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Abstract
A traditional aircraft is optimized for only one or two flight conditions, not for the entire flight envelope. In contrast, the
wings of a bird can be reshaped to provide optimal performance at all flight conditions. Any change in an aircraft’s config-
uration, in particular the wings, affects the aerodynamic performance, and optimal configurations can be obtained for
each flight condition. Morphing technologies offer aerodynamic benefits for an aircraft over a wide range of flight condi-
tions. The advantages of a morphing aircraft are based on an assumption that the additional weight of the morphing com-
ponents is acceptable. Traditional mechanical and hydraulic systems are not considered good choices for morphing
aircraft. ‘‘Smart’’ materials and structures have the advantages of high energy density, ease of control, variable stiffness,
and the ability to tolerate large amounts of strain. These characteristics offer researchers and designers new possibilities
for designing morphing aircraft. In this article, recent developments in the application of smart materials and structures
to morphing aircraft are reviewed. Specifically, four categories of applications are discussed: actuators, sensors, control-
lers, and structures.
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Introduction

The kite, which might be considered the earliest type of
aircraft, was invented by the Chinese 2000 years ago.
These kites were made from easily obtained natural
materials: silk fabric or paper for the wings, fine, high-
tensile-strength silk for the tether, and bamboo for a
strong, lightweight airframe. The first rocket was devel-
oped in the 13th century in China using black powder
as the propellant. The rocket was the first powered air-
craft used in war and was the forerunner of the jet
engine. The Wright brothers completed the first flight
of a powered, manned aircraft (the Wright Flyer) on 17
December 1903. The 274 kg aircraft had two 12.3 m
wings and was powered by an 8.9 kW, 82 kg engine.
The Wright Flyer stimulated the rapid development of
aircraft in the 20th century.

To improve aerodynamic performance, the use of
bionics in aircraft design is being considered. Swifts
control their glide performance by changing the geome-
try of their wings; for example, they adjust their wing
sweep to suit the speed (Lentink et al., 2007). Jackdaws
(Rosén and Hedenström, 2001) and other birds
(Thomas, 1996) maneuver in flight by changing the
geometry of their wings and tail. It follows that

morphing wings can play a very important role in air-
craft design (Cistone, 2004; Weiss, 2003).

A number of aircraft with morphing wings have
been designed and produced since World War II,
including the X5 (sweep wing, USA, 1951–1958), the
F-111 (sweep wing, USA, 1964–2010), the XB-70 (span
bending wing, USA, 1964–1969), the SU-17 (sweep
wing, former Soviet Union, 1966-till date), the MIG-23
(sweep wing, former Soviet Union, 1967-till date), the
SU-24 (sweep wing, former Soviet Union, 1967-till
date), the Tu-22M (sweep wing, former Soviet Union,
1969-till date), the F-14 (sweep wing, USA, 1970–
2006), the B-1 (sweep wing, USA, 1974-till date), the
Tornado (sweep wing, UK, Germany, and Italy, 1974-
till date), and the Tu-160 (sweep wing, former Soviet
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Union, 1981-till date) (Barbarino et al., 2011a). The
most famous example is the Grumman F-14 Tomcat.
This aircraft, which was featured in the film ‘‘The Final
Countdown,’’ was in service with the US Navy from
1974 to 2006. The wing structure was made of titanium,
including the wing box, the wing pivots, and the wing
skins. The F-14’s wing sweep could be varied between
20� and 68� in flight to obtain the optimum lift-to-drag
ratio for the Mach number. This aircraft was retired by
the US Navy on 22 September 2006. The main reasons
given for the F-14’s retirement were the high number of
maintenance hours and the high costs resulting from
the heavy and complex sweep wing structure.

To overcome the problems with traditional materi-
als and structures, novel materials are required
(Donadon and Iannucci, 2014; Lloyd, 2007). Smart
materials and structures, which offer self-actuating,
self-sensing, self-healing, self-assembly, and self-
adaptive capabilities, have great potential for applica-
tions in morphing aircraft (Rodriguez, 2007; Simpson
et al., 1998). A variety of morphing technologies
based on smart materials and structures will be
required to enable an aircraft to perform in-flight
configuration changes for optimum performance
(Colozza, 2007; NASA, 2001; Website).

Smart materials and structures

It is difficult to define ‘‘smart’’ materials. Unlike static,
or ‘‘dead,’’ materials, smart materials are ‘‘alive’’: they
can respond to changes in the environment (Bhavsar
et al., 2008; Tzou et al., 2004). Therefore, smart materi-
als are not only structural materials but also active
materials. Sources of stimulation include stress, strain,
electricity, magnetism, heat, light, and microwave
radiation (Bogue, 2012). Currently, piezoelectric, mag-
netostrictive, and ferroelectric materials, optical fibers,

electrorheological and magnetorheological fluids, shape
memory alloys, shape memory polymers, electro-active
polymers, and multifunctional nano-composites can be
considered smart materials (Sater and Crowe, 2000;
Vessonen, 2002). Smart structures include auxetic hon-
eycombs, variable-stiffness tubes, multi-stable struc-
tures, and corrugated structures. In general, smart
materials and structures comprise a smart system. To
draw an analogy to humans, as shown in Figure 1,
smart materials and structures can obtain information
from the environment around the skin (sensing), they
then produce an internal chemical or physical effect
delivered to the brain for decision making (control),
and finally, they implement actions through the mus-
cles (actuation). The information passes through the
nerves, and each part is linked by tendons and fibrous
bands (structures).

