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The buckling mechanics of fibre-reinforced shape-memory polymer composites (SMPCs)
under finite flexure deformation is investigated. The analytical expressions of the key
parameters during the buckling deformation of the materials were determined, and the
local post-buckling mechanics of the unidirectional fibre-reinforced SMPC were further
discussed. The cross section of SMPC under flexural deformation can be divided into three
areas: the non-buckling stretching area, non-buckling compression area and buckling com-
pression area. These areas were described by three variables: the critical buckling position,
the neutral plane position and the fibre buckling half-wavelength. A strain energy expres-
sion of the SMPC thermodynamic system is developed. According to the principle of min-
imum energy, the analytical expressions of key parameters in the flexural deformation
process is determined, including the critical buckling curvature, critical buckling position,
position of the neutral plane, wavelength of the buckling fibre, amplitude of the buckling
fibre and macroscopic structural strain of the composite material. The results showed that
fibre buckling occurred in the material when the curvature increasing from infinitesimal to
the critical value. If the curvature is greater than the critical curvature, the neutral plane of
the material will move towards the outboard tensile area, and the critical buckling position
will move towards the neutral plane. Consequently, the half-wavelength of the buckling
fibre was relatively stabilised, with the amplitude increasing dramatically. Along with
the increasing of the shear modulus, the critical curvature and buckling amplitude increase,
while the critical half-wavelength of the fibre buckling decrease and the critical strain of
the composite material increase. Finally, we conducted experiments to verify the correc-
tion of the key parameters describing SMPC materials under flexural deformation. The val-
ues determined by the experiments proved that the theoretical prediction is correct.
Additionally, the buckling deformation of the carbon fibre generated a large macroscopic
structural strain of the composite material and obtained a resulting large flexural curvature
of the structure with minimal material strain of the carbon fibre.

� 2013 Elsevier Ltd. All rights reserved.
1. Introductions

It is widely accepted that a film bonded to a compliant
substrate often forms a pattern of wrinkles when subjected
to a compressive membrane force (Huang et al., 2004,
2005). However, nanowires or nanotubes on the surface
of a compliant substrate can also undergo in-surface buck-
ling under mechanical loading conditions (Ryu et al., 2009;
Xiao et al., 2010). In the case of nanofibres buried in the
interior of compliant substrates, this paper provides
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experimental and theoretical evidence to the buckling of
the carbon fibres in response to external loads.

Common compliant substrate materials include electro-
active polymers (EAPs) and shape-memory polymers
(SMPs). Electroactive polymers can change their shapes
or volumes when exposed to external electrical fields,
and they can recover their original shapes or volumes once
the electrical fields remove. Because of this characteristic,
they can be used as smart transducers in application such
as novel actuators, sensors and electric generators (Liu
et al., 2008, 2009, 2010, 2011; Li et al., 2011; Suo et al.,
2008; Suo, 2010; Leng et al., 2009d). Typical electroactive
polymers include silicone and polydimethylsiloxane
(PDMS).

In contrast to most other studies, the compliant sub-
strates investigated in this paper are shape-memory poly-
mers (Lv et al., 2010; Lu et al., 2010; Lan et al., 2009; Leng
et al., 2008, 2009a,b,c, 2011; Leng and Du, 2010; Yu et al.,
2011). SMPs can undergo significant macroscopic deforma-
tion upon the application of various external stimulus (e.g.,
heat, electricity, light, magnetism, moisture and even
changes in pH) (Leng et al., 2011).

The shape-memory cycle of a fibre-reinforced SMPC can
be described as follows: first, raise the temperature of the
laminate to the glass transition temperature of the mate-
rial. Then, bend the laminate along a cylindrical surface
and constrain it to remain bent. While the shape of the lam-
inate is held, lower the temperature until it falls below the
glass transition temperature of the polymer. After the lam-
inate is hardened, remove the constraint. As a result, the
laminate will keep the deformed shape, and it will not re-
vert spontaneously. Finally, heat the laminate again to rea-
lise the deployable characteristic of the structure, which
will return to the original shape (Lan et al., 2009; Lv et al.,
2010; Yu et al., 2011; Leng et al., 2011; Leng and Du,
2010). For the strong restraint of the cylinder during the
deformation process, the fibres in the surface act as a defor-
mation feature, with shearing-buckling as the main defor-
mation mode. The buckled or wavy configurations can be
stretched and compressed in a nondestructive way, similar
to the physics of the motion of an accordion bellows.

A fibre-reinforced fabric SMPC was developed for indus-
trial application (Lan et al., 2009; Leng et al., 2009a, 2011;
Leng and Du, 2010). The bending recovery force of this
SMP-based laminate was larger than those of pure SMP
sheets for any given recovery time (Lu et al., 2010; Leng
et al., 2009a,b,c). Fibres in SMPs can offer significant
improvement in strength, stiffness and resistance against
relaxation and creep, thereby providing better mechanical
properties. As both functional and structural materials,
these SMPs had shown superb potential in many advanced
applications (Leng et al., 2009a, 2011; Leng and Du, 2010).
For instance, when used as actuator materials, they require
no moving parts. Consequently, the use of fibre-reinforced
SMPC to produce deployable structures, including antennas,
trusses and solar arrays, has attracted considerable interests
(Lan et al., 2009; Leng and Du, 2010; Leng et al., 2011).

The local and global buckling analysis of film/compliant
substrate systems, as well as nanotube or nanowire/com-
pliant substrate systems, have been the topics of broad re-
search interests recently (Cerda and Mahadevan, 2003;
Chen and Hutchinson, 2004; Huang et al., 2004, 2005;
Huang, 2005; Audoly and Boudaoud, 2008a,b,c; Ryu et al.,
2009; Xiao et al., 2010; Cai et al., 2011).

Several recent nonlinear analyses have determined the
wavelengths and amplitudes of sinusoidal wrinkles (Chen
and Hutchinson, 2004; Huang et al., 2005). Using the finite
element method, Chen and Hutchinson have found that the
herringbone pattern has the minimum energy of several
competing patterns (Chen and Hutchinson, 2004).

These researchers first obtained the amplitude and
wavelength of the sinusoidal wrinkles as functions of the
modulus and thickness of the substrate. Their results
showed that the wavelength of the wrinkles remains con-
stant as the amplitude of the wrinkles increases. They also
developed a spectral method to evolve two-dimensional
patterns of wrinkles and represent the exact three-dimen-
sional elastic field of the substrate in Fourier space (Huang
et al., 2005).

The emergent nonlinear properties of the buckling
behaviours of some of the periodic modes were also eluci-
dated (Audoly and Boudaoud, 2008a,b,c).

