715–23

[41] Li B, Chen H L, Qiang J H, Hu S L, Zhu Z C and Wang Y Q
2011 Effect of mechanical pre-stretch on the stabilization of
dielectric elastomer actuation J. Phys. D: Appl. Phys.
44 155301

[42] Marckmann G and Verron E 2006 Comparison of hyperelastic
models for rubber-like materials Rubber Chem. Technol.
79 835–58

[43] Kong X H, Li Y B, Liu L W and He X D 2011
Electromechanical stability of semi-crystalline polymer Thin
Solid Films at press doi:10.1016/j.tsf.2011.01.119

[44] Koh S A, Li T F, Zhou J X, Zhao X H, Hong W, Zhu J and
Suo Z G 2011 Mechanisms of large actuation strain in
dielectric elastomers J. Polym. Sci. B 49 504–15

[45] Liu L W, Fan J M, Zhang Z, Shi L, Liu Y J and Leng J S 2008
Analysis of the novel strain responsive actuators of silicone
dielectric elastomer Adv. Mater. Res. 47–50 298–301

[46] Leng J S, Zhang Z, Liu L W, Liu Y J and Du S Y 2011
Thermodynamics and thermo-electro-mechanical stability of
dielectric elastomers composite Sci. China G at press

[47] Benslimane M Y, Kiil H-E and Tryson M J 2010 Dielectric
electro-active polymer push actuators: performance and
challenges Polym. Int. 59 415–21

[48] McKay T, O’Brien B, Calius E and Anderson I 2010
Self-priming dielectric elastomer generators Smart Mater.
Struct. 19 055025

[49] Fox J W and Goulbourne N C 2008 On the dynamic
electromechanical loading of dielectric elastomer
membranes J. Mech. Phys. Solids 56 2669–86

[50] Hong W 2011 Modeling viscoelastic dielectrics J. Mech. Phys.
Solids 59 637–50

12

http://dx.doi.org/10.1063/1.3167773
http://dx.doi.org/10.1063/1.3000440
http://dx.doi.org/10.1063/1.3253322
http://dx.doi.org/10.1063/1.3054159
http://dx.doi.org/10.1103/PhysRevLett.104.178302
http://dx.doi.org/10.1088/0964-1726/18/9/095024
http://dx.doi.org/10.5254/1.3547924
http://dx.doi.org/10.1088/0964-1726/19/11/115025
http://dx.doi.org/10.1209/0295-5075/90/36004
http://dx.doi.org/10.1063/1.3504702
http://dx.doi.org/10.1088/0964-1726/19/8/085017
http://dx.doi.org/10.1063/1.3490186
http://dx.doi.org/10.1016/j.ijsolstr.2010.08.008
http://dx.doi.org/10.1109/TMECH.2010.2089635
http://dx.doi.org/10.1007/s11431-009-0247-5
http://dx.doi.org/10.1088/0022-3727/44/15/155301
http://dx.doi.org/10.5254/1.3547969
http://dx.doi.org/10.1016/j.tsf.2011.01.119
http://dx.doi.org/10.4028/www.scientific.net/AMR.47-50.298
http://dx.doi.org/10.1088/0964-1726/19/5/055025
http://dx.doi.org/10.1016/j.jmps.2008.03.007
http://dx.doi.org/10.1016/j.jmps.2010.12.003

	1. Introduction
	2. Thermo-electro-mechanical coupling system
	3. Constitutive relation
	4. Thermo-electro-mechanical instability
	4.1. Effect of equal-biaxial stretch on thermo-electro-mechanical instability
	4.2. Effect of unequal-biaxial stretch on thermo-electro-mechanical instability
	4.3. Effect of thickness direction stretch on thermo-electro-mechanical instability

	5. Conclusions
	Acknowledgments
	References

