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Abstract
Dielectric elastomers are one of the important electroactive polymers used as actuators in
adaptive structures due to their outstanding ability to generate very large deformations when
subjected to an external electric field. In this paper, the Mooney–Rivlin elastic strain energy
function with two material constants is used to analyze the electromechanical stability
performance of a dielectric elastomer. This elastic strain energy together with the electric
energy incorporating linear permittivity are the main items to construct the free energy of the
system. Particular numerical results are also calculated for a further understanding of the
dielectric elastomer’s typical stability performance. The proposed model offers great help in
guiding the design and fabrication of actuators featuring dielectric elastomers.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Dielectric elastomers are widely used to fabricate actuators,
sensors etc, due to their perfect properties of large deformation
(up to 380%), high elastic energy density (3.4 J g−1), high
efficiency, high responsive speed, as well as long fatigue
lifespan [1–12]. When a voltage is imposed on the dielectric
elastomer film, the film will become thinner [13–20]. As a
result, the actual electric field experienced by the dielectric
elastomer becomes stronger at the same voltage, thus causing
further thinning of the film thickness. The above process
will continue. When the electric field exceeds the breakdown
electric field, the dielectric elastomer will break down. This
is called the electromechanical instability, or pull-in instability,
which is the main reason preventing dielectric elastomers from
being used in practical applications [21–26].

In recent years, the stability analysis of dielectric
elastomers has become a most popular issue, especially after
Suo et al proposed the electromechanical stability theory

3 Authors to whom any correspondence should be addressed.

of dielectric elastomers [27–34]. In their published paper,
Suo et al indicated that any free energy function can be
used to analyze the electromechanical stability of a dielectric
elastomer [27, 28]. For example, they used the elastic strain
energy function with one material constant to analyze the
stability of an ideal dielectric elastomer subjected to a biaxial
stress. The results revealed the relation between the nominal
electric displacement and the nominal electric field. It was
the first time that the experimental phenomenon that pre-
stretching could enhance the dielectric elastomer’s stability had
been proved theoretically. Meanwhile, the critical breakdown
electric field strength has been predicted by using this method.
Norrisa et al used the Ogden elastic strain energy model to
analyze the dielectric elastomer’s stability [33]. The relation
among critical actual electric field, nominal stress and the
pre-stretching ratio of dielectric elastomers was accurately
obtained. Simultaneously, as a particular case, a neo-hookean
model, which was a simplified model of the Ogden model,
was introduced to give more concise and accurate results.
Further research was done on the stability of neo-hookean
silicone based elastomer by Dı́az-Calleja’s group [34]. The
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Figure 1. Dielectric elastomer electromechanical coupling system.
λ1, λ2 denote the in-plane principal stretch ratios of the dielectric
elastomer, λ3 is the stretch ratio of the dielectric elastomer thickness
direction, l1, l2, l3 are the original dimensions of the dielectric
elastomer, P1, P2, P3 denote the pre-stretch forces, subject to
mechanical forces in three directions, and to an electrical voltage U
via an external circuit, that deforms to λ1l1, λ2l2, λ3l3.

Hessian matrix under two special loading conditions was
deduced. Furthermore, the stable and unstable domains of
dielectric elastomers were determined. These results can
help us understand the stability performance of neo-hookean
silicone more thoroughly. An elastic strain energy function
with two material constants was used to analyze the stability
performance of dielectric elastomers by our group. The
introduction of a material constant ratio k offers great help
in analyzing the stability of various dielectric elastomers [32].
The relationship between the nominal electric displacement
and nominal electric field of different dielectric elastomers is
derived directly by using this model.

In the current work, differently from that given in
Suo’s paper [31], the system free energy containing the
Mooney–Rivlin elastic strain energy function with two
material constants and an electric energy incorporating
linear permittivity has been constructed to analyze the
electromechanical stability of a dielectric elastomer. The
proposed model is helpful in guiding the design and fabrication
of dielectric elastomer based devices.