Researchers established a continuum mechanics theory
for the in-surface buckling of one-dimensional nanomate-
rials on compliant substrates, and simple analytical
expressions were obtained for the buckling wavelength,
amplitude and critical buckling strain in terms of the bend-
ing and tension stiffness of the nanomaterial and the ma-
trix elastic properties (Xiao et al., 2010).

Further aspects of the nonlinear post-buckling behav-
iour of a film/substrate system were explored by employ-
ing an analytical upper-bound calculation and numerical
finite element analysis to determine the relationship be-
tween the observed periodic patterns and the level of over-
stress noted in the next section (Cai et al., 2011).

Based on the analytical method in the Refs. Huang et al.
(2005), Chen and Hutchinson (2004), Jiang et al. (2008),
Barrett et al. (2006), Francis et al. (2007) and Ryu et al.
(2009), this paper developed an improved analysis method
of the mechanics of the in-surface buckling for fibre-rein-
forced SMPC. Similar to the study of the normal buckling
of stiff thin films and single wall nanotubes on compliant
substrates, the mechanical analysis of in-surface buckling
in Section 3 provides an analytical form of the total energy
of the system, which consists of the fibre buckling defor-
mation energy, the matrix shear deformation energy in
the buckling area and the fibre/matrix tensile deformation
energy in the unbuckling area. Furthermore, the analytical
expressions for key parameters describing the buckling
deformation and local post-buckling mechanics of unidi-
rectional fibre-reinforced SMPC are introduced. These
parameters include the critical buckling curvature, the
critical buckling position, position of the neutral plane,
wavelength of the buckling fibre, amplitude of the buckling
fibre and macroscopic strain of the composite material.
Additionally, corresponding experiments are conducted
to verify the accuracy of the key parameters. The analysis
is demonstrated to provide theoretical predictions which
are in good agreement with the experimental data.

The fibre-reinforced SMPC with microbuckling can be
used for deployable structures in space such as antennas,
trusses and solar arrays (Lan et al., 2009; Leng and Du, 2010;
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Leng et al., 2011). The methodology in this paper can be
extended to analyse similar engineering problems, such
as deformation analysis of flexible multilayer printed
wiring board used for foldable display. The results of this
paper may apply to analyse some failure modes in fibre-
reinforced composites under complex loading conditions.

2. The buckling mechanics of fibre-reinforced shape-
memory composite materials

Neutral plane in classic mechanics of materials is
mostly considered to locate at the middle plane of cross
section for isotropic solid. This paper considers the move-
ment of neutral plane and corresponding buckling behav-
iour of composite materials. In order to achieve the
deformation characteristics (critical buckling curvature,
critical buckling position, position of the neutral plane,
wavelength of the buckling fibres, etc.), the strain state of
the cross section for SMPC is divided into three areas: the
non-buckling stretching area, non-buckling compression
area and buckling compression area. Based on the expres-
sions of strain energy, employing the principle of mini-
mum energy, the distributed deformation characteristics
for the entire SMPC is obtained.

2.1. Fundamental equation

The fibre buckling deformation is assumed to have the
following sinusoidal shape:

y ¼ A cos
mpx

k

� �
ð1Þ

When m = 1,

y ¼ A cos
px
k

� �
ð2Þ

where k denotes the half-wavelength of fibre buckling and
A represents the amplitude (Fig. 1). The macroscopic strain
along the Y-axis can be expressed as follows:

e ¼ DL
L
¼ 1

2L

Z L

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdxÞ2 þ ðdyÞ2
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Fig. 1. The post-microbuckling of the fibre-reinforced shape-memory polymer
wavelength; Ao buckling amplitude; df diameter of fibre).
Considering Eq. (2), we obtain

e ¼ A2p2

4k2 ð4Þ

Accordingly, we obtain

A ¼
ffiffiffiffiffiffiffiffiffiffi
�exx
p 2k

p
ð5Þ

The in-plane strain, exx, can be determined from the fol-
lowing expression:

exx ¼ kðz� znsÞ ð6Þ

Substituting Eqs. (6) and (5) into Eq. (2) yields

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðzns � zÞ

q 2k
p

cos
px
k

� �
ð7Þ

Assuming that both the fibre and the shape-memory
material matrix are linearly elastic materials, the strain en-
ergy expression of an infinitesimal body element DV can be
expressed as follows:

DUT ¼ 1=2rijeijDV

¼ 1=2ðrxxexx þ ryyeyy þ rzzezz þ sxycxy þ sxzcxz

þ syzcyzÞDV ð8Þ

The main factor to be considered in the bending defor-
mation of an SMPC is the strain exx along the circle direc-
tion, while the longitudinal strain eyy and the radial strain
ezz are relatively small and can be ignored. Additionally,
considering the rigidity constraint boundary condition in
the Y–Z plane and neglecting the shear strain cxz in the
X–Z plane, Eq. (8) can be simplified to the following
expression:

DUT ¼ DUxx þ DUxy þ DUxz ð9Þ

in which

DUxx ¼ 1=2rxxexxDV

DUxy ¼ 1=2sxycxyDV ð10Þ

DUxz ¼ 1=2syzcyzDV

In addition, the buckling strain energy of the fibre must
be considered, in addition to its buckling deformation en-
ergy (DUf must be added to DUT).
composite under compressive loading (Rf curvature radius; kcr buckling
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DUT ¼ DUxx þ DUxy þ DUyz þ DUf ð11Þ

Based on the analytical method in the Refs. Huang et al.
(2005), Chen and Hutchinson (2004), Barrett et al. (2006),
Francis et al. (2007) and Ryu et al. (2009), etc., the method-
ology in this paper is improved, and accordingly the total
energy expression UT is made up with the following ener-
getic subentries for different deformation models of the
material:
2.2. Problem descriptions

The shape-memory cycle thermodynamics of the fibre-
reinforced SMPC occurs as follows: First, the material is
heated to its glass transition temperature. Then, the planar
composite material laminate bends (Fig. 2a) along the
cylindrical surface of a radial cylinder. The constraint is
Fig. 2. The in-plane (X–Y plane) deformation of the fibre-reinforced SMP composi
maintained while the temperature is lowered until it falls
below the glass transition temperature; then, the restraint
is removed after the laminate is hardened. Eventually, the
laminate will retain the deformation shape without revert-
ing (as Fig. 2b). By heating the laminate again, the structure
can be deployed, causing it to recover its original shape
(Fig. 2c). The ability of materials to maintain their defor-
mation shapes is a key factor in the shape-memory effect.
To provide strong restraint of the cylinder during the
deformation process, fibres are included as deformation
features in the laminater surface (Fig. 2d), and deformation
occurs by shear buckling.

A long and thin columnar carbon fibre has a tensile
strength far greater than its compressive strength. The ten-
sile strength is also greater than the shear strength of the
te (no deformation in the Z direction, mode of buckling is the shear mode).
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resin matrix. During the bending deformation process of a
fibre-reinforced SMPC, the shear stiffness of the matrix un-
der compression is not adequate to support the lateral
deformation of the fibre; consequently, the fibre will
buckle as a result of instability.

