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To study the electromechanical stability of dielectric elastomer subjected to a mechanical force field, we use free energy func-
tions of variable forms to analyze the mechanical performance of dielectric elastomer. The relation among critical nominal 
electric field, critical true electric field, nominal stress and mechanical force field is derived. These calculations agree well with 
the experimental results. The results can help us better understand the stability conditions of dielectric elastomers and further-
more guide the design and manufacture of sensors and actuators based on dielectric elastomers. 
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Nomenclature 

L1, L2, L3  original sides of dielectric elastomer 
F1, F2  mechanical forces 
U   electrical voltage 
Q   electric charge 
1, 2, 3  stretch ratio 
l1, l2, l3  dielectric elastomer sides after deformation 
s1, s2   nominal stress 
E~   nominal electric field 
D~   nominal displacement 
1, 2  true stress 
E   true electric field 
D   true displacement 

~
maxE    critical nominal electric field 

hc   critical thickness strain 
c   critical stretch ratio 
Emax   critical true electric field 
   relative permittivity 

C1, C2, p, p material constants 
k   material constant ratio 

1  Introduction 

The electromechanical stability theory of dielectric elas-
tomers was first proposed by Suo and Zhao [1–5]. Recent 
years have seen extensive and in-depth studies of the stabil-
ity analysis of dielectric elastomer [6–28]. When a voltage 
is applied on the dielectric elastomer film, the voltage will 
cause the film to become thinner [6–16, 29–38]. As a result, 
the same voltage will induce a higher electric field and fur-
ther cause the dielectric elastomer film to become thinner. 
When the electric field reaches the critical breakdown elec-
tric field, the resulting breakdown will occur in the dielec-
tric elastomer. This process is called electromechanical in-
stability or pull-in instability [3,4].  

Zhao and Suo [1,2] proposed that free energy function of 
any form can be used to analyze the electromechanical sta-
bility of dielectric elastomer. As a special case, the elastic 
strain energy function with one material constant was used 
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to analyze the stability of an ideal elastic elastomer under 
equal biaxial pre-stresses and unequal biaxial pre-stresses. 
The results illustrated the relation between the nominal 
electric displacement and the nominal electric field. They 
showed theoretically that pre-stretch can enhance the stabil-
ity of dielectric elastomer, which agrees with the experi-
mental tests. 

Norrisa applied the Ogden elastic strain energy model to 
analyze the stability of the dielectric elastomer [7]. The re-
lation among the critical electric field, the nominal strain 
and the pre-stretch of dielectric elastomer was obtained ac-
curately. Simultaneously, as a special case, the Neo-Hoo-                 
kean elastic strain energy model, which was a simplified 
version of the Ogden model, was introduced to give more 
concise but accurate results. 

Further research on the stability of Neo-Hookean type 
dielectric elastomer was done by Díaz-Calleja’s group [8]. 
The Hessian matrix of dielectric elastomer under two special 
conditions was deduced. Furthermore, the stable domain 
and unstable domain of dielectric elastomer were described. 
These results can help us understand the stability performance 
of Neo-hooken type dielectric elastomer more thoroughly. 

Ref. [10] applied the elastic strain energy function with 
two material constants to analyze the stability performance 
of dielectric elastomers. The introduced material constant 
ratio k could help us analyze the stability of various dielec-
tric elastomers. The relation between the nominal electric 
displacement and nominal electric field of various dielectric 
elastomers was derived. 

In this paper, variable free energy functions are applied 
to analyze the mechanical performance of dielectric elas-
tomer subjected to a mechanical force field. The relation 
among critical nominal electric field, critical true electric 
field, nominal stress and mechanical force field is derived, 
which agrees well with the experimental results.  

2  Stability parameters of electromechanical 
coupling system 

As is shown in Figure 1, in the referenced state, the mem-              

brane of dielectric elastomer is of sides L1, L2, and L3. When 
the dielectric elastomer is subject to mechanical forces F1, 
L2, and to electrical voltage U, the three sides of the mem-
brane deform to l1, l2 and l3, and electric charge Q flows 
through the external circuit from one electrode to another. 
Here i, i =1, 2, 3 represents the principal stretch ratio after 
deformation, and s1, s2 are the nominal stress, which can be 
derived in the undeformed state by dividing the pre-stretch 
force by the area, i.e., s1=F1/L2L3, s2=F2/L1L3. The dielectric 
elastomer is taken to be incompressible, so that 1=1/12. 
Similarly, the nominal electric field E~=U/Le is defined as 
the voltage divided by the original thickness, and the nomi-
nal electric displacement D~=Q/L1L2 is defined as the charge 
divided by the area before deformation. The corresponding 
true electric field can be obtained by dividing the electric 
voltage U by the thickness in the deformed state, i.e., 
E=U/3L3, and also the corresponding true electric dis-
placement is D=Q/1L12L2. 