2. The basic theory

For a dielectric elastomer, the permittivity is a variable which
depends on the macromolecular structure, crosslink degree and
pre-stretching of the elastomer. This has already been proved
by theoretical and experimental research. Suo et al indicated
that if the crosslink degree is high, or if the deformation
approaches the extension limit, the permittivity of the dielectric
elastomer will be affected by its deformation. Therefore,
due to the fact that the dielectric elastomer will experience a
nonlinear large deformation under the coupled mechanical and
electric field, it is necessary to introduce a variable dielectric
permittivity into the dielectric energy when analyzing the
elastomer’s stability performance.

In their recently published paper [31], Suo et al used
a dielectric permittivity which is a linear fitted function
of experimental data in analyzing the mechanical behavior
and stability of a dielectric elastomer undergoing a large

deformation. Based on their research, the expression of
permittivity ε(λ1, λ2, λ3) is expressed as:

ε(λ1, λ2, λ3) = [1 + a(λ3 − 1)+ b(λ1 +λ2 +λ3 − 3)]ε∼ (1)

where ε∼ is the permittivity of the dielectric elastomer without
deformation, a and b are the coefficients of electrostriction.
λi (i = 1, 2, 3) are stretch ratios, λ1 and λ2 denote the in-
plane principal stretch ratios of the dielectric elastomer film
(perpendicular to the electric field), λ3 is the stretch ratio along
the direction of the electric field, as shown in figure 1.

The free energy function of the dielectric elastomer elec-
tromechanical coupling system can be written
as [27–34, 36–39]:

W (λ1, λ2, λ3, D∼) = U(λ1, λ2, λ3)+V (λ1, λ2, λ3, D∼) (2)

where W (λ1, λ2, λ3, D∼) represents the system free energy
function, U(λ1, λ2, λ3) denotes the elastic strain energy
density function, V (λ1, λ2, λ3, D∼) is the electric energy
density function, and D∼ is the nominal electric displacement
of the electromechanical coupling system.

The electric energy density function of a dielectric
elastomer with a linear permittivity can be expressed as
follows [31]:

V (λ1, λ2, λ3, D∼) = D∼2

2ε(λ1, λ2, λ3)
λ−1

1 λ−1
2 λ3. (3)

The nominal stress si and the nominal electric field E∼ depend
on the following functions respectively:

si = ∂W (λ1, λ2, λ3, D∼)

∂λi
(4)

E∼ = ∂W (λ1, λ2, λ3, D∼)

∂ D∼ . (5)

The Mooney–Rivlin model of the elastic strain energy function
with two material constants is given by [33]:

U(λ1, λ2, λ3) = C1

2
(λ2

1+λ2
2+λ2

3−3)+C2

2
(λ−2

1 +λ−2
2 +λ−2

3 −3)

(6)
where C1 and C2 are two material constants, which can
be determined by experiment. Under the condition of
constant permittivity of the electric energy density function,
the effect of the free energy function on the dielectric elastomer
stability performance was studied in our previously published
work [32]. Based on this, if C2 = 0, the above equation is
the elastic strain energy used by Suo et al in system stability
analysis of the dielectric elastomer [27].

Substituting equations (6), (1), (3) and (2) into (4) and (5),
the nominal stress and the nominal electric field can be
expressed respectively as follows:

s1 = C1λ1 − C2λ
−3
1

− λ−2
1 λ−1

2 λ3 D∼2

2[1 + a(λ3 − 1) + b(λ1 + λ2 + λ3 − 3)]ε∼

− bλ−1
1 λ−1

2 λ3 D∼2

2[1 + a(λ3 − 1) + b(λ1 + λ2 + λ3 − 3)]2ε∼ (7)