Smart materials and structures have one or more of
the three main features as follows:

1. Self-actuating—the system produces an output
such as force, displacement, heat, and light after
being stimulated (Chung, 2004; Kang et al.,
2006; Krstulovic-Opara et al., 2003; Song et al.,
2011b).

2. Self-sensing—in response to changes in the envi-
ronment, the system can generate electric or
magnetic signals or undergo strain that can be
measured to describe the environment
(Kruusamäe et al., 2011; Moslehi et al., 2011;
Sodano et al., 2004).

3. Self-adaptive—the system can change its geome-
try to adapt to the environment (this feature
applies specifically to structures) (Rodrigues
et al., 2010; Vos et al., 2011a, 2011b).

Figure 1. Smart materials and structures.
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Table 1 presents the properties and the means of sti-
mulation for various common smart materials.
Generally, smart materials have a high energy density
(Tieck et al., 2004). According to the requirements of a
particular application (e.g. stress, strain, weight, speed),
designers can select the best material.

Morphing aircraft

The basic principle of an airplane can be described as
follows: gravity is overcome by the lift generated by the
flow of air over the aircraft’s wings, and the lift depends
on the wing shape and size and the velocity of the air-
craft. Drag can be balanced by thrust. In one sense, for
a given airplane fuselage, or body, the aerodynamic
performance depends on the wing configuration. For a
given thrust and airspeed, there will be an optimal wing
configuration for each mission (Joshi et al., 2004)
(Figure 2).

The degree of morphing in a wing can be classified
as large, medium, or small (Gomez and Garcia, 2011;
Jacob and Smith, 2009; Sofla et al., 2010) depending on
the dimension that varies. Folding wings, variable-
sweep wings, variable-span (telescoping) wings, and
deployable wings comprise the large category. Twisting
wing, flexible winglets, variable-chord (telescoping)
wings, and variable-camber wings comprise the
medium category. Variable-airfoil wings and bulging
wings comprise the small category. Aircraft with
morphing technologies has some advantages over
fixed-geometry aircraft, and these advantages are listed
in Table 2. A multi-mission aircraft can be designed for
good performance in multiple flight conditions. For
example, a fighter with folding wings or variable-sweep
wings can have good performance at both high speed

and low speeds, which can reduce fuel consumption
and improve the flight envelope dramatically. Aircraft
with variable-chord or variable-camber wings can have
shorter takeoff distances. Variable-span wings, flexible
winglets, and twisting wings can improve the aerody-
namic performance of low-speed aircraft.

Different levels of morphing require diverse types of
materials and structures to meet its various demands.
Some of the earliest research on smart materials and
structures for morphing aircraft mainly focused on
medium morphing, such as the research conducted by
the Massachusetts Institute of Technology (Spangler,
1989). In that research, a helicopter rotor blade
trailing-edge flap was actuated by piezoelectric materi-
als to control the aerodynamic force. In the 1990s, sev-
eral types of smart materials and structures were
investigated, including piezoelectric materials, electro-
strictive materials, magnetostrictive materials, shape
memory alloys, and fiber optic sensors (McGowan
et al., 1999; Martin et al., 1998). Several studies have
focused on morphing rotor structures using piezoelec-
tric materials (Barrett, 1996; Barrett et al., 1998;
Barrett and Stutts, 1997; Ehlers and Weisshaar, 1990;
Giurgiutiu et al., 1994; Rodgers et al., 1997; Steadman
et al., 1994), shape memory alloys (Roglin et al., 1994;
Roglin and Hanagud, 1996), and magnetostrictive
materials (Giurgiutiu et al., 1995). Piezoelectric actua-
tors were used in morphing airfoil wings (Pinkerton
and Moses, 1997) and in the control fins of a missile
(Barrett and Stutts, 1998). Since the late 1990s, a large
number of investigations on smart materials and struc-
tures for morphing aircraft have been conducted, and
interest in the subject has been global (Barbarino et al.,
2011a). Several studies have involved unmanned aerial
vehicles (UAVs) (Baier and Datashvili, 2011; Daynes

Table 1. Properties of typical smart materials.

Density Nominal stress Strain Actuation
frequency

Stimulation

Unit or method g/cm3 MPa % S E M T

Shape memory alloy (SMA) (Hartl and Lagoudas,
2007; Nespoli et al., 2010; Wei and Sandström,
1998)

6.4–6.5 400–700 8 Slow � �

Piezoelectric ceramic (Craig, 1996; MEMSnet,
2014; Website)

7.5–7.8 100 0.1 Fast � �

Piezoelectric composites (Bent and Pizzochero,
2000; Smart Material Corp., 2014; Website)

3.79 34–41 1.5 Fast � �

Shape memory polymer (SMP) (Leng et al., 2011;
Liu et al., 2009, 2014)

0.92 2–10 50–100 Slow � � � �

Elastic-active polymer (EAP) (Bar-Cohen, 2002;
Shahinpoor et al., 1998)

1–2.5 10–30 300 Fast � �

Magnetostriction (Bar-Cohen, 2000) 9.2 100 2 Fast � �
Electrorheological fluids (ER) (Hao, 2001) . 0.016 N/A Fast � �
Magnetorheological fluids (MR) (Kciuk and
Turczyn, 2006; Park et al., 2010)

3–4 0.05–0.1 N/A Fast � �

Here, ‘‘S’’ denotes nominal stress and strain, ‘‘E’’ denotes electric, ‘‘M’’ denotes magnetic, and ‘‘T’’ denotes temperature.
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Table 2. Advantages of morphing aircraft (Frommer and Crossley, 2005; Jha and Kudva, 2004; Previtali et al., 2014b; Roth et al.,
2002).