The expansion process of a fibre-reinforced SMPC is
equivalent to the process from state b to state c. On the
other hand, the transition from state a to state b and from
state b to state c are reversal deformation processes (ignor-
ing the energy lost in the storage of strain energy). In order
to understand this process more easily, this paper only
considers the deformation process from state a to state b.
In this process, there are 4 basic parameters of interest in
the buckling deformation of fibre-reinforced SMPC.

1 The critical buckling position. During the bending pro-
cess, as the curvature increases, there is no buckling
at first; the material begins to buckle when the curva-
ture reaches a certain (critical) value.

2 The neutral plane position. During the buckling process
(as curvature increases gradually), when the curvature
reaches a certain value, the neutral plane gradually
moves to the outboard tensile side of the cross section
from the symmetry mid-plane.

3 Wavelength of fibre buckling.
4 Amplitude of fibre buckling. The value of the fibre

buckling amplitude is not a constant along the thick-
ness direction (Z axis). With a fixed curvature, the
amplitude of the flexural wave reaches its maximum
in the interior uncompressed surface and declines
along the thickness direction until it reaches the
critical buckling plane and the amplitude becomes
zero (no buckling).

Furthermore, the problem is three-dimensional. In the
X–Y plane, the fibre deformation is described by the shear-
ing model, and the energy of the system is related to the X
(length direction) and Z (thickness direction) coordinates.
Meanwhile, the wavelength of the buckling fibre and other
parameters are related to the X (length direction) and Z
(thickness direction) coordinates.

Finally, concerning the structure of the SMPC, the prin-
cipal way to improve the driving force of laminate deploy-
ment without changing the material properties is to
increase the thickness of the material (the width is fixed,
and material failure occurs at smaller bending curvatures).
In the optimal design of the material, the relationship be-
tween the thickness, curvature and failure strain must be
considered.
3. The thermodynamic system energy of shape-memory
composite materials

As shown in Fig. 3, the cross section of the composite
material under a bending moment can be zoned into three
areas: the non-buckling stretching area, the non-buckling
compression area and the buckling compression area.
These areas are defined by three variables: the critical
buckling position zcb, the neutral plane position zns and
the fibre buckling half-wavelength k.
As Fig. 3a shows, at the glass transition temperature
(T = Tg = 100 �C), a bending moment is applied along the
positive direction of the Y axis. In the bending process,
the curvature increases gradually from zero. Once the cur-
vature increases beyond the critical value kc, the fibre be-
gins to buckle at the z = 0 position. The boundary line can
be expressed as zcb (critical bending). The neutral surface
moves towards the outside tensile surface along the Z axis
from the original position and stops when it reaches the
equilibrium position. As Fig. 3b shows, in the area where
0 6 z < zcb, the material bears a compression strain, and
the fibre undergoes buckling; in the area where
zcb < z < zns, the material experiences compression strain
without fibre buckling and in the area where zns < z 6 t,
the material exhibits tensile strain. Plastic deformation,
failure of the matrix and failure of the fibre will not be con-
sidered in this process.

3.1. Fibre buckling strain energy Uf

The bending of a buckling beam with a small strain and
a large displacement can be described by the buckling
strain energy equation of a single fibre with length l as
follows:

Uf ðsingle fibreÞ ¼
1
2

Ef If

Z l

0

d2y

dx2

 !2

dx ð12Þ

Inserting equation (7) into equation (12), we can obtain

Uf ðsingle fibreÞ ¼
Ef If lkp2ðzns � zÞ

k2 ð13Þ

In the Y direction (on a cylindrical surface with a spe-
cific radius), all of the fibre buckling deformation models
are identical, and the equivalent strain energy per unit
length in Y direction can be described as follows:

Uf ðone layerÞ ¼
w
h

Uf ðsingle fibreÞ ð14Þ

where h denotes the distance between the centres of the
adjacent fibre circles.

Supposing that the fibre deformation is the same
throughout the X–Y plane, the fibre deformation energy
along Z axis is

Uf ¼
Xm

n¼1

w
h

Ef If lkp2

k2 ðzns � nhÞ ð15Þ

where h is the distance between the centres of the circles
of adjacent fibres, n = 1, 2, 3. . .m, m = zcb/h, and m is an
integer. Then we can obtain:

Uf ¼
wEf If lkp2

2k2h2 zcbð2zns � zcb � hÞ ð16Þ

The equation above can be simplified as follows:

Uf ¼
wEf If lkp2

2k2h2 zcbð2zns � zcbÞ ð17Þ

The volume of a fibre, vf, satisfies the expression of
vf = [p(d/2)2]/h2. Substituting this expression into Eq. (17)
yields the following:



Fig. 3. Illustration of bending deformation of the fibre-reinforced SMP composite, (a) illustration of SMPC shell, (b) strain state of cross-section.
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Uf ¼ Uf ðzcb; zns; kÞ ¼
2wlkpv f Ef If

k2d2 zcbð2zns � zcbÞ

ð0 6 zcb < zns < tÞ ð18Þ

It should be noted that, for the material strain of the
buckling fibre itself, the curvature of the fibre-reinforced
material ~k is

~k ¼ jy00j
ð1þ y02Þ3=2 ð19Þ

Substituting equation (3) into (19), we obtain

~k ¼
Ap2

k2 cos px
k

� �			 			
1þ A2p2

k2 sin2 px
k

� �h i3=2 ð20Þ

Obviously, when x ¼ nk; ðn ¼ 1;2;3 . . .Þ, corresponding
to the maximum curvature of the carbon fibre monofila-
ment ~k, the maximum material strain ~emax can be calcu-
lated as follows:

~emax ¼
dAp2

2k2 ð21Þ

From the experimental and theoretical results (see
Table 4), the maximum bending curvature of the SMPC
investigated in this paper is 50 m�1, and the corresponding
fibre strain and geometric deformation are the maximum
values of the material parameters. Here, we only consider
the situation in which k equals 50 m�1. Inserting the exper-
imental results shown in Table 4 into Eq. (20), we determine
that the curvature ~k of the carbon fibre is 1328 m�1; further-
more, the maximum stretching/compression strain is 0.48%
(fibre diameter d = 7 um, the neutral surface is on the middle
plane of the carbon fibre). From these parameters, it shows
that the geometric displacement of the structure is large in
the buckling process of the fibre, while the strain in the
material itself is small. This problem is typical of large mac-
roscopic structural displacements with small materials
strains. Thus, the buckling equation (13) is reasonable.
When k is smaller than 50 m�1, the fibre material curvature
~k and the strain becomes smaller.

