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Abstract
This paper describes the manufacturing, characterization and parametric modeling of a novel
fiber-reinforced composite flexible skin with in-plane negative Poisson’s ratio (auxetic)
behavior. The elastic mechanical performance of the auxetic skin is evaluated using a
three-dimensional analytical model based on the classical laminate theory (CLT) and Sun’s
thick laminate theory. Good agreement is observed between in-plane Poisson’s ratios and
Young’s moduli of the composite skin obtained by the theoretical model and the experimental
results. A parametric analysis carried out with the validated model shows that significant
changes in the in-plane negative Poisson’s ratio can be achieved through different
combinations of matrix and fiber materials and stacking sequences. It is also possible to
identify fiber-reinforced composite skin configurations with the same in-plane auxeticity but
different orthotropic stiffness performance, or the same orthotropic stiffness performance but
different in-plane auxeticity. The analysis presented in this work provides useful guidelines to
develop and manufacture flexible skins with negative Poisson’s ratio for applications focused
on morphing aircraft wing designs.

(Some figures may appear in colour only in the online journal)

1. Introduction

In recent years, morphing wing technologies have constituted
a key design driver to enlarge the flight envelope of
aircrafts outside their fixed cruise point, eliminate flap-
type mechanisms and reduce aerodynamic drag [1–3].
Traditional aircrafts are designed according to their particular
missions, and usually optimized in the most concerned
flight performance [4–7]. They can realize the optimal
objective through changing their aerodynamic layouts to
adapt to the outside flight environment [8–10]. One of
the key techniques to realize morphing aircraft is the

4 Authors to whom any correspondence should be addressed.

morphing skin [11, 12], which should have enough strain
capability to ensure the changes of camber angle, span
length, chord length, sweepback angle and wing area, as
well as possessing enough out-of-plane stiffness to maintain
the aerodynamics configuration during the deformation
process [13]. Meanwhile, in order to reduce the actuation
force and power required for morphing, low in-plane
stiffness of the morphing skin is also desired during the
deformation process [6, 14–16]. The recently emerged
composite materials and manufacturing processes open an
avenue to the development of morphing skins. A candidate
solution proposed is to use sandwiched skins with flexible
face-sheets and cellular cores [12, 17, 18].
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Cellular and lattice structures have attracted the attention
of many researchers around the world for several decades,
due to their significant lightweight and out-of-plane stiffness
properties [19]. A primary application for cellular solids is
their use as sandwich core materials in a variety of engineering
technologies, such as marine, aerospace and automotive
lightweight structures [20, 21]. The conventional hexagonal
honeycomb is a typical example of cellular core configuration,
with unit cells made of ribs with equal length and an internal
cell angle of π/6 [22]. Over-expanded center symmetric
honeycomb configurations with special orthotropic properties
can also be developed when varying the cell wall aspect
ratio and internal cell angle, always with positive values [22,
23]. Hexagonal honeycombs with convex configuration (i.e.,
positive internal cell angle) exhibit anticlastic or saddle-shape
curvatures when subject to out-of-plane bending [24–26],
making more problematic the use of classical cores in
sandwich structures with complex geometry [27]. In contrast,
negative Poisson’s ratio (auxetic) solids feature synclastic
curvature behaviors, making it possible therefore to produce
dome-shaped surfaces when bent out-of-plane [25, 28].
Auxetic cellular structures have also been used to prototype
morphing wings [7, 29–31], radomes [32], adaptive and
deployable structures [33]. Spadoni [34] demonstrated the
influence of chiral core geometry on the compliance and
confirmed the ability of chiral core airfoils to sustain
large deflections while not exceeding yield strain limits.
The feasibility of chiral honeycomb used as the airfoil
core material was further demonstrated by many other
researchers [7, 29, 35]. Furthermore, the re-entrant cellular
structures had also been studied as the core materials of
airfoils [17, 35, 36]. They also exhibit great potential in the
morphing aircraft wing applications.