Morphing methods Advantages

Large Folding Increase the critical Mach number
Decrease parasitic drag

Sweep Increase the critical Mach number
Decrease high-speed drag

Span telescoping Increase L/D, loiter time, cruise distance
Decrease engine requirements

Deployable Increase L/D, loiter time, cruise distance
Decrease engine requirements

Medium Twist Increase maneuverability
Prevent tip stall

Winglet bending Increase L/D, maneuverability
Decrease induced (tip vortex) drag

Chord telescoping Increase low-speed airfoil performance
Variable camber Increase airfoil efficiency

Delay separation
Small Variable airfoil Increase high-speed airfoil performance

Bulging Increase wing efficiency
Decrease compressibility (wave) drag

Here, L/D means Lift to Drag ratio.

Figure 2. Comparing the predicted performance of a fixed-geometry wing, a morphing-airfoil wing, and a morphing wing for
various missions (Joshi et al., 2004).
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and Weaver, 2013a; Gomez and Garcia, 2011; Kuder
et al., 2013; Kudva, 2004; Thill et al., 2008), and several
mature morphing technologies for helicopter rotor
blades and jet engines have already been flight-tested
with full-scale test articles (Calkins and Mabe, 2010;
Giurgiutiu, 2000b, 2011). In the next four sections,
applications of smart materials and structures in
morphing aircraft will be described in detail.

Actuators

Shape memory alloys

A shape memory alloy (SMA) is a metallic alloy such
as NiTi, NiTiCu, and CuAlNi that can recover from a
deformation and return to its original shape when sub-
jected to heat (Otsuka and Wayman, 1998) which is
known as shape memory effect. There is four transition
points known as the martensitic start and finish tem-
peratures (Ms and Mf) and the austenite start and fin-
ish temperatures (As and Af). Through a training cycle,
an SMA acquires a stabilized strain that can be recov-
ered when the temperature is higher than Ms. SMA has
the property of super-elasticity, which means it could
work even under high applied loads and large inelastic
deformations, or undergo large strains without plastic
deformation or failure (Barbarino et al., 2014). SMAs
are very desirable for actuators because of properties
such as high output forces, large recoverable strains,
high energy densities, controllability, and the capability
for one-way and two-way memory effects. SMAs are
already widely used in aerospace morphing structures.

The most well-known application of SMAs is in an
engine nozzle on a Boeing commercial airplane to
reduce jet noise (Calkins et al., 2006). A large amount
of theoretical work and simulations were performed by

Texas A&M University and the Boeing Company
(Hartl et al., 2010a, 2010b; Oehler et al., 2012a, 2012b).
In August 2005, full-scale flight tests of variable-
geometry chevrons, which were actuated using an SMA
and installed on a 777-300ER with GE-115B engines,
were completed (Mabe et al., 2007); photographs of the
chevrons are shown in Figure 3. The results indicated
that noise in cruise was significantly reduced. The chev-
rons improve the mixing of the freestream air and the
fan stream. Other uses of SMA actuators in jet engines
including a morphing inlet internal wall (Pitt et al.,
2002), a morphing intake (Song et al., 2011a), and a
morphing nozzle (Mabe, 2008) have also been investi-
gated. The morphing inlet internal wall was tested in a
wind tunnel.

SMA actuators can be used to alter the wing geome-
try as well. A variable-sweep wing controlled by SMA
ribbons on the spar has been investigated (Galantai
et al., 2012). In several other studies, SMA wire was
used to create a morphing trailing edge to enhance lift
(Kang et al., 2012; Karagiannis et al., 2014; Ko et al.,
2014; Senthilkumar, 2012). Several segmented morph-
ing trailing-edge concepts, which produce a larger
trailing-edge angle, have been investigated (Ameduri
et al., 2011; Barbarino et al., 2009b, 2011c; Wang et al.,
2013). A similar approach can be used in the leading
edge to increase the lift-to-drag ratio (Abdullah et al.,
2011). Cornell University designed a Hyper-Elliptic
Cambered Span (HECS) wing using SMA actuators
(Manzo et al., 2005). This morphing wingtip can mark-
edly improve maneuverability by enhancing yaw con-
trol while in the furled state. Groups of SMA actuators
have been used to create a morphing-airfoil wing for
subsonic cruise flight conditions (Brailovski et al., 2010;
Georges et al., 2012), and wind tunnel tests showed

Figure 3. Full-scale flight tests of SMA-actuated variable-geometry chevrons on a Boeing 777-300ER with GE-115B engines (Mabe
et al., 2007).
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reductions in drag from 14.5% to 26.7% with an aver-
age value of 18.5% under quasi-constant lift condi-
tions. SMA torque tube actuators have been used to
provide near-optimum blade twist for helicopters in
both hover and cruise flight conditions (Bushnell et al.,
2008). SMA actuators have also been used in bionic
flapping wings. An artificial beetle hind wing produced
a flapping motion at 9 Hz with a 120� flapping angle
using cyclic heating with two SMA wires (Muhammad
et al., 2010).