For large-displacement geometric deformations of the
buckling fibre, the residual will be on the order of magni-
tude of ðA=kÞ2 when using the buckling equation (13) to
calculate the deformation energy. Furthermore, we con-
sider the circumstance in which k = 50 m�1. Using the re-
sults of Table 4, we determine the largest residual of the
buckling equation (13) to be approximately 3.9%. For k less
than 50 m�1, the residual is smaller; consequently, we do
not consider the geometrical non-linearity caused by
structure displacement during the loading procedure.

In conclusion, when using the buckling equation, the
problem investigated in this paper is characterised by min-
imal materials strain and large structural displacement; as
a result, the non-linearity of the material can be ignored. In
addition, the malformation gratitude of the flexure defor-
mation is small, and it is unnecessary to consider the geo-
metric non-linearity. Eq. (13), therefore, is reasonable.
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3.2. Shearing strain energy Uxy of the matrix

During the bending deformation process of the SMPC,
the deformation along the circumferential direction of
the bending cylinder is restricted by complete restraint.
There is no deformation along Z axis (displacement along
the circle of u = 0, longitudinal displacement v – 0). Thus,
we consider the shearing deformation but ignore the
shearing strain cxz in the X–Z plane because the shear mod-
ulus of fibre is much larger than that of the shape-memory
polymer matrix. Under the assumption of equal stress, the
shearing strain energy of the fibre is much smaller than
that of the matrix. As a result, we ignore the fibre shearing
strain energy, and the buckling half-wavelength and
amplitude of the fibre in the X–Y plane remain constant.
Then, the shearing strain of the matrix can be expressed
as follows:

cxy ¼
@v
@x
þ @u
@y
¼ dy

dx
¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðzns � zÞ

q
sin

px
k

� �
ð22Þ

in which cxy(x, z) is independent of y. Additionally, Uxy only
exists in the compression buckling section. The integrating
range along the Z direction extends from the inside com-
pression surface to the neutral surface zns, and the compos-
ite material is simplified into a parallel monolayer board
divided by matrix. In the X–Z plane, we obtain the follow-
ing expression:

Uxy ¼
1
2

Z zcb

0

Z w

0

Z l

0
vmGmc2

xydxdydz ð23Þ

Equation (22) can be substituted into (23)

Uxy ¼ Uxyðzcb; znsÞ ¼
vmGmlwk

2
zcbð2zns � zcbÞ

ð0 6 zcb < zns < tÞ ð24Þ
3.3. Shearing strain energy Uyz of the matrix

During the bending deformation process of SMPC, the
radial deformation of the bending cylinder is completely
restrained and there is no displacement in the Z direction
(a radial displacement of w = 0 and a longitudinal displace-
ment v – 0), so that we ignore the shearing strain in the X–
Z plane, cxz when considering the shearing deformation.
Along the Z direction, the buckling amplitudes of the fibres
differ. Thus, there exists a shearing deformation between
any two nearest neighbour fibres in the Y–Z plane, and
the shearing strain of the matrix in this plane can be ex-
pressed as follows:

cyz ¼
@w
@y
þ @v
@z
¼ dy

dz
¼ kk

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðzns � zÞ

p cos
px
k

� �
ð25Þ

where cyz = cyz(x, z), which is completely independent of
coordinate y. The composite material is simplified into a
parallel monolayer board which is divided by matrix, and
the strain energy Uyz of the X–Y plane can be calculated
as follows:

Uyz ¼
1
2

Z zcb

0

Z w

0

Z l

0
vmGmc2

yzdxdydz ð26Þ
The following integrated expression is obtained:

Uyz ¼ Uyzðzns; zcb; kÞ ¼
lwkvmGmk2

4p2 ln
zns

zns � zcb

� �
ð27Þ
3.4. Stretching and compression strain energy Uxx of the fibre
and matrix

Uxx includes two parts, the stretching strain energy of
the tensile area (zns 6 z 6 t) in the matrix and the fibre
and the compression strain energy of the compression area
(zcb < z < zns) in the matrix and fibre, while it does not
include the bending strain energy of the buckling fibre
(0 6 z < zcb area). For the matrix and fibre are of
simple stretching or compression strain state, we can
determine the total strain energy of the matrix and fibre
according to the parallel connection model of the compos-
ite material using the assumption of equal strain. Uxx only
exists in the non-buckling area of stretching or compres-
sion, and for an integrating range along the Z direction
from zcb to the outside compression plane, we obtain the
following equation:

Uxx ¼
1
2

Z t

zcb

Z w

0

Z l

0
Exxe2

xxdxdydz ð28Þ

Inserting equation (7) into (28), we get

Uxx ¼
lwk2ðvmEm þ v f Ef Þ

6
ðt � znsÞ3 þ ðzns � zcbÞ3
h i

ð29Þ

in which Em is the stretching/compression modulus of the
matrix and Ef is the stretching/compression modulus of the
fibre (non-buckling).

According to Fig. 4, approximately 50% of the shape-
memory material strain range belongs to the linear-elastic
deformation, in which the strain in the stretching area of
the polymer is small from Eq. (40), we can determine that
the maximum strain in the stretching area is 0.44% when
k = 50 m�1 and we ignore the plastic deformation of the
materials. Additionally, the maximum strain for carbon
fibre in the system is less than 1.5%; consequently, we only
consider the linear-elastic constitutive relation.

3.5. Total energy of the system

By substituting all of the energy expressions (Uxx, Uxy,
Uyz, Uf) into the expression for the total energy UT, we ob-
tain the following expression:

UT ¼ UTðzns; zcb; kÞ

¼ lwk2ðvmEm þ v f Ef Þ
6

ðt � znsÞ3 þ ðzns � zcbÞ3
h i

þ vmGmlwk
2

zcbð2zns � zcbÞ þ
lwkvmGmk2

4p2

� ln
zns

zns � zcb

� �
þ 2wlkpv f Ef If

k2d2 zcbð2zns � zcbÞ ð30Þ

In this paper, the fibre-reinforced SMPC structure has
the following material parameters: length, l = 30 mm;
width, w = 5 mm; thickness, t = 2 mm; diameter of the
carbon fibre (T300), d = 7 um; Ef = 230 GPa. The Young’s



Fig. 4. DMA test of fibre-reinforced SMP composite.
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modulus and shear modulus of the SMPs near their glass
transition temperature are Em = 14 MPa and Gm = 5 MPa,
so that vmGm/(vmEm + vfEf) = 8.69 � 10�5. Unless defined
otherwise, the curvature of the SMPC is k = 50 m�1, pro-
ducing a radius of curvature equal to 20 mm. By investiga-
tion, we determined that there exists a nadir in the system
energy (discussed in detail in later chapters) at a half-
wavelength of approximately 1.0–1.5 mm and a neutral
surface relative position of approximately 0.85–0.97.
According to the energy method, we can determine the ar-
rest point of the structure energy and compute the main
parameters of the balanced system (neutral surface posi-
tion, critical buckling position, buckling fibre half-wave-
length, etc.).