It is worth noting that most of the previous works were
focused on the cellular cores; the face-sheets were not taken
into account for simplicity. As a morphing wing skin, it
needs to meet the demand of deformation capability, smooth
continuous surface and complete air tightness [18]. Therefore,
it is necessary to consider the mechanical properties of the
face-sheet. For the morphing aircraft wing, if the in-plane
Poisson’s ratio of the cellular core is different from the
face-sheet, this will result in the generation of an internal
shear force between the cellular core and face-sheet, and
local wrinkling on the face-sheet, which are disadvantageous
to the aerodynamic performance of the morphing wing. In
order to avoid this problem, a morphing wing composed of
a zero-Poisson’s ratio honeycomb core and an in-plane zero-
Poisson’s ratio face-sheet was manufactured and researched
by Bubert et al [12]. However, the deformability is usually
limited in one direction. An alternative method is to design a
face-sheet with in-plane negative Poisson’s ratio properties.

In this work, a novel flexible composite skin with negative
Poisson’s ratio has been manufactured and investigated. A
three-dimensional theoretical model is presented to describe
the mechanical behaviors of the composite skin. The
theoretical value of in-plane Poisson’s ratio and elastic
modulus are verified by experimental results based on
in-plane tensile tests. The validated theoretical model has

Figure 1. Coordinate relations between material axes (1, 2 and 3)
and reference axes (x, y and z).

then been used to perform a parametric analysis concerning
the dependency of the in-plane Poisson’s ratio and elastic
modulus versus the different composite material and geometry
parameters.

2. Flexible skin theoretical model

2.1. Flexible skin stress–strain relation

As shown in figure 1, the flexible skin model is considered
to be homogeneous anisotropic, with a symmetric but
unbalanced fiber orientation [α/β]S with respect to the x
direction. For convenience, the Cartesian coordinate system
is adopted to analyze the flexible skin. Considering the
symmetry properties of the model, the stress–strain relation
is expressed in the following form:

σ̄x

σ̄y

σ̄z

τ̄yz

τ̄zx

τ̄xy


=



C̄11 C̄12 C̄13 0 0 C̄16

C̄12 C̄22 C̄23 0 0 C̄26

C̄13 C̄23 C̄33 0 0 C̄36

0 0 0 C̄44 C̄45 0

0 0 0 C̄45 C̄55 0

C̄16 C̄26 C̄36 0 0 C̄66





ε̄x

ε̄y

ε̄z

γ̄yz

γ̄zx

γ̄xy


(1)

where C̄ij (i, j = 1, 2, 3, 4, 5, 6) are the stiffness matrix
constants. Once the stiffness matrix

[
C̄
]

is determined, it is
possible to obtain a global second-order tensor [S̄] = [C̄]−1,
where [S̄] is the compliance matrix of the flexible skin
model. After the compliance matrix constants are obtained,
the linear elastic constants of the model can be calculated by
the following expression:

Ex = 1/S̄11, Ey = 1/S̄22,

Ez = 1/S̄33

νxy = −S̄21/S̄11, νxz = −S̄31/S̄11,

νyz = −S̄23/S̄22

Gxy = 1/S̄66, Gxz = 1/S̄55, Gyz = 1/S̄44.

(2)
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2.2. Stiffness matrix constants

According to the thick laminate theory [37], for a single
composite system and unbalanced ply configuration, the
stiffness matrix constants of the model can be simplified as:

C̄1i =

N∑
k=1

vkC̄(k)1i +

N∑
k=2

(C̄(k)13 − λ13)vk

× (C̄(1)i3 − C̄(k)i3 )/C̄
(k)
33 , (i = 1, 2, 6)

C̄2j =

N∑
k=1

vkC̄(k)2j +

N∑
k=2

(C̄(k)23 − λ23)vk

× (C̄(1)j3 − C̄(k)j3 )/C̄
(k)
33 , (j = 2, 6)

C̄l3 =

N∑
k=1

vkC̄(k)l3 , (l = 1, 2, 6)

C̄33 = 1
/(

N∑
k=1

vk/C̄
(k)
33

)

C̄mn =

(
N∑

k=1

vkC̄(k)mn/1k

)/
1, (m, n = 4, 5)