Piezoelectric materials

A crystal with piezoelectric properties was discovered
by the Curie brothers in 1880. A maximum of 0.1%
strain can be obtained by applying a voltage to a piezo-
electric material (Bogue, 2012; Vessonen, 2002). Layers
of these crystals can be stacked to form a piezoelectric
stack actuator. Piezoelectric fibers can be mixed with
resin to produce piezoelectric composites. These com-
posites can produce larger strains and various types of
motion (e.g. extension, bending, and twisting). These
composites are generally referred to as active fiber com-
posite (AFC), macro fiber composite (MFC), or light-
weight piezo-composite actuator (LIPCA).

Piezoelectric ceramics. Because piezoelectric ceramics are
capable of producing large output forces and high-
frequency responses, they have been used to drive hydrau-
lic pumps. The principle of operation is as follows. A
chamber with an inlet and an outlet is linked to a hydrau-
lic system through one-way valves. The piezoelectric cera-
mic actuator moves a metal membrane to change the
volume of the chamber cyclically according to a periodic
voltage. Because of the pressure differential, the liquid
flows from the inlet to the outlet (Chapman et al., 2005;
Chaudhuri and Wereley, 2010; Kim and Wang, 2007;
Oates et al., 2000; Sirohi and Chopra, 2002). These pumps
have achieved maximum flow rates of 2300 cc/min and
output pressures exceeding 200 bar in the stalled condi-
tion. A piezoelectric hydraulic pump was successfully used
in a morphing wing on a remotely piloted vehicle (O’Neill
and Burchfield, 2007).

Piezoelectric ceramics have also been used in linear
actuators in helicopter rotor systems to improve vibra-
tion, noise, and aerodynamic performance (Straub
et al., 2004a). An important technological advancement
would be to increase the output of piezoelectric ceramic
actuators (currently, the maximum extension strain is
only 0.1%). Several different types of piezoelectric
actuators such as the O type (Grohmann et al., 2006),
the L-L type (Lee and Chopra, 2001), and the X type
(Straub et al., 2004b) have been designed and tested. O-
type actuators were used to drive trailing-edge flaps
installed on MD900 rotor blades in whirl tower tests
conducted by the Boeing Company. X-type actuators

were successfully used in a BK117 S7045 prototype air-
craft in Europe, as shown in Figure 4. The results
showed that the vibrations were reduced as much as
90% (to less than 0.05 g) when the active-flap rotor
was installed (Jaenker et al., 2008; Konstanzer et al.,
2008).

Several researchers have designed piezoelectric
actuators based on a ‘‘step and repeat’’ driving strategy
which means actuators produce displacement pulses by
insistently repeated motions to generate larger linear
displacements and larger output forces (Loverich, 2004;
Paine et al., 2008) to control the configuration of a
morphing structure rapidly and accurately.

Piezoelectric composites. Piezoelectric composites have
been used to reduce vibration and noise from helicopter
rotors. At the German Aerospace Center (DLR), piezo-
electric composites were integrated into rotor blades to
control blade twist (Monner et al., 2011). Rotor blade
trailing-edge flaps with piezoelectric composites actua-
tors can achieve similar performance (Koratkar and
Chopra, 2000).

In several studies, the camber of the wings of a micro
air vehicle (MAV) was altered using piezoelectric com-
posites to change the lift, the drag, and the pitching
moment (Bilgen and Friswell, 2014; Heryawan et al.,
2005, 2006; Molinari et al., 2015; Paradies and Ciresa,
2009; Prazenica et al., 2014) or to control the roll and
pitch by morphing the trailing edge near the wingtips
(Bilgen et al., 2007; Probst et al., 2012; Vos et al., 2007);
the feasibility of these designs has been demonstrated in
flight tests (see Figure 5). An MAV in which the eleva-
tors were controlled by piezoelectric composites was
constructed and tested in a wind tunnel (Yoon et al.,
2006a, 2006b). In a biomimetic approach, piezoelectric
composites have been used to produce a flapping wing
(Syaifuddin et al., 2005) that takes advantage of the
high bandwidth of piezoelectric materials. In another
study, the composites were installed in a flexible flap-
ping wing to change the camber and increase the lift as
much as 20.8% at 8 Hz flapping frequency, 20� pitch
angles, and 10 m/s flow velocity (Kim et al., 2008).

Shape memory polymers

A shape memory polymer (SMP) is a type of polymer
that, like an SMA, exhibits the shape memory effect.
SMPs are capable of significant macroscopic recovery
after receiving an external stimulus (e.g. heat, electric-
ity, light, magnetism, microwaves, moisture, or a
change in pH) (Leng et al., 2011). During this process,
the material transitions between a glassy state, that is,
hard, with a high Young’s modulus (greater than
3 GPa), and an elastic state, that is, soft, with a low
Young’s modulus (1–10 MPa), so there is a distinct
change in stiffness. Because of their low recovery forces,
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SMPs are frequently used as actuators in deployable
space structures, that is, in a weightless environment
(Leng et al., 2012; Liu et al., 2014). However, SMPs
have great potential for applications requiring a morph-
ing skin because of their variable stiffness. SMP morph-
ing skins can withstand aerodynamic loads in the glassy
state and tolerate large deformations (up to 100%
strain) in the elastic state, and thus, they can accommo-
date morphing structures (McKnight and Henry, 2005;
Sun et al., 2012).