The energy components in Eq. (30) exist in different
areas of the laminate; for example, Uxx represents the
strain energy of the non-buckling fibre and the matrix
stretching/compression area, Uxy is the shearing energy of
the matrix buckling area in the X–Y plane, Uyz is the shear-
ing energy of the matrix buckling area in the Y–Z plane,
and Uf is the deformation energy of the buckling area of
the fibre. The energy is calculated independently, without
consideration of the coupling effect.
4. Analysis expression of key parameters

4.1. Buckling critical point and displacement of the neutral
surface

This paper introduces the notion of the non-buckling
compression area and adopts a self-consistent calculation
to solve Eq. (29). Similar to the solution of Eq. (30), we
ignore Uyz and Uf when solving zns and zcb.

~UT ¼ UTðzns; zcbÞ

¼ lwk2ðvmEm þ v f Ef Þ
6

ðt � znsÞ3 þ ðzns � zcbÞ3
h i

þ vmGmlwk
2

zcbð2zns � zcbÞ ð31Þ

Through the energy method, we obtain ~UT , which is the
system of partial differential equations defining zns and zcb
@ ~UT ðzns ;zcbÞ
@zcb

¼ 0
@ ~UT ðzns ;zcbÞ

@zns
¼ 0

8<
: ð32Þ

According to Eq. (32), we obtain the following results:

zcb ¼ t � 1
k

vmGm

vmEm þ v f Ef

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2kt

vmGm
vmEmþv f Ef

vuut þ 1

0
@

1
A ð33Þ

zns ¼ t � 1
k

vmGm

vmEm þ v f Ef

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2kt

vmGm
vmEmþv f Ef

vuut � 1

0
@

1
A ð34Þ

Further, we obtain the relationship between zns and zcb:

zcb ¼ zns �
2
k

vmGm

vmEm þ v f Ef
ð35Þ

Inserting (33) into (29) we get

ÛT ¼ UTðzns; kÞ

¼ lwk2ðvmEm þ v f Ef Þ
6

ðt � znsÞ3 þ
8

k3

vmGm

vmEm þ v f Ef

� �3
" #
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2
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4

k2
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" #

þ lwkvmGmk2
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vmEmþv f Ef

0
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1
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þ 2wlkpv f Ef If

k2d2 z2
ns �

4

k2

vmGm

vmEm þ v f Ef

� �2
" #

ð36Þ

Comparing the first two items and the last two items to
see which is smaller. The relationship between the energy
and the positions of the neutral surface under different
matrix shear modules are shown in Fig. 5 (Gm = 5, 10 and
20 MPa) for the composite material with a half-wavelength
of k = 1.25 mm and a thickness of t = 2 mm. The result
shows that the curves of Uxx + Uxy and Uxx + Uxy + Uyz + Uf

are nearly parallel, and the first two items Uxx + Uxy are
much greater than Uyz + Uf.

Similarly, Fig. 6 shows the relationship between the en-
ergy and the position of the neutral surface under different
curvature conditions. The result still indicates that the
Uxx + Uxy and Uxx + Uxy + Uyz + Uf curves are nearly parallel,
and Uxx + Uxy is much larger than Uyz + Uf. Consequently,
it is reasonable to replace Uxx + Uxy + Uyz + Uf by Uxx + Uxy

in (36). Therefore, the adoption of the self-consistent calcu-
lation to solve equation (29) is valid.

Equations (33) and (34) also need to satisfy the condi-
tion of 0 6 zcb<ns < t. This paper studies the control of dis-
placement (the control of curvature) rather than the
control of force. The energy method is used to determine
the position of the neutral surface zns and the curving
half-wavelength k when the curvature k is fixed. This ap-
proach means that k defines a boundary condition rather
than acting as a variable. Then, we can discuss the relation-
ship between zns, zcb and k.

First, under the condition that zcb P 0, Eq. (33) provides
the following relationship:



Fig. 5. Energy-zns/t relationship at different matrix shear modulus
(Gm = 5, 10, and 20 MPa, k = 50 m�1). Fig. 6. Energy-zns/t relationship at different curvatures (k = 10, 50, and

100 m�1, Gm = 50 MPa).
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k P
4
t

vmGm

vmEm þ v f Ef
ð37Þ

Inserting (37) into (34), we obtain the following:

zns

t
P

1
2

ð38Þ

Obviously, when zcb = 0, there is no fibre curvature in
the material; when zcb > 0, fibre curvature occurs and the
critical curvature kc is obtained.

kc ¼
4
t

vmGm

vmEm þ v f Ef
ð39Þ

Under this condition, the position of the neutral surface
is zns/t = 1/2, proving that the neutral surface of the initial
material position is at the middle of the plane. When the
curvature increases from infinitesimal (k = 1/q ? 0) to
some critical curvature, the fibre in the material begins
to curve. The critical curvature of the general material is
greater, so the material is destroyed before the fibre buck-
les; we cannot observe the phenomenon of curvature and
the neutral surface does not move.

The shear modulus of the SMP examined in this paper is
lower at the glass transition temperature; thus, the neutral
plane moves when the curvature is greater. Physically, the
position of the neutral surface and its movement are deter-
mined by the equilibrium relationship of Uxx and Uxy,
meaning that when the former increases monotonically,
the latter decrease monotonically, and the minimum en-
ergy equilibrium point can be deduced from the sum of
the two terms.

Also, the critical strain ec of the material is expressed as
follows:

ec ¼
2vmGm

vmEm þ v f Ef
ð40Þ

In summary,

exx ¼
0 ðk 6 kcÞ

t � 1
k

vmGm
vmEmþv f Ef

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2kt

vmGm
þ1

vmEmþv f Ef

r !
ðk > kcÞ
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exx ¼

t
2 ðk 6 kcÞ

t � 1
k

vmGm
vmEmþv f Ef

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2kt

vmGm
þ1

vmEmþv f Ef

r !
ðk > kcÞ
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>: ð42Þ

Furthermore, we discuss the case in which zcb < zns.
From (35), we can see that zcb is always smaller than zns.
It is also clear that zcb and zns are smaller than t.

The variation of the critical curvature and neutral sur-
face positions during the buckling process are shown in
Fig. 7. For a material with M = vmGm/(vmEm + vfEf), the fibre
curvature appears at the inner buckling side of the material
when the value of the curvature increases to kc. The initial
position values, zcb = 0 and zns = t/2, increase with the cur-
vature, and zcb and zns move towards the outside plane
when tensile stress is applied.