C̄66 =

N∑
k=1

vkC̄(k)66 +

N∑
k=2

(C̄(k)36 − λ36)vk(C̄
(1)
36 − C̄(k)36 )/C̄

(k)
33

(3)

where N indicates the total number of the laminate, and the
terms λ13, λ23, λ36,1 and 1k can be expressed as:

λ13 = C̄13, λ23 = C̄23, λ36 = C̄36 (4)

1 =

(
N∑

k=1

vkC̄(k)44 /1k

)(
N∑

k=1

vkC̄(k)55 /1k

)

−

(
N∑

k=1

vkC̄(k)45 /1k

)2

(5)

1k = C̄(k)44 C̄(k)55 − (C̄
(k)
45 )

2 (6)

where vk is the volume fraction of the kth lamina and defined
as vk = tk/h. The symbol tk is the thickness of the kth lamina,
h is the total thickness of the laminate.

2.3. Laminate-plate theory

The symbol C̄(k)ij stands for the off-axis stiffness matrix
constants of the kth lamina. The off-axis stiffness constants
in matrix [C̄(k)ij ] can be obtained from the on-axis coordinate

constants in matrix [C(k)ij ], as shown in figure 1, using a
stiffness transformation matrix written as [38]:

[C̄(k)ij ] = [T
σ

il]
−1
[C(k)lm ][T

ε
mj] (7)

where matrix [Tσ il] and [Tεmj] are respectively the base
change of stress and strain. The stiffness constants of matrix

[C(k)ij ] are given as follows [39]:

1 =
1− v12v21 − v13v31 − v23v32 − 2v21v13v32

E11E22E33

C11 =
1− v23v32

E22E331
, C12 =

v12 + v13v32

E11E331
,

C13 =
v13 + v12v23

E11E221

C22 =
1− v13v31

E11E331
, C23 =

v23 + v21v13

E11E221
,

C33 =
1− v12v21

E11E221

G44 = G23, G55 = G31, G66 = G12.

(8)

While each layer of the laminated-plate exhibits the
properties of fiber-reinforced composite materials, the matrix
material is isotropic and fiber is transversely isotropic,
its elastic constants can be obtained using a classical
rule-of-mixture [40]:

E11 = VfEf11 + VmEm,

E22 = E33 =
Ef22Em

Ef22Vm + EmVf

G12 = G13 =
Gf12Gm

Gf12Vm + GmVf
,

G23 =
Gf23Gm

Gf23Vm + GmVf

v12 = v13 = Vfvf12 + Vmvm,

v23 = Vfvf23 + Vmvm,

(9)

where Ef11,Ef22,Gf12,Gf23, vf12 and vf23 are the material
constants of the carbon fiber, Em, vm and Gm are the material
constants of matrix, Vf and Vm are the volume fractions of
fiber and matrix material.

3. Manufacturing and experimental testing

3.1. Flexible skin manufacturing

The flexible skin samples were manufactured using unidirec-
tional carbon fiber sheets (IMS60 24K, Hexcel Corporation)
and silicone elastomer (Sylgard 184, Dow Corning Corpora-
tion). The manufacturing process is similar to the fabrication
of a one-dimensional morphing aircraft skin [12]. First, two
outer elastomer face-sheets were obtained using Sylgard 184
mixed liquid (ratio of the base to curing agent = 10:1), which
were vacuumed for an hour to remove the air bubbles, then
poured into a flat plate mold with a thickness of 1.8 mm,
and cured at 100 ◦C for an hour in the vacuum oven. Second,
four carbon fiber layers with different fiber offset angles were
obtained using unidirectional carbon fiber sheets (thickness:
0.36 mm), which were cut by a cutting machine (Genesis
2100, BLACK & WHITE Ltd), as shown in figure 2(a). The
binder threads of the carbon fiber layers were removed to
eliminate their effect on the skin stiffness. Then, the edges of
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Figure 2. Manufacture schematic diagram of flexible skin.

the carbon fiber layer were fixed with masking tapes to ensure
the relative position of the fiber strand (figure 2(b)). Finally,
the prepared carbon fiber layers with different fiber offset
angles and additional uncured elastomer were sandwiched
between the two outer face-sheets, then moved to another flat
plate mold with a thickness of 5 mm. After curing at 100 ◦C
for an hour in the vacuum oven, a morphing skin sample with
four layers of carbon fiber embedded in the elastomer matrix
at [α/β]S angle was obtained (figure 2(c)). The experimental
specimens (dimensions of 150 mm × 35 mm × 5 mm) were
obtained through cutting the morphing skin sample with a
knife (figure 2(d)). The specimens had a fiber volume fraction
of 0.228.