SMP composites have been fabricated by mixing
carbon fibers, glass fibers, or elastic fibers with an SMP

resin, which enhances the mechanical performance of
the SMP. Morphing skins based on SMP composites
have been designed and tested in telescoping wings
(Perkins et al., 2004; Reed et al., 2005; Yin et al., 2008),
variable-camber wings (Sun et al., 2013, 2014b; Yin
et al., 2009), sweep wings (Keihl et al., 2005; McKnight
and Henry, 2008), deployable wings (Leng et al., 2015;
Yu et al., 2009), and folding wings (Bye and McClure,
2007; Cantrell and Ifju, 2015). Figure 6 shows the
deployment of a wing with a morphing skin. The SMP
composite skin alters its shape when heated and main-
tains a smooth and seamless wing surface.

Figure 4. BK117 S7045 flight test with active rotor trailing-edge flaps actuated by piezoelectric actuators (Konstanzer et al., 2008).

Figure 5. Micro air vehicle controlled by piezoelectric materials on the ground and in flight (Bilgen et al., 2007).
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Electro-active polymers

An electro-active polymer (EAP) can be stimulated by
electricity to produce a significant change in shape or
size, where the strain can be as high as 300% (Bar-
Cohen, 2002). EAP materials include dielectric elasto-
mers (DE), ionic polymer–metal composites (IPMCs),
polyvinylidene fluoride (PVDF), and other similar
materials. As an actuator, EAPs have many advantages
including low weight, low power consumption, a fast
response, and flexibility (Zhao et al., 2015). EAPs have
been used in flapping wing MAVs (Kim et al., 2007;
Lee et al., 2006; Park et al., 2005). Only a 2.5–4 V sinu-
soidal signal was required to generate sufficient lift
from the flapping wings for the MAV to become air-
borne. EAPs have also been used in actuators for the
trailing edges of a fixed-wing UAV to increase the lift
(Molinari et al., 2011). A small lighter-than-air vehicle
whose rudders and elevators are controlled by EAP
actuators is shown in Figure 7. The 3.5-m-long proto-
type vehicle was tested successfully in 2006 and in 2007
and demonstrated satisfactory control performance
(Michel et al., 2007).

Magnetostriction

Magnetostriction is a property of certain materials in
which the material undergoes a change in dimension or

shape when subjected to a magnetic field. Terfenol-D
(chemical composition: Tb0.3Dy0.7Fe1.9) is a typical
magnetostrictive material that undergoes a large
induced strain in a low-intensity magnetic field at room
temperature (Claeyssen et al., 2002). A linear step
actuator based on Terfenol-D was demonstrated to
have a very good performance: a maximum force of
410 N, a range of motion of 45 mm, a maximum speed
of 60 mm/min, and 95 W of power. In comparison
with conventional piezoelectric actuators, it could gen-
erate much higher actuation strains. It has higher
actuation stresses in comparison with solenoid and
moving-coil transducers (Kim and Sadighi, 2010).
Magnetostrictive materials have been used to drive
hydraulic pumps (Bridger et al., 2004; Chaudhuri et al.,
2009; Sneed et al., 2007). The principle is similar to that
of the piezoelectric pump. A maximum pressure of
greater than 1700 lbf/in2 was produced, and the output
power reached 180 W. A design for a variable-span
morphing wing UAV is shown in Figure 8.

At present, smart materials are mainly used as
actuators. Comparing with conventional electromotor,
smart materials have the properties of higher power
density, more output force (SMA, piezoelectric materi-
als, and magnetostriction materials), larger output dis-
placement (SMP, EAP, and MFC), higher output
frequency (piezoelectric materials, magnetostriction
materials), or other features. The designers could
choose them according to application conditions.
However, it should be noted that there are still some
shortcomings of smart materials. First, for SMA,
piezoelectric materials, magnetostriction materials, and
some other materials, closed-loop control is required to
achieve the high precision control. Second, some mate-
rials need special power source to drive, which means
the increasing in the complexity and weight of addi-
tional power source. For example, EAP, piezoelectric
materials, and magnetostriction materials need to be
driven by high voltage or high current. Third, high level
of the demanding for driving energy makes it difficult
to find an efficient method to drive some materials,
such as SMP. Moreover, some materials have poor
mechanical properties, which have restricted the

Figure 6. Deployable wing with SMP composite skin (Yu et al., 2009).

Figure 7. A lighter-than-air vehicle controlled with EAP
actuators (Michel et al., 2007).
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development and application of them. For instance,
piezoelectric materials and magnetostriction materials
usually are partial to brittle failure and SMA, SMP,
and EAP have poor anti-fatigue ability. All these
aspects mentioned above should be avoided cautiously
when applying these smart materials as actuators.
Materials modification should be focused on in future
work.

Sensors

Optical fibers

In a fiber Bragg grating (FBG) sensor, a grating is
etched into the core of an optical fiber. The refractive
index of the fiber will change in response to an axial
strain or a change in temperature. Strain caused by
changes in the ambient temperature, stress (Yi et al.,
2012), pressure (Urban et al., 2010), or crack forma-
tion, among other factors, can be monitored by FBG
sensors. The strain distribution can be obtained accu-
rately by temperature compensation (Kim et al., 2013).
Embedded FBG sensors have been used in composite
wings to monitor impact damage (Nakamura et al.,
2007; Takeda et al., 2007), cracks (Sekine et al., 2006),
and loads (Costa et al., 2014). These sensors can iden-
tify the locations and the shapes of fatigue cracks and
the time of failure. Furthermore, FBG sensors can
monitor the dynamic strains in a wing in flight (Cusano
et al., 2006; Lee et al., 2003). The wing root structure
of an F/A-18 was tested under fatigue loading. Using
FBG sensors, the fatigue life and mechanisms and the
failure locations could be monitored (Davis et al., 2012;
Schembri et al., 2013).