2
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s2 = C1λ2 − C2λ
−3
2

− λ−1
1 λ−2

2 λ3 D∼2

2[1 + a(λ3 − 1) + b(λ1 + λ2 + λ3 − 3)]ε∼

− bλ−1
1 λ−1

2 λ3 D∼2

2[1 + a(λ3 − 1) + b(λ1 + λ2 + λ3 − 3)]2ε∼ (8)

s3 = C1λ3 − C2λ
−3
3

+ λ−1
1 λ−1

2 D∼2

2[1 + a(λ3 − 1) + b(λ1 + λ2 + λ3 − 3)]ε∼

− (a + b)λ−1
1 λ−1

2 λ3 D∼2

2[1 + a(λ3 − 1) + b(λ1 + λ2 + λ3 − 3)]2ε∼ (9)

E∼ = λ−1
1 λ−1

2 λ3 D∼

[1 + a(λ3 − 1) + b(λ1 + λ2 + λ3 − 3)]ε∼ . (10)

As shown in figure 1, the original dimensions of the dielectric
elastomer in the three main directions are denoted as li in
the original state, prior to deformation. When applying an
external load Pi in the three main directions, the dimensions
of the dielectric elastomer become Li . Therefore, the stretch
ratios in the main directions are defined as λi = Li/li ,
Furthermore, the nominal stresses in the main directions can
be expressed as: s1 = P1/l2l3, s2 = P2/l1l3, s3 = P3/l1l2.
The corresponding real stresses can be expressed as: σ1 =
P1/L2 L3, σ2 = P2/L1 L3, σ3 = P3/L1 L2. Thus, based on
the above given relationship, the real stresses can be written
as: σ1 = s1/λ2λ3, σ2 = s2/λ1λ3, σ3 = s3/λ1λ2. Substituting
them into equations (7), (8) and (9), we then have:

σ1 = (C1λ1 − C2λ
−3
1 )λ−1

2 λ−1
3

− λ−2
1 λ−2

2 D∼2

2[1 + a(λ3 − 1) + b(λ1 + λ2 + λ3 − 3)]ε∼

− bλ−1
1 λ−2

2 D∼2

2[1 + a(λ3 − 1) + b(λ1 + λ2 + λ3 − 3)]2ε∼ (11)

σ2 = (C1λ2 − C2λ
−3
2 )λ−1

1 λ−1
3

− λ−2
1 λ−2

2 D∼2

2[1 + a(λ3 − 1) + b(λ1 + λ2 + λ3 − 3)]ε∼

− bλ−2
1 λ−1

2 D∼2

2[1 + a(λ3 − 1) + b(λ1 + λ2 + λ3 − 3)]2ε∼ (12)

σ3 = (C1λ3 − C2λ
−3
3 )λ−1

1 λ−1
2

+ λ−2
1 λ−2

2 D∼2

2[1 + a(λ3 − 1) + b(λ1 + λ2 + λ3 − 3)]ε∼

− (a + b)λ−2
1 λ−2

2 λ3 D∼2

2[1 + a(λ3 − 1) + b(λ1 + λ2 + λ3 − 3)]2ε∼ (13)

E = D

[1 + a(λ3 − 1) + b(λ1 + λ2 + λ3 − 3)]ε∼ . (14)

Substituting equations (14) into (11)–(13), since D =
D∼λ−1

1 λ−1
2 , the item λ−2

1 λ−2
2 D∼2/2[1 + a(λ3 − 1) + b(λ1 +

λ2 + λ3 − 3)]ε∼ in equations (11)–(13) becomes ε∼E2/2,
the item bλ−1

1 λ−2
2 D∼2/2[1 + a(λ3 − 1) + b(λ1 + λ2 +

λ3 − 3)]2ε∼ in equations (11) becomes ∂ε
2∂λ1

λ1 E2, the third

term in equations (12) and (13) becomes ∂ε
2∂λ2

λ2 E2 ∂ε
2∂λ3

λ3 E2

respectively. If the stretching rate is fixed, equation (14)
denotes the linear relationship between the real electric

displacement and the real electric field. Since equations (11)–
(13) have similar expressions only equation (11) will be
discussed in detail in the following part. On the right-hand
side of equation (11), the first item is related to the elasticity,
the second item represents the Maxwell stress, whose direction
is the same as that of the imposed electric field, the third term is
present when the permittivity of the dielectric elastomer varies
with the stretch, and can be either tensile or compressive.

