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network for source localization using
a fiber optic acoustic emission sensor
array
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Abstract
An intelligent algorithm was developed based on backpropagation artificial neural network for the acoustic emission source
localization. The established and trained methods of the algorithm were stated with the time difference of arrival detected
by a fiber optic acoustic emission sensor array and the coordinates of acoustic emission source. The response characteristic
of fiber optic acoustic emission sensor was calibrated with the commercial piezoelectric ceramic transducer (PZT) acoustic
emission sensor, which provided that the fiber optic acoustic emission sensor was better suited to detect the low frequency
of stress wave than the PZT sensor. Four fiber optic acoustic emission sensors were deployed in a square array in an alumi-
num plate for comparisons between different algorithms of source localization. Comparison results of acoustic emission
source location provided that the intelligent algorithm improved the accuracy by reducing the nonlinear errors. For the ani-
sotropic materials, a sensor array deployed in a diamond pattern was adopted. The velocities of stress waves in orthogonal
directions were measured as the basic performance for both algorithms of source localization. Four sensors were integrated
into a carbon fiber–reinforced polymer plate as a perfect structure for locating the acoustic emission source impacting on its
surface. The experiment results provide that the maximum error is only 6.3 mm using the intelligent algorithm.
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Introduction

In order to effectively detect defects of composites
brought by production process, or to monitor the
damage and failure of composite structures in real-
time, more researchers have drawn attentions to the
structural health monitoring (SHM) of carbon fiber–
reinforced polymer (CFRP) composites. Especially,
researchers recently have focused on guided wave
inspection technique1 and acoustic emission (AE)
monitoring system2–5 to achieve the continuous on-
line monitoring goal6, such as damage localization
and identification. The primary goals of SHM are
enhancing system reliability and safety and reducing
maintenance cost.7,8 But smart structures integrated
with sensors and actuators into materials will be the
tendency of development of SHM in the future.9,10

Traditional AE sensor is usually made of piezoelec-
tric ceramic materials, and it is not suitable for

embedding into fiber-reinforced composite structure as
it is a bulky structure, which limits the development of
smart structures. In this article, a type of fiber optic
acoustic emission sensor (FOAES) is developed, which
is able to be embedded in CFRP composite laminates.
Multiple sensors are applied for the research of AE
source localization on anisotropic plate-like composites
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structures. It is necessary to exactly determine the time
of flight (TOF) from the AE source to multiple sensors
for calculating the coordinates of AE source using the
algebra algorithm. However, it can only locate the
coordinates of AE source in isotropic material plate-
like structures. Also, there is inevitable nonlinear error
in the process of solving equation sets. To overcome
the above weakness, an intelligent algorithm based
on artificial neural network (ANN) is proposed for
identifying AE source with embedded FOAES in
CFRP plate. Artificial intelligent techniques are also
researched and applied in SHM of composites, such as
ANN11–14 and genetic algorithm (GA).15 But they are
focused on identifying damage patterns of composites
or optimized sensors. In this article, the algorithm of
backpropagation (BP) ANN is created based on time
difference of arrival (TDOA). It is essential for the
algorithm to calculate a mass of TDOA from every AE
source to every sensor of the sensor array according to
velocities of stress waves propagating in the test plate.
Then the accurate BP network is trained with the
TDOA as inputs and the coordinates of AE source as
outputs. AE source localization experiments were con-
ducted in an isotropic aluminum plate with a square
array. In an anisotropic material of CFRP plate, AE
sources were located in the area of a diamond array.
All measurement results were calculated using the con-
ventional algebra algorithm and the new developed
intelligent algorithm of BP neural network, which
proved that the development of the neural network was
more accurate.

Principle of methodology

FOAES

The FOAES used for AE source location was prepared
with fused tapered optical fiber coupler. Two single-
mode optical fibers are coupled at the waist shaping an
‘‘X’’ structure as presented in Figure 1. To keep the
fiber structures straight, undamaged, and clean, a capil-
lary tube is selected for fixing the coupled fibers with
ultraviolet (UV) adhesives.

When the FOAES is employed for monitoring AE
signals, it is surface-mounted on or embedded into test
structures. Once a transient stress wave is generated

from AE source in the solid structures, it will propagate
to the FOAES and drive the sensor’s capillary tube and
optical fiber vibration. Vibration of optical fibers in the
capillary changes the coupling ratio of light intensity
along the coupled area. The outputs of optical power
vary with the changes in the coupling ratio. When the
input of optical power is P0, the output of optical power
is expressed as16,17

DP(l, t) = 2P0
�Ce0l sin

pl

L

� �
=

pl

L

� �� �
cos

pl

L
� 2pft

� �
ð1Þ

where e0 is the effective strain amplitude and depends
on the acoustic power; L and f correspond to the wave-
length and frequency of the Lamb wave, respectively.