FBG sensors can be used in morphing wings to
monitor the shape of the wing. Deflections in variable-
camber wings (Figure 9) have been determined from
the strain in a metal plate or a hinge measured using
FBG sensors (Ciminello et al., 2013; Li et al., 2013a).

The actual shape of a twisting wing actuated by SMAs
can be monitored with an array of FBG sensors and a
neural network (Mieloszyk et al., 2011a, 2011b). The
shape of an SMP can also be measured with FBG sen-
sors, which have potential applications in a folding skin
(Li et al., 2013b, 2013c).

Piezoelectric materials

In piezoelectric materials, applying an electric current
to the material causes the material to undergo a change
in dimensions. Conversely, a change in dimensions
(such as by an applied mechanical stress) generates an
electric charge in a piezoelectric material. This property
can be used to create a sensor. Piezoelectric sensors can
be installed inside a structure or attached to the surface
to detect internal structural damage based on sound
and ultrasound (Shang et al., 2008). In one study, a
health monitoring system for a composite airframe
(including the wings, the fuselage, and the empennage)

Figure 8. Hydraulic and control systems for a morphing wing UAV (Sneed et al., 2007).

Figure 9. Model of a flexible, variable-camber wing (skin
removed) monitored by an FBG sensor (Li et al., 2013a).
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using piezoelectric sensors to measure structural strains
under high-frequency loading was developed
(Kosmatka and Oliver, 2006). Piezoelectric sensors
have been used to monitor the load and deformation
bifurcations of a multi-stable structure to control its
motion (Zareie et al., 2011). This type of sensor can
also be used to measure the velocity of a morphing
structure (Ray and Batten, 2012). Figure 10 shows a
device with a piezo-resistive cantilever that was able to
detect the differential pressure over the wing surface of
an insect (Takahashi et al., 2009, 2010).

Electro-active polymers

Similar to piezoelectric materials, EAPs can also gener-
ate electrical signals and can be used for flexible struc-
tures and large strain conditions. Figure 11 shows a
flapping wing MAV with EAP sensors on its wings
(Hsu et al., 2006; Yang et al., 2007). The lift in flight
was obtained from the EAP sensors. These results were
verified in a wind tunnel test and flight tests. EAP sen-
sors can also be used for monitoring vibrating struc-
tures (Sahu et al., 2013).

Self-sensing is another main feature of smart materi-
als. Smart materials have sensing capabilities with some
environmental parameters such as stress, strain, tem-
perature and the location of structure damage and feed-
back some measurable signals. However, these sensors

based on smart material also have some deficiencies
stated as follows. Wire signal transmission system is so
complex and ponderous, which causes much inconveni-
ence in applying. In order to solve this problem, a type
of wireless transmission system is already being devel-
oped. Moreover, since there is a limit on the number of
channels in signal demodulation system, it is desired to
realize a demodulation system capable of multi-signal
processing. In addition, some sensors are prone to snap-
ping such as optical fiber sensor and piezoelectric cera-
mics sensor or tearing such as EAP.

Structures

Auxetic honeycomb structures

Unlike traditional honeycomb structures, an auxetic
structure is one that becomes wider when it is stretched
(Evans and Alderson, 2000), and therefore, it has a
negative Poisson’s ratio (Prawoto, 2012). Auxetic hon-
eycomb structures have other advantages for morphing
structures (Luo and Tong, 2013a, 2013b). Variable-
camber wings have been designed using several types of
auxetic structures, including reentrant hexagonal hon-
eycombs (Dong and Sun, 2011; Heo et al., 2013;
Vigliotti and Pasini, 2015), chiral honeycombs (Airoldi
et al., 2012; Bornengo et al., 2005; Martin et al., 2008;
Spadoni and Ruzzene, 2007), and cross-shaped honey-
combs (Zhang et al., 2012, 2014). Zero-Poisson’s-ratio
honeycombs have been used in variable-span morphing
wings (Ajaj et al., 2012; Bubert et al., 2010; Chen et al.,
2015; Gong et al., 2015; Liu et al., 2013; Olympio and
Gandhi, 2010; Vocke et al., 2012, 2015). Figure 12
shows a variable-span morphing wing with a 100%
extension (Vocke et al., 2011). Similar approaches have
been used to create variable-chord wing structures
(Barbarino et al., 2011b; Chen et al., 2013d; Dale et al.,
2014). Adaptive wings have been constructed by adding
pressured air in the sealed honeycombs to obtain the
optimal configuration for a given flight condition
(Barrett and Barrett, 2014; Vos and Barrett, 2010a,

Figure 10. Piezoelectric differential air-pressure sensor for an
insect wing (Takahashi et al., 2010).

Figure 11. EAP sensors on a flapping wing MAV (Yang et al., 2007).
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2010b, 2011). A pressurized honeycomb has also been
used as the actuator in a morphing wingtip structure
(Sun et al., 2014a). Other honeycomb designs have
been used in wing boxes (Saito et al., 2011) and engine
fan blades (Lira et al., 2011).

