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Electromechanical instability may occur in dielectric elastomer films due to the coupling between
mechanical forces and electric fields. According to Zhao and Suo �Appl. Phys. Lett. 91, 061921
�2007��, free-energy in any form, which consists of elastic strain energy and electric energy, can be
used to analyze the electromechanical stability of dielectric elastomer. By taking the permittivity as
a variable depending on the deformation in a free energy function, a relationship is established
among critical nominal electric field, critical real electric field, nominal stress, and principal stretch
ratios. The accurate expressions of these parameters are presented for a special equal biaxial stretch
case. All the results obtained by utilizing the single material constant neo-Hookean elastic strain
energy model coincide with the conclusions by Zhao and Suo. © 2009 American Institute of
Physics. �DOI: 10.1063/1.3138153�

A layer of a dielectric elastomer reduces in thickness and
expands its area when a voltage is applied across its
thickness.1 Such changes cause a higher electric field in the
dielectric elastomer, which results in a positive feedback.
When the critical electric field is reached, the dielectric elas-
tomer film will break down. Such a failure is known as in-
stability of material, which has a significant influence on the
capacity of a dielectric elastomer either as an actuator or
sensor.

The research on the failure and nonlinear electrome-
chanical stability of a dielectric elastomer has been one of
the most popular subjects in recent years.2–6 Zhao and Suo2

proposed a general method using the free energy function of
dielectric elastmers to analyze their stability. Their theoreti-
cal study proved that the critical electric fields for electrome-
chanical stability of dielectric elastomers can be increased by
prestretch. The critical electric fields evaluated by the
method2 are consistent with experimental results.7 Norris3

used the elastic strain energy model developed by Ogden to
analyze the stability of elastomers. Díaz-Calleja et al.4 made
an in-depth investigation of the stability of neo-Hookean sili-
cone and located the instability region of this material. Liu et
al.5 studied the stability of dielectric elastomers using an
elastic strain energy function with two material constants and
found the ratio of the two constants can be used to represent
the stability of different types of dielectric elastomer. Re-
cently, we studied the stable domain of Mooney–Rivlin sili-
cone, which provides useful theory guidance for the research
on this kind of material.6

In this paper, a nonlinear expression of permittivity as a
function of the stretch ratio has been proposed. Based on this
expression, we analyzed the electromechanical stability of
dielectric elastomer. The relationship among critical nominal
electric field, critical real electric field, nominal stress, and
principal stretch ratios has been established.

Suppose the dielectric elastomer is incompressible, the
free energy function for the electromechanical coupling sys-
tem of a dielectric elastomer can then be expressed as

W��1,�2,�1
−1�2

−1,D�� = U��1,�2,�1
−1�2

−1�

+ V��1,�2,�1
−1�2

−1,D�� , �1�

where U��1 ,�2 ,�1
−1�2

−1� and V��1 ,�2 ,�1
−1�2

−1 ,D�� are the
elastic strain energy and electric field energy density func-
tions, respectively, �1 and �2 are the two principal stretch
ratios, and D� is the nominal electric displacement.

The Hessian matrix of the system can be written as

H = �U11 + V11 U12 + V12 V13

U12 + V12 U22 + V22 V23

V13 V23 V33
� , �2�

where Uij =�2U /��i�� j, Vij =�2V /��i�� j, i , j=1,2, V13
=�2V /��1�D�, V23=�2V /��2�D�, V33=�2V /�D�2.

According to research of Kofod et al.8 on acrylic, the
permittivity of a dielectric elastomer is variable of deforma-
tion. We can express the permittivity of acrylic as a function
of stretches,

���1,�2� = ��a�1�2 + b��0, �1�2 � s ,

c�0, �1�2 � s ,
	 �3�

where a, b, c, and s are the speific constants of an elastomer
material, a=−0.016, b=4.716 c=4.48by fitting to experi-
mental data,8 and �0=8.85�10−12 F /m is the permittivity of
free space. Equation �3� can be generalized and applied to
other dielectric elastomers.

According to Ref. 2, the electric field energy density
function can be expressed as V��1 ,�2 ,�1

−1�2
−1 ,D��

=D�2�1
−2�2

−2 /2���1 ,�2�.
The free energy function of a dielectric elastomer can be
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Also, from Eq. �4�, the Hessian matrix of an electromechanical coupling system in Eq. �2� can be expressed as
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In the electromechanical coupling system of a dielectric elastomer, the relation between nominal electric field E� and
nominal electric displacement field D� can be expressed as E�=D��1

−2�2
−2 /�. Therefore, D� is D�=E���1

2�2
2 and the real

electric field can be expressed as E=D� / ��1�2��.
According to Eq. �5�, the determinant in the two stretch ranges can be calculated. When det�H�=0, the original stable

system gets meta-stable because of the electrical breakdown of material. In this critical condition, the relationship between
critical real electric field and stretch ratio is as follows:
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The critical nominal electric field Emax
� of a dielectric elastomer can be expressed as follows:
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where Uj =�U /�� j, j=1,2. Equations �7�, �9�, and �10� are
the generic stability parameters of the electromechanical
coupling system of a dielectric elastomer.

A special case of equal biaxial stretch with two principal
stretch ratios �1=�2=� is taken into consideration as shown
below. U11=U22 holds under this condition.

From Eqs. �7�, �9�, and �10�,
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Accordingly, the idiographic expressions of A, B, C, M, N,
P, Q, and K given in Eqs. �6� and �8�, which are simplified
under the condition of �1=�2=� and U11=U22. Equations
�11�–�13� are the simplified expressions of the stability
parameters in the special case of equal biaxial stretch
with �1=�2=�. Note that no specific elastic strain energy
function is assumed for all the results above.

As an example, free energy function is established to
analyze the electromechanical stability performance of a di-
electric elastomer by applying neo-Hookean elastic strain en-
ergy model in the following section:
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If �1�2�s, the stability parameters of a dielectric elas-
tometer can be written by Eqs. �11�–�13�. According to the
above mentioned definition of Uij, in this case, U11 and U22
in Eq. �13� are ��1+3�−6� and 2��−6, respectively. After
simplification, it is evident that the nominal and the real elec-
tric field reach their critical values when the nominal stress
becomes zero, i.e., s=0. This condition gives critical stretch
ratio �max. Substituting �max into Eqs. �12� and �11�, the criti-
cal nominal and the real electric field can therefore be evalu-
ated.

Similarly, if �1�2�s,

c�0Emax
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3
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s =
2�

3
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By taking s=0 in Eq. �17�, stretch ratio � reaches its critical
value �max=1.26. Accordingly, from Eqs. �15� and �16�,
Emax

� =0.69�� /c�0, Emax=1.09�� /c�0. These results coin-
cide with the conclusions by Zhao and Suo.2

To sum up, the stability parameters of a dielectric elas-
tomer, such as critical nominal electric field, critical real
electric field, and nominal stress, are studied as the functions
of principal stretch ratios in this work. The accurate expres-
sions of these parameters are presented for a special case of
equal biaxial stretch. The results obtained by utilizing the
single material constant neo-Hookean model of the elastic
strain energy function coincide with the conclusions by Zhao
and Suo. We believe that the appropriate elastic strain energy
function of a specific elastomer material can be used to pre-
dict the stability of material. The results presented in this
work can be used to guide the design and fabrication of
dielectric elastomer actuators.
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