3.2. Tensile test

The elastic modulus along the x direction and in-plane
Poisson’s ratio of the morphing skin were obtained from the
in-plane tensile test. The tensile tests were performed on a
materials testing machine (Instron 3343, load cell: 1 kN) with
a constant displacement rate of 0.5 mm min−1 (figure 3).
The force and displacement values were recorded by BlueHill
control and acquisition software. In order to improve the
test accuracy, a video extensometer was used to record the
accurate strain and displacement value. This system used a
digital video camera (SONY XCD-X710) with a zoom lens
(COMPUTAR 18-108/2.5) connected to a PC running Video
Gauge software (IMETRUM Ltd). The positions (in pixels) of
targets marked on the sample could be tracked and measured
by the Video Gauge software during the testing. In order to
obtain the actual displacement, a reference displacement was
used to convert the pixels into actual metric values [41]. The
sample actual strains along the x and y directions (εx and εy)
could be obtained by respectively measuring the positions of
any two targets along the x and y directions. Based on the
measurement results, the in-plane Poisson’s ratio could be
obtained with its definition νxy = −εy/εx.

Figure 3. Flexible skin experimental setup.

4. Results and discussions

4.1. Comparison between experiments and analytical model

In order to study the in-plane Poisson’s ratio and elastic
modulus (along the x direction), two morphing skin samples
with different fiber offset angles [20/70]S and [30/60]S were
chosen and manufactured. Through measurement, the tensile
specimens had the actual fiber offset angles of [17/72]S and
[31/60]S after being cut by the knife. Since the unidirectional
carbon fiber data sheet (IMS60, 24K) provided by the
supplier was not enough to obtain its three-dimensional elastic
constants, several other types of carbon fiber were chosen and
the basic elastic constants of them were shown in table 1.
It is worth noticing that the carbon fibers IMS 5131 and
T800H have almost the same filament diameters (5 µm), axial
Young’s moduli (290 GPa) and tensile strengths (5.6 GPa)
compared to carbon fiber IMS60, which was used as the
reinforcing layer of the skin sample. The elastic modulus of
the silicone elastomer (Sylgard 184) was determined from the
tensile tests to have a value of 2.83 MPa. According to the
research results of Yu and Zhao [42], the in-plane Poisson’s
ratio νm = 0.5 is used in this work.

Table 2 shows the comparison of the elastic modulus
Ex and in-plane Poisson’s ratio νxy between theoretical and
experimental results. The theoretical values are obtained
based on a combination of the theoretical derivation and the
basic material parameters of carbon fibers. The experimental
values are the average values (four specimens) of in-plane
tensile test results, which were obtained within the initial
linear elastic range (2%–5%). An excellent agreement
between theoretical results related to the four types of carbon
fibers can be observed, which indicates that the difference of
the carbon fiber types does not make any significant change to
the elastic modulus (less than 0.03%) and in-plane Poisson’s
ratio (less than 0.05%) of the skin sample with such ply
angle configurations. It could be attributed to the fact that
both the theoretical results of elastic modulus and in-plane
Poisson’s ratio are not sensitive to the types of carbon fibers

4
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Table 1. Basic material parameters of carbon fibers.

Fiber
Elastic modulus
E11 (GPa)

Elastic modulus
E22=33 (GPa)

Shear modulus
G12=13 (GPa)

Poisson’s ratio
ν12=13

Poisson’s
ratio ν23

T300a 231 13.8 12.4 0.2 0.25
IM7b 263.7 19.0 27.6 0.2 0.35
IMS
5131c

290 14.0 25.0e 0.236 0.011

T800Hd 294 20.0 25.0 0.02 0.42

a Reference [43].
b Reference [44].
c Reference [45].
d Reference [46].
e Assumed: the same values as for the T800H.