Additionally, zcb rapidly approaches zns. This conver-
gence means that the compressing non-buckling area wid-
ens from its initial value, and t/2 decreases to zero
gradually. Fig. 7 shows that the properties of composite
materials (different values of vmGm/(vmEm + vfEf)) vary with
the properties of the neutral surface. This trend is treated
in detail in Fig. 8.

Plug Equation (39) into exx = k(z � zns), we obtain the
macro-strain of the SMP lamina along X axis

exx ¼
Pkðz� t

2Þ ðk 6 kcÞ

ðz� tÞkþ vmGm
vmEmþv f Ef

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2kt

vmGm
�1

vmEmþv f Ef

r !
ðk > kcÞ

8><
>: ð43Þ

From Fig. 8, we can determine the variation of the max-
imal strain of the inner compressing side (z = 0) during the
process of bending (as the curvature increases gradually).

Table 1 gives different critical curvature values kc

(t = 2 mm) based on different material constants M = vmGm/
(vmEm + vfEf). From the table, we can see that greater value
of the material constant leads to greater value of the
critical curvature. Materials that have greater rigidity are
harder to bend. A material is damaged when material con-
stant is too large (as M > 1 � 10�2) and the curvature is less
than kc. In this case, curvature does not appear.



Fig. 7. The relative displacement of the neutral plane and critical buckling
position during the bending process (t = 2 mm).
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Figs. 7 and 8 and Table 1 discuss the morphing property
in the buckling process of the SMP in detail.

At a temperature near the glass transition point and in
the case of k 6 kc (Gm has a magnitude of 10 MPa), the
SMP does not buckle, the neutral surface always coincides
with the section of the symmetrical face, and exx,max � kt/2.

When the curvature increases such that k > kc, the fibres
begin to curve and zcb moves away from the inner compress-
ing side. The neutral surface zns deflects (zns > t/2) during the
curve process. The macro-strain can be calculated by Eq.
(43). At the glass transition temperature, the Young’s mod-
ulus of the SMP reached 10–20 MPa, the shear modulus
reached 3–7 MPa, the modulus of the carbon fibre became
3�7 MPa, the fibre volume is 10–30%, and the magnitude
of M = vmGm/(vmEm + vfEf) approximated 1 � 10�4.

Because the critical strain is very small, when the SMP
lamina buckles, the neutral surface deflects directly from
macro-observing. For instance, the Young’s modulus of
the fibre-reinforced epoxy polymer shape-memory composite
approximates 14 MPa, its shear modulus is 5 MPa, the
fibre volume is 20%, and vmGm/(vmEm + vfEf) = 8.69 � 10�5
Fig. 8. The maximum strain at the inner compressive surface in the
bending process (t = 2 mm).
at the glass transition temperature. In the process of
buckling, zns/t and exx,max vary along the curve of vmGm/
(vmEm + vfEf) = 8.69 � 10�5 in Figs. 7 and 8, respectively.

For the general composite, the neutral surface often has
no deflection, and the largest strain of the inner compres-
sive side can be calculated by exx,max = �kt/2. The Young’s
modulus of the composite matrix approximates 2–5 GPa,
its shear modulus approximates 0.5–2 GPa, the modulus
of the carbon fibre approximates 230 GPa, the fibre volume
is 20%, and the magnitude of vmGm/(vmEm + vfEf) approxi-
mates 1 � 10�2. For the normal fibre-reinforced epoxy
polymer shape-memory composite, the resin matrix has
a Young’s modulus of 3.5 GPa and a shear modulus of
1.4 GPa, the carbon fibre has a modulus of 230 GPa, and
vmGm/(vmEm + vfEf) = 2.43 � 10�2.

If we ignore the failure of the material, the neutral sur-
face does not initially move with the increasing curvature
(k 6 kc), but it still coincides with the section plane of sym-
metry (zns/t = 1/2). As the curvature increased to kc = 48.6 -
m�1, the neutral surface begun to move towards the outer
tensile side. Simultaneously, zns/t and exx,maxvary along the
curve of vmGm/(vmEm + vfEf) = 2.4 � 10�2 in Figs. 7 and 8,
respectively. When the curvature is equal to 48.6 m�1

(t = 2 mm), exx,max = 4.86%, and the general composite
material has already failed. Thus, the fibre-reinforced
epoxy polymer shape-memory composite generally has
no fibre curvature in practise, and there is no need to con-
sider the motion of the neutral surface.

4.2. The half-wavelength of buckling

Plug the expression of zcb into the energy expressions
for Uxx and Uyz (k > kc), we get the following expressions:

Uyz ¼ Uyzðzns; kÞ ¼
lwkvmGmk2

4p2 ln
znsk

2 vmGm
vmEmþv f Ef

0
@

1
A ð44Þ

Uf ¼ Uf ðzns; kÞ

¼ 2wlkpv f Ef If

k2d2 z2
ns �

4

k2
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vmEm þ v f Ef

� �2
" #

ð45Þ

The former two items of Eq. (16) (Uxx and Uxy) do not in-
clude k, while the later two items (Uyz and Uf) do include it.
Consequently, when the system is in the minimum energy
state, only the later two items need to be considered in or-
der to determine the fibre buckling half-wavelength of the
system.

ÛT ¼ UTðzns; kÞ

¼ lwkvmGmk2

4p2 ln
znsk

2 vmGm
vmEmþv f Ef

0
@

1
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vmEm þ v f Ef

� �2
" #

ð46Þ

The partial differential equation for ÛT , which depends
on k, is determined by the method of energy:

@ÛTðzns; kÞ
@k

¼ 0 ð47Þ



Table 1
Critical curvatures of materials with variable material constant (t = 2 mm).

Material constant Ma 1 � 10�5 8.69 � 10�5 1 � 10�4 1 � 10�3 1 � 10�2 2.43 � 10�2

Critical curvature kc (m�1) 0.02 0.17 0.20 2.00 20.00 48.60
Critical strain ec (%) 0.002 0.017 0.020 0.200 2.000 4.860

a M = vmGm/(vmEm + vfEf).

Fig. 9. The relationship of the half-wavelength and curvature for SMP
specimens with different thicknesses.
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Then,

A ¼

þ1 ðk < kcÞ

8p3v f Ef If z2
ns�4M2

k2

� �
vmGmd2 ln kzns

2Mð Þ

2
4

3
5

1=4

ðk P kcÞ

8>>><
>>>:

ð48Þ

M ¼ vmGm

vmEm þ v f Ef
ð49Þ

Under the condition of the material property (M =
vmGm/(vmEm + vfEf)), the curvature and thickness are fixed,
and the material half-wavelength is independent of coordi-
nate Z, which means that the wavelength is fixed along the
direction of thickness.