Any one output was able to express the information
of the AE event, which was analyzed with the optical
waveguide method and computer simulations.18 To
verify the FOAES has an excellent response character-
istic to stress waves in CFRP laminates, a commercial
PZT AE sensor and a transducer were employed for
calibrating the amplitude–frequency response. The
detailed performance characteristics of the two sensors
are listed in Table 1. The FOAES has a narrower range
of frequency response than the PZT senor, which is
between 20 and 180 kHz. The peak-to-peak voltage
reaching to 0.46 V at the frequency of 50 kHz proves
that the FOAES is more sensitive to the signals of low
frequency than the PZT sensor. The signal-to-noise
ratio (SNR) of the FOAES is better than that of the
PZT in the low-frequency range, which benefits to the
identification of the TOF.

Algebra algorithm of AE source localization

Usually, no less than three sensors are necessary for
planar impact or damage localization in isotropic mate-
rial plate-like structures. Four sensors are always
employed for measuring the TDOA from the source to
every sensor, because the propagation velocity of stress
wave cannot be exactly determined. Then a set of non-
linear equations is built up to estimate the coordinates
of the source. The algebra algorithms of a square array
and a diamond array are analyzed as shown in Figure
2. The type of distribution array and its solution

Figure 1. Schematic of FOAES.

Fu et al. 169

 at Harbin Inst. of Technology on July 23, 2015shm.sagepub.comDownloaded from 

http://shm.sagepub.com/


method depend on the performance of the materials.
The square array is useful for isotropic material plate-
like structures. For anisotropic material structures, an
alternative method with a diamond array is proposed
based on two sets of hyperbolic curves. The AE source
in the area with the boundary of dotted line can be pre-
dicted by the algorithm according to the TDOA.

When the four sensors are distributed as a square
array, the TOF from the AE source to every sensor is
ti. The coordinates of the unknown AE source (x, y)
and the fixed sensors can be expressed with the TOF
and velocity

x� xið Þ2 + y� yið Þ2 = v2t2
i ð2Þ

where i is defined as the sequence number of sensor.
When the TOF from the AE source to the first sensor
(t1) is considered as the reference, the coordinates of
AE source can be expressed with the TDOA from the
AE source to other sensors

x� að Þ2 + y� að Þ2 = v2t2
1

x + að Þ2 + y� að Þ2 = v2 t1 + Dt2ð Þ2
x + að Þ2 + y + að Þ2 = v2 t1 + Dt3ð Þ2
x� að Þ2 + y + að Þ2 = v2 t1 + Dt4ð Þ2

8>><
>>: ð3Þ

where v is the propagation velocity in an isotropic plate.
Dt2 = t2 � t1, Dt3 = t3 � t1, and Dt4 = t4 � t1 are defined as
TDOA among the second, third, fourth, and the first
sensors. The solutions of the nonlinear equation set can
be solved in different methods. Su et al.19 eliminated
the reference time t1, obtaining the solutions using three
TDOAs and a constant velocity

x =
v2Dt2 Dt3 � Dt4ð Þ Dt3 + Dt4 � Dt2ð Þ

4a Dt2 + Dt4 � Dt3ð Þ

y =
v2Dt4 Dt3 � Dt2ð Þ Dt2 + Dt3 � Dt4ð Þ

4a Dt2 + Dt4 � Dt3ð Þ

8>><
>>: ð4Þ

The theoretical coordinates can be obtained in ideal
conditions. However, three TDOAs always inevitably
exist with errors during actual measurement. The solu-
tions will have errors as they are solved according to
the TDOA with errors. The errors of the solutions do
not linearly fit with the errors of the TDOA, which can
be defined as nonlinear error.

When the four sensors are distributed as a square
array, Dt13 and Dt24, two TDOAs measured by two
pairs of FOAESs that were configured in a diamond
array as shown in Figure 2(b). The normal hyperbolic
equation is (x2=a2)� (y2=b2) = 1, where a2 + b2 = d2,
a = v 3 Dt/2, v is the velocity of Lamb wave, Dt is the

Figure 2. Schematic illustration of algorithms with (a) the square array and (b) the diamond array.

Table 1. Comparative evaluation of the performance characteristics of sensors.