Table 2. Comparison between theoretical and experimental results.

Fiber angle Properties T300 IM7 IMS 5131 T800H Experiment

[17/72]S Ex (MPa) 28.387 28.390 28.391 28.392 33.038 ± 1.405
νxy −1.0614 −1.0616 −1.0617 −1.0617 −0.9197 ± 0.0803

[31/60]S Ex (MPa) 16.828 16.831 16.832 16.833 18.903 ± 2.908
νxy −0.9588 −0.9590 −0.9592 −0.9592 −0.9045 ± 0.0504

in such ply angles ([17/72]S and [31/60]S), when the axial
elastic modulus of carbon fiber is more than four orders of
magnitude greater than the silicone elastomer. In addition, for
the theoretical results of elastic modulus, the slight change
(less than 0.03%) could also be ascribed to the relatively lower
fiber volume fraction (0.228) of the skin. Good agreement
is observed in general, with the theoretical values showing
a reasonable decrease (14.06% and 10.95%) below the
experimental results for the elastic modulus at the ply angles
[17/72]S and [31/60]S, while a reasonable increase (15.44%
and 6.05%) over the experimental results for the in-plane
Poisson’s ratio at both ply angles. Uncertainties affecting the
discrepancy between the experimental and analytical results
can be ascribed to the fact that the material parameters
used in the theoretical method are not exactly the same as
the actual materials parameters of the experimental sample.
According to Schneider [47], a high hardening temperature
and long hardening time may result in an increase of the
elastic modulus for Sylgard 184. Since the accuracy of the
theoretical values have been validated by the experimental
results, the material parameters related to carbon fiber T800H
will be used in the following parametric analysis.

4.2. Parametric analysis

4.2.1. In-plane Poisson’s ratio νxy. Figures 4(a)–(d) show
the analytical predictions for the in-plane Poisson’s ratio
versus fiber angle [α/β]S (where β is fixed and α is varied)
for different fiber volume fractions when the matrix material
has a lower elastic modulus (Em = 10 MPa). As shown
in figure 4(a), for increasing fiber volume fraction, the
magnitude of Poisson’s ratio first increases then decreases
when the fiber angle α is kept constant, the maximum
value occurs at Vf = 0.5, and the minimum value occurs at

Vf = 0.1 and Vf = 0.9. The magnitude exhibits a symmetry
about Vf = 0.5. A similar trend can also be observed in
figures 4(b)–(d). For increasing fiber volume fraction (from
0.1 to 0.5), the analytical predictions show a corresponding
maximum magnitude of Poisson’s ratio increasing from 8.56
to 12.66 when the fiber angle β = 10 (figure 4(a)) and a
corresponding maximum magnitude increasing from 15.18 to
26.54 when the fiber angle β = 30 (figure 4(b)). In addition,
the corresponding maximum magnitude increases from 14.06
to 24.36 when the fiber angle β = 50 (figure 4(c)) and the
corresponding value increases from 9.49 to 14.61 when the
fiber angle β = 70 (figure 4(d)). It is worth noting that the
Poisson’s ratio is always positive when the fiber angle α =
0, 90 and β. Furthermore, there are two obvious valleys in
figure 4(a), which is different from the other three figures
(figures 4(b)–(d)). Finally, for constant fiber angle β, the
Poisson’s ratios almost coincide with each other when the
fiber angle α is greater than 45 in figure 4(a), while this is true
when the fiber angle α is greater than 15 in the other three
figures.