Variable-stiffness tube structures

There is a contradiction in morphing structures, which
means the structure must be both strong and deform-
able. A structure with variable stiffness is required.
Shape memory polymers are variable-stiffness materi-
als, as discussed in section ‘‘Shape memory polymers.’’
This section discusses the use of variable-stiffness tubes
and a flexible matrix to create a structure. There are
three types of variable-stiffness tubes. The first type is a
pneumatic tube, which is also called a pneumatic mus-
cle fiber. Pneumatic muscle fibers have been used as
actuators (Vanderhoff and Kim, 2009) that shorten
under air-pressure loads. In this process, the stiffness of
the tube changes dramatically. Pneumatic muscle fibers
can be added to a flexible matrix to form a morphing
skin, where the transverse stiffness ratio can be as high
as 120 (Chen et al., 2011). This morphing skin was also
used in a variable-camber wing structure as both actua-
tor and skin (Feng et al., 2015).

The second type of variable-stiffness tube is the
SMP composite tube, a carbon fiber filament-wound
tube cured with SMP resin. In one set of studies, the
modulus ratio of a morphing skin created using SMP
composite tubes was 59.6 according to tensile tests

(Chen et al., 2012b, 2013a). Photographs of the out-of-
plane deformation under uniform loading as the tube
was being heated are shown in Figure 13.

The third type of variable-stiffness tube is called a
fluidic flexible matrix composite (F2MC) tube. The
stiffness of the tube is controlled by the pressure of a
fluid inside the tube. Pressurizing the fluid causes a
sharp increase in the stiffness because of the special
anisotropic tube structure and the incompressibility of
the fluid. The modulus ratio of a skin made with
F2MC tubes can reach 55.5 (Shan et al., 2009), and the
theoretical maximum modulus ratio can be 120 (Chen
et al., 2012a). To obtain a larger modulus ratio, SMPs
can be used for the matrix to form F2MC-reinforced
SMP composites (Philen et al., 2009). The modulus
ratio for these types can reach 140, which can allow
the material to withstand conditions that could dam-
age an F2MC. This type of tube has been used as an
actuator to drive a morphing wing structure (Doepke
et al., 2014).

Multi-stable structures

A multi-stable structure has two or more stable states,
and the structure can transition rapidly from one to the
other when stimulated. Multi-stable structures have
been used for morphing wing UAVs (Daynes and
Weaver, 2013b; Mattioni et al., 2008). Multi-stable
structures have been used to construct variable-sweep
wings. In tests, the wings successfully transitioned from
straight to fully swept (Mattioni et al., 2006). A

Figure 12. Variable-span morphing wings based on zero-poisson’s-ratio honeycombs: (a) contracted state and (b) extended state
(Vocke et al., 2011).
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twisting structure has been manufactured based on bi-
stable structures actuated by MFCs to control a UAV
(Schultz, 2005). Morphing wing trailing edges have
been designed to control four states by changing the
upper surface and the lower surface, both of which are
made of bi-stable structures (Mattioni et al., 2007). An
adaptive morphing-airfoil wing has been designed with
a bi-stable structure that switches between stiff and
compliant modes (Arrieta et al., 2014). A morphing
wingtip structure based on a bi-stable structure can
provide the optimal wing configurations for takeoff
and cruise (Friswell et al., 2006), which can be deter-
mined from wind tunnel tests (see Figure 14). A morph-
ing air inlet using multi-stable structures that switches
between the open and closed positions to either create
a flush surface or form a submerged air duct with a
divergent–convergent channel has been constructed
(Daynes et al., 2011). An actuator is designed to oper-
ate at a first working temperature while in a preceding
manufacturing process the first layer of material is
structurally connected to a support beam at a second
temperature wherein the second temperature is higher
than the first temperature so as to cause that at the first
temperature the support beam is in compression with-
out causing flexure thereof (Barrett and Tiso, 2011).
SMA-actuated post-buckled pre-compressed (PBP)
plates are capable of tip deflection of up to 45�, and

that the PBP mechanism improves tip rotation up to
40% compared to conventional antagonistically actu-
ated SMA plates (Sinn and Barrett, 2010).

Corrugated structures

Corrugated structures can undergo a large expansion
or contraction in one direction. These structures are
additionally suited for folding or bending (Dayyani
et al., 2015; Previtali et al., 2014a). Within a specified
range of Reynolds numbers, eddies form over the cor-
rugated surface, similar to streamlined airfoils (Xia
et al., 2014). Morphing trailing-edge structures can be
covered with corrugated skins (Shaw et al., 2015).
There are two methods to make corrugated structures
smooth. One method is to fill the structure with flexible
rubber (Yokozeki et al., 2006, 2014), and the other
method is to cover it with a segmented skin similar to
fish scales (Thill et al., 2010). Figure 15 shows a morph-
ing winglet with a corrugated structure in which a
0.52 rad change in dihedral angle and 0.055 rad change
in twist angle were achieved (Ursache et al., 2008).
Corrugated structures have been used in a flapping
artificial insect wing whose aerodynamic behavior was
analyzed (Meng et al., 2010).