3. Incompressible dielectric elastomer

Supposing that the dielectric elastomer is incompressible,
namely λ1λ2λ3 = 1, according to Suo’s theory [31], the
nominal stress and the nominal electric field can be simplified
as follows:

s1 − s3

λ2
1λ2

= ∂W (λ1, λ2, D∼)

∂λ1
(15)

s2 − s3

λ2
2λ1

= ∂W (λ1, λ2, D∼)

∂λ2
(16)

E∼ = ∂W (λ1, λ2, D∼)

∂ D∼ . (17)

Then the Mooney–Rivlin model can be simplified as well:

U(λ1, λ2) = C1

2
(λ2

1 + λ2
2 + λ−2

1 λ−2
2 − 3)

+ C2

2
(λ−2

1 + λ−2
2 + λ2

1λ
2
2 − 3). (18)

Because the dielectric elastomer is incompressible, the
permittivity can be simplified to a function of two stretch ratios
in the two planar directions. Simplifying equation (1) the
relationship between the permittivity and the stretch ratio of
the dielectric elastomer film is:

ε(λ1, λ2) = [1+a(λ−1
1 λ−1

2 −1)+b(λ1 +λ2 +λ−1
1 λ−1

2 −3)]ε∼
(19)

where a, b are the electrostrictive coefficients of the dielectric
elastomer.

When importing a non-dimensional factor, assuming b =
na in equation (19), n is defined as the electrical stretching
coefficient ratio, which is related to both the dielectric
elastomer and the load of the coupled field. Then, we
consider conducting a dual axis stretch, that is λ1 = λ2.
Based on Pelrine’s experiment that the dielectric constant
is dependent on the stretching ratio [35], we set n = 1,
and the electrostrictive coefficient a = −0.034. When
n = 2, a = −0.01. When n = 3, a = −0.0058.
When n = 4, a = −0.004. With an increase of
the stretching coefficient ratio n, the stretching coefficient
increases.

Clearly, the range of electrostrictive coefficient a
decreases along with an increase of deformation. For example,
if a = −1, in order to satisfy the condition of a positive
permittivity, the maximum value of the stretch rate should not
exceed 1.62. Under this condition, the stretch rate does not
reach its real critical value (In most cases, the pre-stretching
ratio λp = 1.3, the critical stretching ratio λC = 1.26, the real

3
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critical value λC
r = λpλC = 1.638.). This can be thought of as

the reason for the suppression of the instability performance.
Generally, when the electrostrictive coefficient a satisfies
a < [( ε(λ1,λ2)

ε∼ − 1)λC
r
]/[(n + 1)(λC

r )−2 + 2nλC
r − (3n + 1)],

the instability performance of the dielectric elastomer is
suppressed, where λC is the critical stretch rate of the dielectric
elastomer and λp is the pre-stretch rate of the dielectric
elastomer.

Then the system free energy function of the dielectric
elastomer can be simplified as follows:

W (λ1, λ2, D∼) = C1

2
(λ2

1 + λ2
2 + λ−2

1 λ−2
2 − 3)

+ C2

2
(λ−2

1 + λ−2
2 + λ2

1λ
2
2 − 3)

+ λ−2
1 λ−2

2 D∼2

2[1+a(λ−1
1 λ−1

2 − 1) + b(λ1 + λ2 + λ−1
1 λ−1

2 −3)]ε∼ .