Figures 5(a)–(d) show the analytical predictions related to
the in-plane Poisson’s ratio versus fiber angle [α/β]S (where
β is fixed and α is varied) for different fiber volume fractions
when the matrix material has a higher elastic modulus (Em =

1000 MPa). Similarly, as shown in figure 5(a), for increasing
fiber volume fraction, the magnitude of Poisson’s ratio first
increases then decreases when fiber angles α is kept constant,
as can also be observed in figures 5(b)–(d). In contrast, the
magnitude does not exhibit the symmetry about Vf = 0.5. For
increasing fiber volume fraction (from 0.1 through 0.5 to 0.9),
the corresponding maximum magnitude of Poisson’s ratio
first increases from 0.69 to 1.72 then decreases to 0.95 when
the fiber angle β = 10 (figure 5(a)), while the corresponding
value first increases from 0.32 to 0.70 then decreases to 0.44
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Figure 4. Analytical predictions for the in-plane Poisson’s ratio νxy versus fiber angle α for different fiber volume fractions
Vf (Em = 10 MPa): (a) β = 10; (b) β = 30; (c) β = 50; (d) β = 70.

when the fiber angle β = 30 (figure 5(b)). In addition, the
corresponding maximum magnitude first increases from 0.53
to 1.71 then decreases to 0.87 when the fiber angle β = 50
(figure 5(c)), and the corresponding value first increases from
0.65 to 1.39 then decreases to 0.80 when the fiber angle β =
70 (figure 5(d)). It can also be found that there are two obvious
valleys in figure 5(b), which is different from the other three
figures (figures 5(a), (c)–(d)). Moreover, the Poisson’s ratio is
positive when the fiber angle α = 0, 90 and β.

Figures 6(a)–(d) show the analytical predictions for the
in-plane Poisson’s ratio versus fiber angle [α/β]S (where β is
fixed and α is varied) for different matrix elastic moduli when
the fiber volume fraction is kept constant (Vf = 0.5). As shown
in figure 6(a), the magnitude of Poisson’s ratio decreases with
increasing matrix elastic modulus when the fiber angle α is
held constant. This can also be observed in figures 6(b)–(d).
In general, for increasing matrix elastic modulus (from 5 to
1000 MPa), the analytical predictions show a corresponding
maximum magnitude of Poisson’s ratio decreasing from 23.09
to 1.72 when the fiber angle β = 10 (figure 6(a)), while the
corresponding value decreases from 38.01 to 0.70 when the
fiber angle β = 30 (figure 6(b)). In addition, the corresponding
maximum magnitude decreases from 32.38 to 1.71 when the

fiber angle β = 50 (figure 6(c)), and the corresponding value
decreases from 17.18 to 1.38 when the fiber angle β = 70
(figure 6(d)).

The analytical predictions related to the in-plane
Poisson’s ratio νxy versus fiber angle α for different fiber
angles β (Vf = 0.5,Em = 10 MPa) are shown in figure 7. For
all values of fiber angle α, it can be observed that the Poisson’s
ratio is positive when the fiber angle β = 0 and β = 90, which
was verified by Peel [48]. In addition, the Poisson’s ratio
is also positive when the fiber angle β = α. The maximum
magnitude of Poisson’s ratio (26.54) occurs at fiber angles
β = 30 and α = 2. From figure 7, it can be found that most of
the higher magnitudes of Poisson’s ratio are concentrated in
the region α < 15. Figure 8 shows the analytical predictions
for the in-plane Poisson’s ratio νxy versus fiber angle α

for different fiber angles β (Vf = 0.5,Em = 1000 MPa). In
contrast to figure 7, the maximum magnitude of Poisson’s
ratio (1.72) is much lower in figure 8. It occurs at fiber
angles β = 10 and α = 53. Furthermore, most of the higher
magnitudes of Poisson’s ratio are not limited to the region for
α < 15, but dispersed in a large region. By comparison, it can
be found that a significant change of the Poisson’s ratio can be
achieved through changing the matrix elastic modulus.

6
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Figure 5. Analytical predictions for the in-plane Poisson’s ratio νxy versus fiber angle α for different fiber volume fractions
Vf (Em = 1000 MPa): (a) β = 10; (b) β = 30; (c) β = 50; (d) β = 70.