Frequency (kHz) Voltage (V) SNR (dB) Rang of frequency (kHz)

PZT sensor 170 0.27 23 40–310
FOAES 50 0.46 31 20–180

SNR: signal-to-noise ratio; FOAES: fiber optic acoustic emission sensor.
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TDOA, and d is the position coordinate of FOAES.
Therefore, two pairs of FOAESs on x-axis and y-axis
established two pairs of hyperbolas which were
expressed as (x2=a1

2)� (y2=b1
2) = 1 and (y2=a2

2)�
(x2=b2

2) = 1, where a1 = v 3 Dt13/2, b1
2 = d2 � a1

2,
a2 = v 3 Dt24/2, and b2

2 = d2 � a2
2; we obtain

x2 = (a2
2 + b1

2)=((b1
2=a1

2)� (a2
2=b2

2)) and y2 = (a1
2 +

b2
2)=((b2

2=a2
2)� (a1

2=b1
2)). The velocity of acoustic

wave propagation as a constant value is considered.
However, in composite laminates as anisotropic materi-
als, the velocity depends on the fiber orientation of
CFRP plate.20 Therefore, to improve the measurement
accuracy, velocities on x-axis and y-axis are introduced
to the hyperbolic location algorithm, and the position
coordinates can be expressed as

x = 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

2 + b1
2

b1
2

a1
2 � a2

2

b2
2

vuut , y = 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1

2 + b2
2

b2
2

a2
2 � a1

2

b1
2

vuut ð5Þ

where a1 = v1 3 Dt13/2, b1
2 = d2 � a1

2, a2 = v2 3

Dt24/2, and b2
2 = d2 � a2

2; v1 and v2 are the respective
velocities in 0� and 90� orientation. The positive or neg-
ative value of x was determined by Dt13 = t3 2 t1,
where t1 is the arrival time from AE source to sensor I
and t3 is the arrival time from AE source to sensor III.
Similarly, the positive or negative value of y was deter-
mined by Dt24 that was the TDOA between AE source
to sensor IV and sensor II.

Intelligent algorithm of BP neural network

BP neural network is widely used due to its more scien-
tific training rules. In the supervised training process,
the network weights and thresholds are constantly
adjusted to minimize the output error of the network.
As the nonlinear mapping ability of BP network is very
powerful, three layers of network can realize the map-
ping between any inputs and expected outputs.21 A hid-
den layer of BP network was selected to identify the
location of the AE source, due to the advantages of
simple structure and high efficiency.

Large input data and expected data for training the
neural network are prepared for constructing a ‘‘black
box,’’ which can present regularly relationships between
the inputs and the outputs of the network. In this arti-
cle, the AE source location in plate-like structure was
monitored by FOAES, based on TDOA from the AE
source to different sensors. Therefore, the input data of
the neural network are TDOA, and the output data are
the coordinates of the AE source, which constitute the
training sets. The process of establishment for training
sets is shown in Figure 3, including the following steps:

Step 1. Measure propagation velocities of stress waves
in different directions and set up a relationship between
the propagation velocity and the propagation direc-
tions, v = f(u).

Step 2. Mesh the testing structures, getting m 3 n
intersections, coordinates of which are (xp, yp), p = 1,
2,..., m 3 n = T. A simple plate structure is uniformly
divided grid.

Step 3. The distance of all intersections on the grid to
each sensor is calculated and presented as lp

i. It can be
obtained as

lp
i =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xp � xi
� �2

+ yp � yi
� �2

q
ð6Þ

where i = 1, 2,..., S is the ith sensor. At the same time,
the angles of all the intersections to each sensor in the
coordinate system are calculated as

up
i = arctan

yp � yi

xp � xi

� �
ð7Þ

Step 4. The calculated direction angle is substituted
into the velocity function v = f(u). Then the propaga-
tion velocity of stress wave from every intersection to
every sensor is calculated as

vp
i = f ðqi

pÞ ð8Þ

Step 5. The time of stress wave from every intersection
to every sensor can be estimated with the relative dis-
tance and velocity

tp
i =

lp
i

vp
i

ð9Þ

The important information for the training of ANN is
collected in this step. Due to the AE source localization
experiment, the physical quantities of time differences
are usually directly measured. The time difference is
first considered as the input vector of the neural net-
work, in the process of ANN training.
Step 6. Determine the neural network input layer and
output layer, namely, the training sample. According
to the arrival time of stress wave tp

i, taking the first
sensor as the standard, the TDOA measured by other
sensors can be obtained

Dtp
i = tp

i � tp
1 ð10Þ

Obtain the matrix S 2 1 3 T
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Dt1
2 = t1

2 � t1
1 Dt2

2 = t2
2 � t2

1 . . . DtT
2 = tT

2 � tT
1

Dt1
3 = t1

3 � t1
1 Dt2

3 = t2
3 � t2

1 . . . DtT
3 = tT

3 � tT
1

. . . . . . . . . . . .
Dt1

S = t1
S � t1

1 Dt2
S = t2

S � t2
1 . . . DtT

S = tT
S � tT

1

2
664

3
775

S�1ð Þ3T ð11Þ

In the matrix, every column of data is considered as one
input vector. There are totally T input vectors, which
are relative to output vectors (xp, yp).

