On sum and stability of g-frames in Hilbert spaces

Dongwei Li, Jinsong Leng, Tingzhu Huang & Guomin Sun

To cite this article: Dongwei Li, Jinsong Leng, Tingzhu Huang & Guomin Sun (2017): On sum and stability of g-frames in Hilbert spaces, Linear and Multilinear Algebra, DOI: 10.1080/03081087.2017.1364338

To link to this article: https://doi.org/10.1080/03081087.2017.1364338

Published online: 14 Aug 2017.

Submit your article to this journal

Article views: 27

View related articles

View Crossmark data

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=glma20
On sum and stability of g-frames in Hilbert spaces

Dongwei Li, Jinsong Leng, Tingzhu Huang and Guomin Sun
School of Mathematical Sciences, University of Electronic Science and Technology of China, P.R. China

ABSTRACT
In this paper, we give some new results on sum and stability of g-frames in Hilbert spaces. Since the finite sum of g-frames may not be a g-frame for the Hilbert space, we give a necessary and sufficient condition and some sufficient conditions for the finite sum of g-frames to be a g-frame. We also show that every g-sequence in Hilbert space can be expanded to a tight g-frame by adding a linear bounded operator. Moreover, we obtain some sufficient conditions under which g-frames (and the finite sum of g-frames) are stable under small perturbations.

1. Introduction

Frames in Hilbert spaces were first introduced in 1952 by Duffin and Schaeffer [1] as part of their research in non-harmonic Fourier series, reintroduced in 1986 by Daubechies, Grossmann and Meyer [2], and popularized from then on. Today, frame has been a useful tool in many areas such as characterizing function spaces [2], signal and image processing [3], wireless communications [4,5], probability statistics [6,7] and coding theory [8].

Sun in [9] introduced the concept of g-frame in Hilbert space. G-frames are natural generalizations of frames which cover many other recent generalizations of frames such as bounded quasi-projections [10], fusion frames [11] and pseudo-frames [12].

There is a long tradition for studying the stability of various notions under perturbation. In [13], the author studied the stability of g-frames and dual g-frames. Then the authors in [14] gave the definition of perturbation of g-frames which is based on the perturbation results on frames [15]. The stability of frames is also developed by many other authors, see [16] for frames and [17–19] for g-frames.

In this paper, we give some new characterizations of stability of g-frames from the view of the finite sum of g-frames. We also give some new results about the finite sum of g-frames. Our results are different from the results in [20,21]. Moreover, we prove that every g-sequence can be extended to a tight g-frame from the view of frame theory.

Throughout this paper, \mathcal{H} and \mathcal{K} are separable Hilbert spaces and $\{\mathcal{H}_i\}_{i \in I}$ is a sequence of closed subspaces of \mathcal{K}, where I is a subset of \mathbb{Z} and $L(\mathcal{H}, \mathcal{H}_i)$ is the collection of all bounded linear operators from \mathcal{H} into \mathcal{H}_i. For $T \in L(\mathcal{H})$, we denote T^\dagger for pseudo-inverse of T. And we denote by $I_{\mathcal{H}}$ the identity operator on \mathcal{H}. A sequence $\{a_i\}_{i \in I}$ is said to be positively confined if $0 < \inf_{i \in I} a_i \leq \sup_{i \in I} a_i < +\infty$.

CONTACT
Jinsong Leng
lengjs@uestc.edu.cn

© 2017 Informa UK Limited, trading as Taylor & Francis Group
Note that for any sequence \(\{H_i\}_{i \in I} \), we can assume that there exists a Hilbert space \(K \) such that for all \(i \in I \), \(H_i \subset K \) (for example \(K = \bigoplus_{i \in I} H_i \)).