4.2.2. Elastic modulus. Figure 9 shows the analytical
predictions related to the elastic modulus Ex versus fiber angle
α for different fiber angles β (Vf = 0.5,Em = 10 MPa). For
increasing fiber angle α, the elastic modulus decreases when
the fiber angle β is kept constant (not including β = 0),
except for a minimum value occurring at fiber angle α =
β. When fiber angle β = 0, for increasing fiber angle α,
the elastic modulus first decreases rapidly, then approaches
a asymptotic behavior. Similarly, when the fiber angle α is
kept constant, the elastic modulus decreases with increasing
fiber angle β, except for a minimum value occurring at
fiber angle α = β. A similar trend can also be observed in
figure 10. Figure 10 shows the analytical predictions related
to the elastic modulus Ex versus fiber angle α for different
fiber angles β (Vf = 0.5,Em = 1000 MPa). In comparison
with the modulus variation around the region α = β, the
curve in figure 10 is less severe. It should be attributed to
the fact that the stiffness ratio (E11/E22, equation (9)) in
figure 10 is lower than that in figure 9. According to the
study results of Peel [48], the stiffness ratio is one of the
primary factors contributing to the negative Poisson’s ratio of
fiber-reinforced composites. Figure 11 shows the analytical
predictions related to the stiffness ratio E11/E22 versus fiber
volume fraction Vf for different matrix elastic moduli Em. For

increasing fiber volume fraction, the stiffness ratio exhibits
a trend of first increasing then decreasing when the matrix
elastic modulus Em = 10 MPa. The stiffness ratio value also
exhibits a symmetry about Vf = 0.5, which explains the
symmetry of the maximum magnitude related to Poisson’s
ratio in figure 4. In contrast, when the matrix elastic modulus
Em = 1000 MPa, the stiffness ratio value does not exhibit
the symmetry about Vf = 0.5, which explains the reason why
we cannot observe the symmetry of maximum magnitude
related to Poisson’s ratio about Vf = 0.5 in figure 5. Through
observing figures 7–11, it could be found that it is possible
to obtain larger selection ranges related to Poisson’s ratio and
elastic modulus with a higher stiffness ratio.

As shown in figure 9, since the variation curves of elastic
modulus show the same trends for different fiber angles β,
fiber angle β = 70 will be used in the following parametric
discussion. Analytical predictions for the elastic modulus
Ex versus fiber angle α for different fiber volume fractions
Vf (β = 70,Em = 10 MPa) are shown in figure 12. For
increasing fiber volume fraction, the elastic modulus increases
when fiber angle α is kept constant. As mentioned above, for
constant fiber angle β, the Poisson’s ratios almost coincide
with each other when the fiber angle α is higher than 15
(figure 4(d)). However, the elastic moduli do not coincide with
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Figure 6. Analytical predictions for the in-plane Poisson’s ratio νxy versus fiber angle α for different matrix elastic moduli Em (Vf = 0.5):
(a) β = 10; (b) β = 30; (c) β = 50; (d) β = 70.

Figure 7. Analytical predictions for the in-plane Poisson’s ratio νxy
versus fiber angle α for different fiber angles β (Em = 10 MPa,
Vf = 0.5).

each other under the same conditions (figure 12). The results
suggest the possibility of using fiber-reinforced composites to
design flexible skins with the same negative Poisson’s ratios
but different elastic moduli.

Figure 8. Analytical predictions for the in-plane Poisson’s ratio νxy
versus fiber angle α for different fiber angles β (Em = 1000 MPa,
Vf = 0.5).

Figure 13 shows the analytical predictions related to the
elastic moduli Ex and Ey versus fiber angle α for different
fiber angles β (Vf = 0.5,Em = 10 MPa). For simplicity, only
four fiber angles β (β = 10, 30, 50 and 70) were chosen in
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Figure 9. Analytical predictions for the elastic modulus Ex versus
fiber angle α for different fiber angles β (Em = 10 MPa,Vf = 0.5).

Figure 10. Analytical predictions for the elastic modulus Ex versus
fiber angle α for different fiber angles β (Em = 1000 MPa,
Vf = 0.5).

Figure 11. Analytical predictions for the stiffness ratio E11/E22 ver-
sus fiber volume fraction Vf for different matrix elastic moduli Em..

the following discussion. For increasing fiber angle α, the
elastic modulus Ex tends to decrease when fiber angle β is
kept constant, in contrast to the elastic modulus Ey increasing

Figure 12. Analytical predictions for the elastic modulus Ex versus
fiber angle α for different fiber volume fractions Vf (β = 70,
Em = 10 MPa).