Experiment setup and procedure

Experiment setup

The experiment setup is shown in Figure 4: the signal
generator is abandoned and the FOAES interrogator
proves multi-channels for the FOAES array as
shown in Figure 4(a). Four black thick lines in
Figure 4(b) and (c) are FOAESs, which are distribu-
ted as a square array and a diamond array. The
small circles represent the locations of AE source as
test points.

START
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Calculate the velocity
of all intersections to 
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Figure 3. Source localization method based on artificial neural network.
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Propagation velocities of stress wave in CFRP plates

The algorithm of impact source identification requires
information of propagation velocities. The velocity pro-
file was determined by the method of measuring
TDOA. Figure 5 presents the propagation velocity pro-
files of stress waves in the aluminum plate (300 3 300
3 1.8 mm3) and the CFRP plate (300 3 300 3 4.0
mm3, [0�/90�]7S). The velocities of stress waves propa-
gating in the aluminum plate are uniform in all direc-
tions shown as red ‘‘�,’’ and the average velocity is
1.321 km/s shown as green line in Figure 5. However,
the velocities of stress waves measured by the embedded
diamond array depend on propagation directions,
which have the same trend as the velocity of the Lamb
wave (A0 mode).22 The velocities on x-axis and y-axis
are 1.316 and 1.147 km/s, respectively. The velocities in
other direction (green ‘‘N’’ in Figure 5) are between the

two extreme values, which are fitted as an ellipse curve
(green line). The velocities on the green line employed
for calculating TDOA was calculated, because the velo-
city on any direction was obtained easily and conveni-
ent for training the ANN.

Design and training results of BP neural network

The operation efficiency and the accuracy of the neural
network depend on hidden layer, and the most impor-
tant is to choose the optimal number of neurons. If the
number of neurons in the hidden layer is not enough,
not only characteristic information collected from the
training sets of the neural network are partial but also
some expected outputs are easy to fall into local mini-
mum value, getting the large training error. If there are
too many neurons, the neural network in training

Figure 4. (a) Experiment setup, (b) positions of sensors in the square array, and (c) the diamond array in the coordinate system.
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process matches excessively, which affects the efficiency
of the training at the same time, may not get the best
training results. How to determine the optimal number
of neurons in hidden layer is difficult. There are three
kinds of formula for estimating the number of neurons

H = 2I + 1 ð12Þ

H =
ffiffiffiffiffiffiffiffiffiffi
I + O
p

+ a a 2 ½1, 10� ð13Þ

H = log2 I I 2 ½0:02I , 4I � ð14Þ

where H is the number of neurons, I is the dimension
of the input vector of input layer, O is the dimension of
the input vector of input layer, and a is constant.
However, in order to design an ANN of accurate out-
put value, it is best to compare their experiment num-
ber and increase the number of neurons, expanding the
scope of the comparison, to determine the best net-
work. The judgment standard for the best BP network
is the mean square error (MSE), which refers to the
output value and expectations exist deviation to neural
network training process and can be expressed as

S =
Xn

i = 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xi � Xi)

2 + (yi � Yi)
2

2

s
ð15Þ

where (xi, yi) is the ith output coordinates, (Xi, Yi) is the
relative expected, and n is the number of samples. The
smaller the MSE, the more accurate the output value of
neural network.

FOAESs deployed in a square pattern. Mash the square
area into 200 mm 3 200 mm grid spacing of 10 mm,
obtaining 441 intersections, of which the arrival time to
four fiber AE sensors are calculated as T1, T2, T3, and

T4. When the four sensors were distributed as a square
area, there were three input neurons and two output
neurons in the BP network. A neural network with
square array can get 441 3 3 DT2 = T2 2 T1,
DT3 = T3 2 T1, and DT4 = T4 2 T1. In all, 441
TDOAs [DT2, DT3, DT4]# and 441 coordinates of inter-
sections [x, y]# are considered as three-dimensional
input vectors and output vectors of training set, respec-
tively. The number of hidden neurons is necessary to
be increased because experimentation proceeds from
1.5 times of input neurons.