In this paper, the effect of mechanical force field on the 
electromechanical stability of dielectric elastomers is stud-
ied. Stability performance parameters are defined and the 
mathematical expressions of those parameters are derived. 
Here we define the critical nominal electric field ~

maxE , the 

critical true electric field Emax, the nominal stress s, the true 
stress , the critical stretch ratio C, the critical thickness 
strain 2

C1 1h    as the stability performance parame-

ters, where the critical quantities and the true quantities 
represent respectively the different physical performance 
from the stable states to the unstable states, while the ratio 
variables denote the deformation comportment.  

3  The mathematical expression of system sta-
bility parameters 

To the electromechanical coupling system of the dielectric 
elastomer, elastic strain energy function (mechanical force 
field) and the electric energy destiny function (electric field) 
can be coupled. Then the free energy function of the cou-
pling system is obtained [15]:  

 

Figure 1  The dielectric elastomer is sandwiched between two compliant electrodes. (a) In the reference state, the dielectric is subjected to neither forces 
nor voltage; (b) in the current state, subject to forces and voltage, the dielectric elastomer deforms. 
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where 1 1 ~
1 2 1 2( , , , )W D      denotes the free energy func-

tion of dielectric elastomer electromechanical coupling sys-
tem, 1 1

1 2 1 2( , , )U       represents the elastic strain energy 

function, and 1 1 ~
1 2 1 2( , , , )V D      reveals the electric en-

ergy destiny function. The Hessian matrix is 
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The elastic strain energy function above represents the ef-
fect of mechanical force field on the dielectric elastomer 
electromechanical coupling system, and the electric energy 
destiny function represents the effect of electric field on the 
dielectric elastomer electromechanical coupling system. For 
the effect of mechanical force field, the electric energy des-
tiny function can be set as a constant value. So the model of 
the electric energy destiny function with the dielectric con-
stant  invariable can be expressed as follows: 

 
~2
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Inserting eq. (3) into eq. (2), we obtain the Hessian matrix 
of dielectric elastomer: 
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(4) 

And then the determinant of Hessian matrix is 
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For such a dielectric elastomer electromechanical coupling 
system, we have 

~ ~ 2 2
1 2D E    and 

~
1 2E E   , where 

E~ represents the nominal electric field, and E denotes the 
true electric field. Inserting them into eq. (5), the accurate 
relation of critical nominal breakdown electric field ~

maxE , 

critical true breakdown electric field maxE , nominal strain 

and mechanical force field on the dielectric elastomer are 
obtained as follows: 
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j=1, 2. Let 0,js   and the maximum stretch C  can be 

calculated. Inserting this result into eqs. (6) and (7), we can 
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maxE , and the critical 
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mum deformation of dielectric elastomer under the coupling 
of electric field and mechanical field. 

To simplify the above relations, we take into account the 
special condition of equal biaxial pre-stretch of dielectric 
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 2
c1 1 .h    (14) 

Eqs. (10)–(14) denote the accurate relations of critical 
nominal electric field, critical true electric field, nominal 
strain and elastic strain energy function (effect of mechani-
cal force field) under the condition of equal biaxial pre- 
stretch. 

4  The effect of mechanical force field 

The dielectric elastomer electromechanical stability is ana-
lyzed in detail in this part when the dielectric elastomer is 
subjected to a mechanical force field. When different elastic 
strain energy functions are introduced, the explicit expres-
sion of the dielectric elastomer performance parameters is 
obtained under the condition of equal biaxial pre-stretch. By 
introducing the model of elastic strain energy function with  

one material constant, the free energy function can be writ-
ten as: 
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Inserting the above equations into eq. (4), the Hessian ma-
trix of dielectric elastomer is 
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The special condition of dielectric elastomer loading is 
taken into account, namely 1 2    . We have 11U   

22U , and inserting it into eqs. (10)–(13), we get:  
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For eq. (22), let s=0. The stretch  reaches its critical value 

max , then max 1.26  . By inserting max 1.26   into eqs. 

(20) and (21), critical nominal electric field and critical true 

electric field are obtained, namely ~
max 0.69 / ,E    

max 1.09 /E   . Inserting them into eq. (14), then the 

value of the critical thickness strain h  is about 37%. 

Clearly, the results coincide well with Suo’s conclusion [1].  
Figure 2 gives the relations between electromechanical 

stability parameters and the stretch of dielectric elastomer, 
including critical nominal electric field, critical true electric  

field, critical nominal stress, and critical true stress. 
By introducing the model of elastic strain energy func-

tion with two material constants, the free energy function 
can be expressed as follows: 
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Substituting it into eq. (4), the Hessian matrix of dielec-
tric elastomer can be written as follows: 
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Figure 2  Relations between electromechanical stability parameters and the stretch of the dielectric elastomer. (a) Critical nominal electric field; (b) critical 
true electric field; (c) critical nominal stress; (d) critical true stress. 
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Considering the special condition of dielectric elastomer 
loading, namely 1 2 ,     then 11 22 ,U U  and sub-

stituting it into eqs. (10)–(14), we have:  
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For convenience, we introduce a dimensionless quantity k 
which depends on the material and the activated shape of 
the dielectric elastomer, where 1, when 2 is a constant, as 
0, L1, L2, L3. For 1 2,F F , let s=0. The critical stretch can be 

evaluated to be c=1.48. Inserting it into eq. (29), the 
maximum value of the nominal electric field ~

maxE   

11.148 /C   is obtained. Substituting it into eq. (30), the  

maximum value of the true electric field maxE   

12.514 /C   is obtained. 