Figure 13. Analytical predictions for the elastic moduli Ex and Ey
versus fiber angle α for different fiber angles β (Vf = 0.5,
Em = 10 MPa).

(figure 13). However, both elastic moduli Ex and Ey show their
minimum values at fiber angle α = β. In addition, it can be
observed that the elastic moduli Ex and Ey show the same
values at fiber angle [α/β]S = [80/10]S, [60/30]S, [40/50]S
and [20/70]S, respectively (figure 13). A similar trend can
also be observed in figure 14, except the values of elastic
moduli Ex and Ey in figure 14 are higher than those of
figure 13. The analysis results suggest the possibility of using
fiber-reinforced composites to design negative Poisson’s ratio
flexible skins with the same elastic modulus along the x and y
directions.

4.2.3. Relation between in-plane Poisson’s ratio and elastic
modulus. Figure 15 shows the analytical predictions for
the in-plane Poisson’s ratio νxy versus elastic moduli Ex for
different fiber angles β (Em = 10 MPa,Vf = 0.5). In order
to make these curves easy to distinguish from each other,
two figures (figures 15(a) and (b)) were used to describe the

9
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Figure 14. Analytical predictions for the elastic moduli Ex and Ey
versus fiber angle α for different fiber angles β (Vf = 0.5,
Em = 1000 MPa).

Figure 15. Analytical predictions for the in-plane Poisson’s ratio
νxy versus elastic moduli Ex for different fiber angles β
(Em = 10 MPa, Vf = 0.5): (a) β = 10, 20, 30 and 40; (b) β = 50,
60, 70 and 80.

relations between νxy and Ex. For decreasing values of the
elastic modulus Ex and fibre angle β constant, the magnitude
of the Poisson’s ratio νxy presents a complex behavior, with
a double increase/decrease over the Young’s modulus range

Figure 16. Analytical predictions for the in-plane Poisson’s ratio
νxy versus elastic moduli Ex for different fiber angles β
(Em = 1000 MPa, Vf = 0.5): (a) β = 10, 20, 30 and 40; (b) β = 50,
60, 70 and 80.

(figure 15). The three local minimum magnitude values occur
at the fiber angle α = 0, α = β and α = 90, respectively. A
similar trend can also be observed in figure 15(b). However,
the trend of the second increase and decrease is not obvious in
figure 15(b).

The analytical predictions for the in-plane Poisson’s ratio
νxy versus elastic moduli Ex for different fiber angles β (Em =

1000 MPa,Vf = 0.5) are shown in figures 16(a) and (b). In
comparison to figure 15, the trends of the Poisson’s ratios
are similar, but more obvious in figure 16. This is attributed
to the fact that the range of values of Poisson’s ratio in
figure 16 is less than 10 times that in figure 15. By observing
figures 15 and 16, it can be found that it is possible to obtain a
flexible skin with the same in-plane negative Poisson’s ratios
but different elastic moduli, or the same elastic moduli but
different in-plane negative Poisson’s ratios.

5. Conclusions

In this work, a class of fiber-reinforced composite flexible
skin with in-plane negative Poisson’s ratio behavior has
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been manufactured and investigated from an analytical and
experimental point of view. The focus of this investigation
was the relation between the in-plane Poisson’s ratio and
the material parameters. The accuracy of the theoretical
model has been validated by the experimental results. A
parametric analysis showed that significant changes in the
in-plane negative Poisson’s ratio could be achieved through
changing the fiber ply angles and matrix elastic moduli.
In addition, fiber-reinforced composite skins with the same
in-plane negative Poisson’s ratios but different elastic moduli,
or the same elastic moduli but different in-plane negative
Poisson’s ratios could also be achieved through proper
material parameter selection. The analysis presented in this
work provides meaningful guidelines towards developing and
manufacturing a new type of flexible skin with negative
Poisson’s ratios for morphing skin applications.
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