(20)

Substituting equation (20) into (11)–(13), the nominal stress
and the nominal electric field of the dielectric elastomer
electromechanical coupling system can be expressed as:

s1 = C1(λ1 − λ−3
1 λ−2

2 ) + C2(−λ−3
1 + λ1λ

2
2)

− λ−3
1 λ−2

2 D∼2

[1 + a(λ−1
1 λ−1

2 − 1) + b(λ1 + λ2 + λ−1
1 λ−1

2 − 3)]ε∼

− [b−(b + a)λ−2
1 λ−1

2 ]λ−2
1 λ−2

2 D∼2

2[1 + a(λ−1
1 λ−1

2 − 1) + b(λ1 + λ2 + λ−1
1 λ−1

2 −3)]2ε∼

(21)

s2 = C1(λ2 − λ−3
2 λ−2

1 ) + C2(−λ−3
2 + λ2λ

2
1)

− λ−2
1 λ−3

2 D∼2

[1 + a(λ−1
1 λ−1

2 − 1) + b(λ1 + λ2 + λ−1
1 λ−1

2 − 3)]ε∼

− [b−(b + a)λ−1
1 λ−2

2 ]λ−2
1 λ−2

2 D∼2

2[1 + a(λ−1
1 λ−1

2 −1) + b(λ1 + λ2 + λ−1
1 λ−1

2 −3)]2ε∼

(22)

E∼ = λ−2
1 λ−2

2 D∼

[1 + a(λ−1
1 λ−1

2 − 1) + b(λ1 + λ2 + λ−1
1 λ−1

2 − 3)]ε∼ .

(23)

The real stress and real electric field of the dielectric elastomer
can be expressed as:

σ1 = C1(λ
2
1 − λ−2

1 λ−2
2 ) + C2(λ

2
1λ

2
2 − λ−2

1 )

− εE2 − ε∼[bλ1 − (b + a)λ−1
1 λ−1

2 ]
2

E2 (24)

σ2 = C1(λ
2
2 − λ−2

1 λ−2
2 ) + C2(λ

2
1λ

2
2 − λ−2

2 )

− εE2 − ε∼[bλ2 − (b + a)λ−1
1 λ−1

2 ]
2

E2 (25)

E = D

[1 + a(λ−1
1 λ−1

2 − 1) + b(λ1 + λ2 + λ−1
1 λ−1

2 − 3)]ε∼ .

(26)

According to the well-known working principle of dielectric
elastomer actuators, the area of the dielectric elastomer film
is enlarged, accompanied by a related thickness reduction,
under the stimulation of both the mechanical load and

the electric field. This performance increases the inner
electric field of the dielectric elastomer. When the electric
field reaches the critical value, the film is broken down;
this is called the instability of the system. Apparently,
the effect of the mechanical stress field acting on the
electromechanical coupling system is characterized by the
elastic strain energy function, while the electric energy density
function characterizes the effect of the electric field. According
to the methods developed, the following research is focused on
the effect of deformation based permittivity on the dielectric
elastomer electromechanical stability performance [31].

4. Stability analysis

In the first loading case, we suppose the in-plane stretch of the
dielectric elastomer is biaxial and λ1 = λ2 = λ. Due to the
dielectric elastomer’s incompressibility, we have λ3 = λ−2,
and then the free energy function can be written as:

W (λ, D∼) = C1

2
(2λ2 + λ−4 − 3) + C2

2
(2λ−2 + λ4 − 3)

+ λ−4 D∼2

2[1 + a(λ−2 − 1) + b(2λ + λ−2 − 3)]ε∼ . (27)

Introducing a dimensionless quantity k, which depends on the
material and the activated shape, simultaneously set C2 = kC1,
where C1 is a constant, as k = 0, C2 = 0. The system free
energy function is changed to Suo’s form [32]. Considering the
non-dimensional coefficient n, b = na. To get the relationship
between nominal electric displacement and nominal electric
field, stretch ratio and nominal electric field, respectively, let
s1(λ, D∼) = 0. Furthermore we have ∂W (λ, D∼)/∂λ = 0.
Substituting equation (27) into it, we have:

D∼
√

C1ε∼

= {{2[(λ6 − 1) + k(λ8 − λ2)]}{2 + aλ[n − (n + 1)λ−3]
× {1 + a[2nλ + (n + 1)λ−2 − (3n + 1)]}−1}−1

× {1 + a[2nλ + (n + 1)λ−2 − (3n + 1)]}}1/2 (28)

E∼
√

C1/ε∼ = λ−4

1 + a(λ−2 − 1) + b(2λ + λ−2 − 3)

× D∼
√

C1ε∼ (29)

E∼
√

C1/ε∼ = {{2[(λ−2 − λ−8) + k(1 − λ−6)]}
× {2 + aλ[n − (n + 1)λ−3]
× {1 + a[2nλ + (n + 1)λ−2 − (3n + 1)]}−1}−1

× {1 + a[2nλ + (n + 1)λ−2 − (3n + 1)]}−1}1/2. (30)

Figure 2 illustrates the stability performance of different
dielectric elastomer materials under the loading condition as λ1

and n = 1, Figures 2(a)–(d) show the relationship between the
nominal electric displacement and the nominal electric field of
the dielectric elastomer with different values of k (1, 1/2, 1/4
and 1/5) [32] and different values of a (−1, −0.04, −0.034,
0.04) respectively. Evidently, along with the decrease of a,
the peaks of the nominal electric field decrease. However, the
comparative stability performance of such a kind of dielectric

4
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Figure 2. Relationship between the nominal electric displacement and the nominal electric field of dielectric elastomers for various values of
r and k, under stretches that are biaxially equal λ1 = λ2 = λ (a) k = 1, (b) k = 1/2, (c) k = 1/4, (d) k = 1/5.

Figure 3. Relationship between the stretch ratio and the nominal electric field of different dielectric elastomers with different values of r and
k, under stretches that are biaxially equal λ1 = λ2 = λ (a) k = 1, (b) k = 1/2, (c) k = 1/4, (d) k = 1/5.

elastomer is even lower. When a = 0, neglecting the
effect of deformation on the dielectric elastomer permittivity, it
degenerates to the analysis of an ideal dielectric elastomer [32].
For example, when k = 1/2, the nominal electric field peak
E∼

max = 0.9363
√

C1/ε∼, but considering a special value of a,
namely a = −0.034, if k takes different values of 1, 1/2, 1/4
and 1/5 respectively, the corresponding nominal electric field

peaks are 1.1521
√

C1/ε∼, 0.9361
√

C1/ε∼, 0.8158
√

C1/ε∼,
0.7905

√
C1/ε∼ respectively.

Figure 3 illustrates the relationship between the stretch
ratio and the nominal electric field of different dielectric
elastomers under a biaxial stretch with λ1 = λ2 = λ.
Taking, as a special example, various values of k are selected,
namely k = 1, 1/2, 1/4, 1/5. When k = 1/2, a = 0 and

5
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Figure 4. Relationship between the nominal electric displacement and the nominal electric field of dielectric elastomers for various values of
r and k, under stretches that are biaxially equal λ3 = λ (a) k = 1, (b) k = 1/2, (c) k = 1/4, (d) k = 1/5.

Figure 5. Relationship between the stretch ratio and the nominal electric field of different dielectric elastomers with different values of r and
k, λ3 = λ (a) k = 1, (b) k = 1/2, (c) k = 1/4, (d) k = 1/5.

the nominal electric field reaches its peak, the corresponding
stretch ratio (the critical value) λC = 1.37, which is consistent
with the conclusion based on [32]. In the same condition,
if a takes different values (−0.04, −0.034, 0.04), when the
nominal electric field reaches its peak, the corresponding
critical stretch ratios are λC = 1.36, λC = 1.39, λC = 1.40
respectively. Evidently, all the results are consistent with Suo’s
conclusion [28].