To set up a training set of an ANN, a rule of propa-
gation velocities must be built up. According to the
measurement results, a circle curve was fitted, which
presented that propagation velocity of stress wave was
averaged as 1.321 km/s. According to the above
method of training set for ANN, the theory TDOA of
stress wave was calculated as the training input vector.
In the process of optimizing the number of hidden neu-
rons, they were increased from 5 to 20. When the num-
ber of hidden neurons is 7, the neural network reaches
a steady state after iterative 141 times and the mini-
mum MSE is 0.93 as shown in Figure 6.

BP neural network is trained according to the
TDOA of stress wave as training sets, and its results
match the targets of AE source localization as shown
in Figure 7. There are small errors at the boundary
points of the square, and the maximum error is only
5.1 mm.

FOAESs deployed in a diamond pattern. When the sensor
array is distributed in a diamond pattern, two pairs of
TDOAs measured by sensors are presented as
DT13 = T3 2 T1 and DT24 = T4 2 T2, which are
two-dimensional vectors [DT13, DT24]# of the network

Figure 6. Relationships between the MSE of neural network
and epochs.

Figure 5. Propagation velocity profiles of stress waves in the
aluminum plate and the CFRP plate.
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input training sample. Output vector of the training set
is composed of AE source coordinates of two-
dimensional vector [x, y]#. The number of hidden neu-
rons was determined with validations from 3. When the
number of neurons is 18, after 524 iterations, training
the output value and expectation of the MSE reduced
to the minimum value of 0.782 as shown in Figure 8.
Training results of BP neural network for the test
points gridded in the area of the sensor array are shown
in Figure 9. Compared with the results of the square
array, almost all the calculated coordinates of the test
points map the AE source location.

Results and discussions

FOAESs distributed as a square array

The experiment of AE source localization in the alumi-
num plate as isotropic material was implemented with
the square array. Both algebra algorithm and intelligent
algorithm based on BP neural network were adopted.
Figure 10 shows the results of test points calculated by
the algebra algorithm, most of which are much far from
the actual AE source location with more nonlinear
errors.

When the well-trained BP network is used to calcu-
late the AE source location, all the test points coordi-
nates are shown in Figure 11. There are only 5 of the 21
test points with more errors, and the maximum error is
10.6 mm, which does not exceed 5.3% relatively to the

measurement area. Compared with the above results of
algebra algorithm, the algorithm of BP ANN is more
accurate and stable in the global area.

FOAESs distributed as a diamond array

The CFRP plate embedded with FOAESs was tested
for location the impact source on the plate. Nine repre-
sentative testing points in the CFRP plate were

Figure 7. Training results of neural network with seven
neurons.

Figure 9. Training results of BP neural network for the
diamond array.

Figure 8. Relationships between the MSE of neural network
and epochs.
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impacted with a steel ball repeatedly. At the same time,
FOAESs detected the stress wave from the impact
source, and the measurement system identified the arri-
val time from every sensor and calculated the coordi-
nate of the impact source using the algorithm of BP
neural network.

The measurement results are all in good agreement
with the nine tested points as shown in Figure 12. The

actual AE source locations are the ‘‘3,’’ the calculated
coordinates of algebra algorithm are the ‘‘3,’’ and the
output results of BP network are ‘‘+.’’ The results of
AE source localization using different algorithm almost
matched the test points uniformly. The maximum error
of the test points on the coordinate axis is only 4.3 mm,
and the maximum error of the four test points in the
quadrant is 6.4 mm. The accuracy of the AE source
localization is excellent with the small area array. It is
hard to ensure the high accuracy when the monitoring
area is enlarged, because the amplitude of stress wave
attenuates with the long distance of propagation.
Therefore, an image of sensor network consisting of
some sensor arrays is presented for large structures, as
shown in Figure 13. The test points in Array I have
been measured, so the test points in similar parts such
as Array II, Array III, and Array IV are also able to be
exactly identified. The only test points in Array V
needed extra measure because of the different distribu-
tions of the sensor array. This part of work will be
achieved in the next research.

Conclusion

In this article, the AE source is identified based on an
intelligent algorithm with FOAES embedded in a
CFRP plate. Calibration experiments of the FOAES
show that it is better suited to detect the low frequency
of stress wave than the PZT sensor. The experiments of

Figure 11. AE source localization results using the intelligent
algorithm of BP neural network.

Figure 10. AE source localization results in an isotropic plate
using the algebra algorithm.

Figure 12. AE source localization results in the CFRP plate.
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AE source localization are achieved in isotropic plate
with surface-mounted FOAESs distributed as a square
array. The intelligent algorithm of BP neural network
reduces the nonlinear errors and is suitable for any sen-
sor array. The diamond array was integrated into CFRP
plate for prediction of AE source location using the intel-
ligent algorithm, which presented the trend of develop-
ment of smart materials and structures in the future.
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