From Eq. (48), we can determine the relationship for the
half-wavelength and curvature under the condition of dif-
ferent thickness. For a material with fixed thickness, as the
curvature increases during the process of buckling, the
material initially experiences no fibre buckling (k ? +1).
When k increased to kc, the inner side of the material fibre
began to buckle, and k instantly changed from an infinite to
a finite value (k is discontinuous before and after kc).
According to Fig. 9, when the curvature is greater than
10 m�1, the wavelength remains constant. As the thickness
of the material increases, the half-wavelength of buckling
increases gradually so that the half-wavelength and the
thickness maintain the same.

Table 2 lists the critical curvature and critical half-
wavelength of the material under different thickness con-
ditions. As the thickness increases, the critical curvature
of the material decreases, the value of the critical strain
is fixed (0.017%), and the critical half-wavelength in-
creases. During the bending process, the fibre appears to
buckle directly in the experiment because the critical
strain is small and it is difficult to observe the process dur-
ing which the inner side non-buckling state transitions to
the buckling state.

kc ¼
8p3v f Ef If z2

ns � t2

4

� �
vmGmd2 ln 2zns

t

� �
2
4

3
5

1=4

ð50Þ

Equation (50) defines the relationship between the half-
wavelength and the curvature under the condition of dif-
ferent material properties (see Fig. 10).

For a material that has fixed properties, the starting of
fibre buckling occurs when the curvature k is larger than
kc. The buckling half-wavelength decreases gradually at
the beginning, then becomes flat. As the value of Gm in-
creases, the critical curvature kc increases, but the stable
buckling half-wavelength decreases. For the carbon fibre-
reinforced composite, the shear modulus of the matrix
clearly affects the buckling of half-wavelength.
4.3. The material’s bulking amplitude

In the area of the composite where compressed micro
buckling occurs (0 6 z < zcb), the bulking amplitude of
the fibre (A) is given by the following:

A ¼
ffiffiffiffiffiffiffiffiffiffi
�exx
p 2k

p
ð51Þ

Plug (7) and (48) into (51) we obtain
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According to the equation above, Fig. 11 shows the dis-
tribution of the fibre buckling amplitude during the pro-
cess of buckling in the direction of thickness. At a fixed
curvature, the buckling wavelength gradually increases
from the position of zns to zero along the direction of neg-
ative Z axis. Its value is on the order of magnitude of
10�4 m. When the curvature increases, the neutral surface
moves towards to the outer tensile side, and the amplitude
increases gradually at the same time.

Obviously, the fibre buckling wavelength of the SMPC is
the greatest at the innermost flexure surface, where it has
the following value:

Amax ¼
2

ffiffiffiffiffiffiffiffi
kzns

p
p

8p3v f Ef If z2
ns � 4M2
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5

1=4

ðk > kcÞ ð53Þ

Table 3 lists the critical curvature, critical strain, critical
half-wavelength and critical amplitude of the material un-
der different matrix shear modulus conditions. Note that
Em� Ef; therefore, it is reasonable to ignore the value of Em.



Table 2
Critical curvatures of materials with variable material constant.

Material thickness t (mm) 0.5 1.0 1.5 2.0 2.5 3.0

Critical curvature kc (m�1) 0.6955 0.3477 0.2318 0.1739 0.1391 0.1159
Critical strain ec (%) 0.017 0.017 0.017 0.017 0.017 0.017
Critical half wavelength kc (mm) 0.96 1.40 1.70 1.90 2.20 2.40

(Gm = 5 MPa, Em = 14 MPa, Ef = 230GPa).

Fig. 10. The relationship of the half-wavelength and curvature for SMP
specimens with material property (t = 2 mm).
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Figs. 9 and 11 and Table 3 show that the critical curva-
ture, amplitude and strain of the material increase along
with system energy, and its critical half-wavelength de-
creases as the matrix shear modulus increases. As the ma-
trix becomes rigid, the material’s fibre becomes much
more resistant to buckling. It is difficult to observe general
fibre buckling in the composite matrix. It is also difficult to
observe the process of the transition from the non-buck-
ling state to the buckling state on the inner compressive
side because the critical curvature, critical strain and criti-
cal amplitude are small. Thus, the experimental verifica-
tion of the four critical parameters will not be further
discussed in this paper.
Fig. 11. The evolution of the amplitude and curvature along the thic
5. Theoretical prediction and experimental verification

We have discussed all of the parameters of the theoret-
ical description of the bending-deflection process for a fi-
bre-reinforced shape-memory polymer composite, and
we will further verify these parameters with experimental
results.

During the buckling process of the fibre-reinforced
shape-memory polymer composite (t = 2 mm, vmGm/(vmEm +
vfEf) = 8.69 � 10�5) studied in this paper, the relative
displacement of the neutral surface zns/t and the greatest
amplitude Amax of the inner compressive side (z = 0)
increase gradually, and the half-wavelength k decreases
initially and then becomes flat (in Fig. 12). The critical
curvature kc is too small to consider. The neutral surface
zns/t and the half wavelength k approach fixed values of
approximately 0.96 and 1.40 mm, respectively, when the
curvature is greater than 20 m�1 (radius of curvature less
than 50 mm).

To verify the above expressions of the key parameters,
which come from the theoretical derivation, we prepared
a unidirectional carbon fibre-reinforced shape-memory
polymer composite lamina and performed a related buck-
ling experiment. The composite was manufactured as fol-
lows. A stamping process was utilised to fabricate epoxy
SMPC with a carbon fibre volume of approximately 20%.
Specific solidification was performed to produce lamina
(thickness t = 2 mm), which were cut into strips (30 mm
long, 10 mm wide, 2 mm thick). At the glass transition
temperature, each sample was curved along a cylinder
with a different radius, until the carbon fibre buckled.
The strip samples had curvatures of 20, 50, and 100 m�1

(the corresponding cylinder radii were 50, 20 and 10 mm,
respectively).
kness direction during the bending process (a) A–z–k, (b) A–z.



Table 3
Critical parameters of materials with variable shear modulus matrix.

Shearing model Gm (MPa) 1 5 10 100 1000

Critical curvature kc (m�1) 0.035 0.174 0.348 3.478 34.774
Critical strain ec (%) 0.003 0.017 0.035 0.350 3.470
Critical half wavelength kcÞðmmÞ 2.90 1.90 1.60 0.91 0.51
Critical amplitude Ac (mm) 0.010 0.016 0.019 0.034 0.061

(t = 2 mm, Ef = 230GPa).

Table 4
The comparison of theoretical predictions and experimental results for SMP composites at different curvatures.