Smart structures are distinct from the traditional
bearing structures, since smart structures emphasize

Figure 13. Deformation of a morphing skin with SMP composite tubes (Chen et al., 2013a).
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more the feature of deformability and designability.
For different deformation structures of morphing air-
craft, a structure capable of carrying and deforming is
the base of actuator and sensors. These current designs
of lightweight deformation structure have good perfor-
mance on the bearing and deformation capacity, but
there are still some problems about the relationship
between deformation structures and smooth configura-
tion to be solved. There are two potential solutions as
follows. First one, smooth configurations could be rea-
lized by finding a valid method to connect flexible skin
to deformation structures. Second, searching for theo-
retical support build unsmooth configurations which
also have good performance on some special aerody-
namic efficiency.

Controllers

Active vibration control

Vibration and noise significantly affect the comfort and
the safety of an aircraft. Smart materials and structures
have been used to reduce the vibration of rotor blades,

for example, by twisting the blades or controlling a
trailing-edge flap (Chen and Chopra, 1997; Giurgiutiu,
2000a). Aircraft engine rotor vibrations and bearing
forces can be reduced using piezoelectric actuators
(Leboi et al., 2010). Vibrations in the wings (Munteanu
and Ursu, 2008) and the vertical stabilizer (Chen et al.,
2013b; Gao et al., 2013) can be reduced dramatically
using piezoelectric actuators as active dampers. An
active buffet alleviation system has been tested on a 1/
16th-scale model of a vertical stabilizer in a wind tunnel
(Hanagud et al., 2002). Active vibration control has
been used for buffet load alleviation on a full-scale F/
A-18 vertical stabilizer (Chen et al., 2006); the test rig is
shown in Figure 16.

To achieve a comfortable environment in an air-
plane, the interior broadband noise can be reduced
using smart actuators (Dimino and Concilio, 2010;
Guigou and Fuller, 1998; Konstanzer et al., 2006; Rose
et al., 2011). Piezoelectric actuators were used to reduce
engine noise and unsteady flow over an aft fuselage
panel during takeoff on a Boeing B-1B high-
performance combat aircraft (Larsona et al., 1998).

Figure 14. Wind-tunnel test rig for a winglet incorporating bi-stable structures (Mattioni et al., 2007).

Figure 15. Demonstration of extension and canting of a morphing winglet with a corrugated structure (Ursache et al., 2008).
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Airflow control

The aerodynamic behavior of a body can be improved
through small changes in its surface. Piezoelectric cera-
mic actuators have been used with a compliant upper
wing surface to create an active wall that can be made
to oscillate to reduce skin friction (Pätzold et al., 2013).
Transonic drag has been reduced using a morphing
wing airfoil driven by SMAs (Barbarino et al., 2009a).
An active vibrating surface can reduce drag and
increase lift, as was demonstrated on a 1/10-scale V-22
model in a wind tunnel (Calkins and Clingman, 2002).
The use of a linear array of micro-flaps on a delta wing
to generate rolling moments to control a tailless aircraft
has been demonstrated in a wind tunnel (Liu et al.,
1995). A novel wing with smooth, hingeless morphing
ailerons that increase the chordwise aerodynamic effi-
ciency has been developed (Pankonien and Inman,
2013), as shown in Figure 17. The capability of this
type of control surface to maintain stability and
increase efficiency has been demonstrated in wind tun-
nel tests and in flight tests (Bilgen et al., 2013).

At this point, the smart materials are not applied as
real controllers but actuating units. Controllers based
on smart materials put more emphasis on the active

control of structures such as active vibration control
and airflow control. Controllers, sensors and actuators,
and smart structures combine electronic technology to
form a smart system capable of sensing, processing,
and actuating, which will be the developing trend of
smart materials and structures.

Conclusion

In this article, applications of smart materials and
structures in morphing aircraft were reviewed. These
materials are already being used in several micro air
vehicles, unmanned aerial vehicles, and full-size air-
craft, suggesting the great potential of smart materials
and structures in morphing aircraft. However, smart
materials and structures are not currently suitable for
production aircraft. To realize the full potential of
these devices, multi-scale design and multi-disciplinary
research should be considered, and the following five
challenges should be addressed:

1. Material modification. At the molecular scale,
amputation, grafting, or recombination technol-
ogy could be used to improve the performance
of current smart materials.

2. Functional additives. Additives (e.g. carbon
nanotubes, carbon black, graphite, ferrous pow-
ders, and nickel powders) could be incorporated
into smart composites to make them multifunc-
tional. For example, SMPs can be heated elec-
trically by incorporating conductive additives
(Leng et al., 2007, 2008, 2009; Lu et al., 2010).

3. Structure optimization. Optimized structures can
be designed using topology optimization meth-
ods (Vasista and Tong, 2013). Moreover, novel
structures may be discovered by applying new
concepts (Chen et al., 2013c; Fischer et al., 2011;
Wu et al., 2014).

4. Hybrid applications. Novel structures can be
constructed using various smart materials; for
example, honeycombs constructed using SMAs
(Hassan et al., 2008; Okabe and Sugiyama,
2009) or SMPs (Rossiter et al., 2014), bi-stable-
structure actuators constructed from MFCs

Figure 16. Active vibration control of an F/A-18 vertical
stabilizer with piezoelectric actuators (Chen et al., 2006).

Figure 17. Discrete aileron controlled by MFC (Pankonien and Inman, 2013).
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(Giddings et al., 2011; Molinari et al., 2014;
Schultz and Hyer, 2004), and hybrid linear step
actuators driven by magnetostrictive or piezo-
electric materials (Ueno et al., 2007).

5. Novel smart materials. Many types of novel
smart materials are required, and efforts should
be made to create and investigate them.
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