For 1/2,k   let 0s  , and the critical stretch can be 
evaluated to be c 1.37  . Inserting it into eq. (29), the 

maximum value of the nominal electric field ~
maxE   

10.936 /C   is obtained. Inserting it into eq. (30), the 

maximum value of the true electric field maxE   

11.757 /C   is obtained. 

For 1/4,k   let 0s  , and the critical stretch can be 
evaluated to be c 1.32  . Inserting it into eq. (29), the 

maximum value of the nominal electric field ~
maxE   

10.817 /C   is obtained. Inserting it into eq. (30), the 

maximum value of the true electric field maxE   

11.423 /C   is obtained. 

  For 1/5,k   let 0s  , and the critical stretch can be 
evaluated to be c 1.32  . Inserting it into eq. (29), the 

maximum value of the nominal electric field ~
maxE   

10.792 /C   is obtained. Inserting it into eq. (30), the  



6 Leng J S, et al.   Sci China Phys Mech Astron   December (2011)  Vol. 54  No. 12 

 

Figure 3  Relations between stability parameters and the stretch when k=0.5. (a) Critical nominal electric field; (b) critical true electric field; (c) critical 
nominal stress; (d) critical true stress. 

maximum value of the true electric field maxE   

11.338 /C   is obtained. The results correspond to Liu’s 

conclusion [5]. 
Figure 3 shows the relations between electromechanical 

stability parameters (critical nominal electric field, critical 
true electric field, critical nominal stress and critical true 
stress) and the stretch of dielectric elastomer under equal 
biaxial stresses and material constant ratio k=1/2. 

For the model of elastic strain energy function with 
various material constants, the special condition of dielec-
tric elastomer is taken into account, namely 1 2 ,     

then 11 22U U . Inserting it into eqs. (6)–(8), we get 
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Substituting eq. (33) into eq. (4), the Hessian matrix of di-
electric elastomer is 
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For eq. (40), let s=0, and the critical stretch ratio c  is 

obtained. Inserting it into eqs. (38) and (39), then the ex-
plicit expressions of critical nominal electric and critical 
true electric field can be obtained. The Neo-Hookean model 
and the Mooney-Rivlin model can be regarded as the spe-
cial case of the Ogden elastic strain energy function with 
various material constants. The following part is to simplify 
the Ogden model, and apply the simplified form to evaluate 
the critical nominal electric field, the critical true electric 
field and the nominal stress, then compare and validate 
them with the results obtained by the above models. 

Assuming N=1, 1=, 1=, the critical stretch can be 
evaluated to be  
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(43)

 

Obviously, assuming 2  , the critical stretch c 1.26  . 

Then inserting it into eqs. (42) and (43), the critical nominal 
and the critical true electric field can be obtained, namely 

~
max 0.69 / ,E    max 1.09 / .E    For comparison, 

the results agree well with those by using the Neo-Hookean 
model.  

Assuming 2,N   2 1 2     , 2 1m  , inserting 

them into eq. (40), 6 23 8 0,m     when m equals dif-

ferent values, the critical stretch ratio   can be obtained. 
1m   , c 1.48  . Inserting them into eq. (38), the maxi-

mum value of the nominal electric field ~
maxE   

11.148 / .   Inserting them into eq. (39), the maximum 

value of the nominal electric field max 12.514 / .E    

When m is chosen as 1/2,  1/4,  1/5   , respectively, the 

corresponding critical stretch is evaluated as c =1.37,  

1.32, 1.30, the critical nominal electric field ~
maxE   

1 1 10.936 / ,  0.817 / ,  0.792 /       respectively, while 

the critical true electric field maxE  11.757 / ,   

11.423 / ,   11.338 /   respectively. Let 2 2C   , 

1 1C  , k m  . The evaluated result coincides with the 

result when the Mooney-Rivlin model is used. 

5  Conclusions 

This paper has obtained the accurate relation among critical 
nominal, critical true electric field, nominal stress and dif-
ferent strain energy functions in a dielectric elastomer elec-
tromechanical coupling system. The strain energy functions, 
which are explicit expressions of systemic stability parame-
ters, of the Neo-Hookean model, the Mooney-Rivlin model 
and the Ogden model, are derived. Simultaneously, the pre-
digested expression of Ogden model is evaluated. And the 
deduced results agree with the experimental results. There is 
great instructional significance in actuator design and fabri-
cation. 
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