Curvature
k (m�1)

Neutral
surface
Zns/t

Half wavelength k (mm) Maximum amplitude Amax

(mm)
Macroscopic maximum
strain of composite
materials emax (%)

Maximum strain of buckling
carbon fibre materials ~emax

(%)

Design
value

Theoretical
value

Theoretical
value

Experimental
value

Theoretical
value

Experimental
value

Theoretical
value

Experimental
Value

Theoretical
value

Experimental
value

20 0.936 1.45 1.24 ± 0.05 0.179 0.16 ± 0.02 3.76 4.29 ± 0.91 0.29 0.37 ± 0.04
50 0.959 1.41 1.39 ± 0.11 0.278 0.26 ± 0.02 9.59 8.66 ± 0.80 0.48 0.47 ± 0.05

100 0.971 1.42 – 0.400 – 19.42 – 0.69 –
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As shown in Fig. 13, the buckled wave of the carbon fi-
bre was sinusoidal. As the curvature increased, the wave-
length remained constant, but the amplitude increased
gradually. The white line on the sample shows the mea-
surement position for the wavelength and amplitude, and
the measured values are given in Table 4. When the value
of the curvature was 20 m�1 or 50 m�1, the distributions of
the fibre wave and amplitude are regular, and the sample
can undergo cyclic straining many times. This paper will
later compare the theoretical and experimental results of
the fibre wave and amplitude in detail. When the curvature
of the material was 100 m�1, the wave shape distribution
of buckling fibre was disordered, buckling ruptures of the
fibre occurred, and the shape was not able to recover com-
pletely. Consequently, the 100 m�1 sample will not be uti-
lised in the deployable structure that is discussed later in
the paper.

Table 4 gives the theoretical predictions and experi-
mental values of key material parameters under different
Fig. 12. The theoretical result of a fibre-reinforced SMP composite
specimen during the bending process (t = 2 mm, vmGm/
(vmEm + vfEf) = 8.69 � 10�5).
curvature conditions. The displacement zns of the neutral
surface can be calculated from Eq. (42), and the theoretical
value of the half-wavelength k is calculated by Eq. (48). The
greatest amplitude Amax of the inner compressive plane
(z = 0) is calculated by Eq. (52). The experimental values
of the half-wavelength and amplitude are shown in
Fig. 11, which displays five values of the wavelength and
amplitude of each curvature and the calculation of their
Fig. 13. Microbuckling wavelength at different curvatures (a) 20 m�1, (b)
50 m�1, (c) 100 m�1. The amplitude and wavelength are measured at the
position of the white line.



X. Lan et al. / Mechanics of Materials 72 (2014) 46–60 59
average value and standard deviation. The theoretical va-
lue of the macro-compressive strain emax of the inner com-
pressive plane is calculated by Eq. (43).

According to the measured experimental data for the fi-
bre buckling wavelength and amplitude, we calculated the
real macro strain emax of the inner compressive plane from
Eq. (4). The greatest strain ~emax of fibre material itself was
determined from Eq. (21), the theoretical values were cal-
culated from the theoretical half-wavelength and maximal
amplitude, and the experimental values were obtained
from the measured half-wavelength and maximal
amplitude.

The limiting stretching and compression strains of the
carbon fibre are small, but the curvature of the carbon fi-
bre composite materials utilised in deployable structures
must be large. The local post-buckling of the fibre can
produce structural bending through large deflection
deformations without destroying the material. All of the
theoretically predicted parameters and experimental val-
ues are completely consistent in order of magnitude,
according to Table 4, and the specific results also show
good basic agreement. The post-buckling of the carbon fi-
bre produced large macro structural strain (more than 8%)
with small material strain (less than 0.5%), and the struc-
ture also acquired a large bending curvature(k = 50 m�1,
t = 2 mm). Thus, the fibre small strain produced large geo-
metrical deformation and displacement of the composite
structure.
6. Discussions

For the simplification of SMP composites, fibre and SMP
matrix is assumed to be as linear elasticity under small
deformation at a constant ambient temperature, and there-
fore the following factors is ignored:failure of fibres, non-
linear elasticity and visco-elasticity of SMPs,
delamination between SMPs and fibres. For the carbon fi-
bres, the post-buckling produced large macro structural
strain with small material strain, so carbon fibres consid-
ered as linear elasticity is reasonable. If carbon fibres break
under large flexural deformation, the theoretical model in
this paper cannot descript the phenomenon. For SMPs,
which are considered as linear elasticity, it may introduce
inaccuracy because of the existence of nonlinearity, visco-
elasticity of SMPs. However, the deformation behaviour
shows approximate linearity during the recovery process
of SMPs around glass transition temperature (Lan et al.,
2009; Leng et al., 2009b). Consequently, the mechanical
behaviour of SMPs described as linear elasticity is consid-
ered to be reasonable in order to simplify the theoretical
analysis process. For the SMPs composite, failure (delami-
nation between SMPs and fibres, etc.) is also negative for
the simplification.

In our future work, in order to describe the behaviour of
thermal sensitivity, high visco-elasticity and large defor-
mation of SMPs, we will construct free energy model inte-
grating the linear elasticity, hyperelasticity and visco-
elasticity. Based on this model, it is expected to achieve
the constitutive relationship, and further study the buck-
ling behaviour of SMPs.
7. Conclusions

This paper developed a buckling mechanical model of
fibre-reinforced SMPC materials under the condition of
large deflection deformation. The local post-buckling
mechanics of unidirectional fibre-reinforced SMPC were
investigated, and the problem of small strains and large
displacements was considered. The cross section of a com-
posite material under flexural deformation can be divided
into three areas: the non-buckling stretching area, non-
buckling compression area and buckling compression area.
Three variables were identified: the critical buckling posi-
tion, neutral plane position and fibre buckling half-wave-
length. We determined the strain energy expression of
the SMPC thermodynamic system. According to the least
energy principle, we determined the analytical expressions
of the key parameters in the flexural deformation process,
including the critical buckling curvature kc, critical buck-
ling position zcb, neutral plane position zns, buckling fibre
wavelength k, buckling fibre amplitude A and macroscopic
strain of the composite material. The composite material
began to perform fibre buckling when the curvature in-
creased to the critical value kc from infinitesimal curvature.
When k P kc , the neutral plane of the material zns moved
towards the outboard tensile area, the critical buckling po-
sition zcb moved towards the neutral plane zns, the half-
wavelength k decreased slowly, and the amplitude Amax

and maximum strain emax of the inner compression plane
increased at varying rates. Along with the increase of the
shear modulus, the critical curvature kc and the buckling
amplitude Ac increased, while the fibre buckling critical
half-wavelength kc decreased and the critical strain ec of
the composite material increased. Greater composite stiff-
ness led to smaller values of the buckling half-wavelength
of the composite material. We conducted experiments to
test the key parameters of the SMPC materials under flex-
ural deformation. When the experimental values were
compared to the theoretical values, our prediction is
proved to be accurate. Based on the buckling deformation
of the fibre, this paper uses the small material strain of
the fibre to produce large geometrical displacement defor-
mation of the composite material structure.
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