In a second special case, we take the stretching
perpendicular to the elastomer film as λ3 = λ. Owing to

the incompressibility condition of the dielectric elastomer, we
have λ1 = λ2 = λ−1/2, then the free energy function can be
expressed as follows:

W (λ, D∼) = C1

2
(λ2 + 2λ−1 − 3) + C2

2
(λ−2 + 2λ − 3)

+ λ2 D∼2

2[1 + a(λ − 1) + b(2λ−1/2 + λ − 3)]ε∼ . (31)

Similarly, let s1(λ, D∼) = 0, furthermore we have
∂W (λ, D∼)/∂λ = 0. Substituting equation (24) into it, then

6
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Figure 6. The critical nominal electric field when electrostriction
coefficient r takes different values under the loading condition
λ1 = λ2 = λ.

we have:

D∼
√

C1ε∼ = {{2[(λ−2 − λ) + k(λ−3 − 1)]}
× {2λ − aλ2(1 + n − nλ−3/2)

× {1 + a[2nλ−12 + (n + 1)λ − (3n + 1)]}−1}−1

× {1 + a[2nλ−1/2 + (n + 1)λ − (3n + 1)]}}1/2 (32)

E∼
√

C1/ε∼ = λ2

1 + a(λ − 1) + b(2λ−1/2 + λ − 1)

× D∼
√

C1ε∼ (33)

E∼
√

C1/ε∼ = {{2[(λ2 − λ5) + k(λ − λ4)]}
× {2λ − aλ2(1 + n − nλ−3/2)

× {1 + a[2nλ−1/2 + (n + 1)λ − (3n + 1)]}−1}−1

× {1 + a[2nλ−1/2 + (n + 1)λ − (3n + 1)]}−1}1/2. (34)

Figure 4 illustrates the stability performance of different
dielectric elastomer materials in a loading condition as λ3 = λ

and n = 2. Figures 4(a)–(d) show the relationship between
the nominal electric displacement and nominal electric field
of the dielectric elastomer with different values of k (1, 1/2,
1/4 and 1/5) and different values of a (−1, −0.02, −0.01,
0 and 0.02) respectively. Evidently, with the decrease of a,
or the increase of k, the critical electric field of the dielectric
elastomer increases, and the dielectric elastomer becomes more
stable. When a = 0, neglecting the influence of deformation
on the dielectric elastomer’s permittivity, it degenerates to
the analysis of the ideal dielectric elastomer. For example,
when k = 1/5, the nominal electric field peak is E∼

max =
0.7923

√
C1/ε∼, this is consistent with the conclusions in our

previous work [32]. On the other hand, let a take a special
value a = 0.02, if k takes different values of 1, 1/2, 1/4 and
1/5, then the corresponding nominal electric field peaks are
E∼

max = 1.1367
√

C1/ε∼, E∼
max = 0.9364

√
C1/ε∼, E∼

max =
0.8138

√
C1/ε∼ and E∼

max = 0.7892
√

C1/ε∼ respectively.

Figure 7. The critical stretch ratio when electrostriction coefficient r
takes different values under the loading condition λ1 = λ2 = λ.

Figure 5 illustrates the relationship between the stretch
ratio and the nominal electric field of different dielectric
elastomers under the loading condition λ3 = λ. By a similar
method to that mentioned above, various values of k are
selected, k = 1, 1/2, 1/4, 1/5. Taking as a special example
(k = 1/4), if a takes different values (−0.02, −0.01, 0 and
0.02), when the nominal electric field reaches its peak, the
corresponding critical stretch ratios are λC = 0.58, λC = 0.57,
λC = 0.57 and λC = 0.56 respectively.

5. The critical nominal electric field, the critical
stretch ratio, the critical area strain and the critical
thickness strain

From stability to instability, the critical value of electrome-
chanical coupling system is called the critical electric field of
the dielectric elastomer. It is an important parameter in measur-
ing the dielectric elastomer electromechanical coupling system
stability level. The system stability gets higher along with an
increase of the critical electric field. When the system reaches
its critical electric field, the corresponding stretch rate is called
the system critical stretch ratio. Under the state of stability, it is
the maximum stretching deformation of an dielectric elastomer
with the coupling of mechanical and electric fields. Similarly,
the critical area strain and the critical thickness strain represent
the maximum area and thickness deformation of the dielectric
elastomer respectively.

In this section, the changing law of the parameters
characterizing the elastomer’s stability performance are
discussed under two typical loading conditions as λ1 = λ2 = λ

and λ3 = λ. Figures 6–9 show the changing laws of the
critical nominal electric field, the critical stretch ratio, the
critical area strain and the critical thickness strain by taking
various parameters k as the variable while the deformation
ratio a takes different values (n = 1). As shown in these
figures, it is apparent that the critical nominal electric field,
the critical stretch ratio, the critical area strain and the critical
thickness strain all increase with an increase in parameter k. It

7
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Figure 8. The critical area strain when the electrostriction coefficient
r takes different values under the loading condition λ1 = λ2 = λ.

Figure 9. The critical thickness strain when electrostriction
coefficient r takes different values under the loading condition
λ1 = λ2 = λ.

means that a electromechanical coupling system with higher k
is more stable, and such system can approach its largest stretch
ratio, largest area strain and largest thickness strain. All of
these results are consistent with our previous conclusions. If
the deformation ratio a increases, then the critical nominal
electric field, the critical stretch ratio, the critical area strain
and the critical thickness strain all increase. It means that a
electromechanical coupling system with a higher a is more
stable, and such system can tolerate a relatively larger stretch
ratio, area strain and thickness strain.

Figures 10–13 show the changing laws of the critical
nominal electric field, the critical stretch ratio, the critical area
strain and the critical thickness strain by taking the material
parameter k as a variable when deformation ratio a takes
different values under a loading condition λ3 = λ. Evidently,
the critical nominal electric field, the critical area strain and
the critical thickness strain increase with increasing k. At the
same time, the critical stretch ratio decreases, this is due to the

Figure 10. The critical nominal electric field when electrostriction
coefficient r takes different values under the loading condition
λ3 = λ.

Figure 11. The critical stretch ratio when electrostriction coefficient
r takes different values under the loading condition λ3 = λ.

direction along thickness being the reference direction in this
case. Similarly to the previous example, an electromechanical
coupling system with a higher k is more stable. Furthermore,
with increasing a, the critical nominal electric field, the critical
area strain and the critical thickness strain increase but the
critical stretching ratio decreases. It indicates that the higher
a is, the more stable the electromechanical coupling system is.

From the above two examples, it can be concluded that
to fabricate superior-performance dielectric elastomer based
devices, dielectric elastomers materials with higher k and
higher a would be better choices.

6. Conclusions

In this paper, the system free energy function, coupled by the
elastic strain energy function with two material constants and
an electric energy density function with a linear permittivity,
is presented to analyze the electromechanical stability
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Figure 12. The critical area strain when the electrostriction
coefficient r takes different values under the loading condition
λ3 = λ.

Figure 13. The critical thickness strain when electrostriction
coefficient r takes different values under the loading condition
λ3 = λ.

performance of dielectric elastomers. The relationships among
the stability parameters under two special loading conditions
are also obtained. Along with the increase of the material
constant ratio k, the nominal electric field peak, critical area
strain and the critical thickness strain is higher. This indicates
that the dielectric elastomer electromechanical system is
more stable. Inversely, with an increase of the deformation
coefficient a, the nominal electric field peak, critical area strain
and the critical thickness strain increase, and the coupling
system is more stable. The conclusions may be important
in designing and fabricating superior-performance actuators
based on dielectric elastomers.
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