Definition 1.1: A sequence \(\{\Lambda_i\} \subset L(H, H_i) \) of bounded operators from \(H \) to \(H_i \) is said to be a generalized frame, or simply a g-frame, for \(H \) with respect to \(\{H_i\}_{i \in I} \) if there are two positive constants \(A \) and \(B \) such that

\[
A \|f\|^2 \leq \sum_{i \in I} \|\Lambda_i f\|^2 \leq B \|f\|^2, \quad \forall f \in H.
\]

We call \(A \) and \(B \) the lower and upper g-frame bounds, respectively. We call \(\{\Lambda_i\}_{i \in I} \) a tight g-frame if \(A = B \) and a Parseval g-frame if \(A = B = 1 \). If only the second inequality is required, we call it a Bessel g-sequence.

For each sequence \(\{H_i\}_{i \in I} \), we define the space \(\left(\sum_{i \in I} \oplus H_i \right)_{\ell^2} \) by

\[
\left(\sum_{i \in I} \oplus H_i \right)_{\ell^2} = \left\{ \{f_i\}_{i \in I} \mid f_i \in H_i, \sum_{i \in I} \|f_i\|^2 < \infty \right\}.
\]

with the inner product defined by

\[
\langle \{f_i\}, \{g_i\} \rangle = \sum_{i \in I} \langle f_i, g_i \rangle.
\]

The synthesis operator of \(\{\Lambda_i\}_{i \in I} \) is given by

\[
T_\Lambda : \oplus H_i \longrightarrow H; \quad T_\Lambda \{f_i\}_{i \in I} = \sum_{i \in I} \Lambda_i^* f_i.
\]

We call the adjoint \(T_\Lambda^* \) of the synthesis operator the analysis operator which is given by

\[
T_\Lambda^* f = \{\Lambda_i f\}_{i \in I}.
\]

By composing \(T_\Lambda \) and \(T_\Lambda^* \), we obtain the g-frame operator

\[
S_\Lambda f = T_\Lambda T_\Lambda^* f = \sum_{i \in I} \Lambda_i^* \Lambda_i f
\]

which is bounded, positive and invertible. Then, the following reconstruction formula takes place for all \(f \in H \)

\[
f = S_\Lambda^{-1} S_\Lambda f = \sum_{i \in I} \Lambda_i^* \Lambda_i S_\Lambda^{-1} f = \sum_{i \in I} S_\Lambda^{-1} \Lambda_i^* \Lambda_i f.
\]

We call \(\{\Lambda_i S_\Lambda^{-1}\}_{i \in I} \) the canonical dual g-frame of \(\{\Lambda_i\}_{i \in I} \).

In [9], the author had shown that every g-frame can be considered as a frame. More precisely, let \(\{\Lambda_i\}_{i \in I} \) be a g-frame for \(H \) and \(\{e_{ij}\}_{j \in J_i} \) be an orthonormal basis for \(H_i \), then there exists a frame \(\{u_{ij}\}_{i \in I, j \in J_i} \) of \(H \) such that

\[
u_{ij} = \Lambda_i^* e_{ij},
\]
Lemma 1.3 [22]: Then there exists an operator T and t such that

$$\Lambda_i f = \sum_{j \in I_i} \langle f, u_{ij} \rangle e_{ij}, \quad \forall f \in \mathcal{H},$$

and

$$\Lambda_i^* g = \sum_{j \in I_i} \langle g, e_{ij} \rangle u_{ij}, \quad \forall g \in \mathcal{H}_i.$$

We call $\{u_{ij}\}_{i \in I, j \in I_i}$ the frame induced by $\{\Lambda_i\}_{i \in I}$ with respect to $\{e_{ij}\}_{i \in I, j \in I_i}$. The next lemma is a characterization of g-frame by a frame.

Lemma 1.2 [9]: Let $\{\Lambda_i\}_{i \in I}$ be a family of linear operators and u_{ij} be defined as in (1). Then $\{\Lambda_i\}_{i \in I}$ is a g-frame (tight g-frame) for \mathcal{H} if and only if $\{u_{ij}\}_{i \in I, j \in I_i}$ is a frame (tight frame) for \mathcal{H}.

The following lemmas are key tools for the proofs of our main results.

Lemma 1.3 [22]: Let \mathcal{H} be a Hilbert space, and suppose that $T \in L(\mathcal{H})$ has a closed range. Then there exists an operator $T^+ \in L(\mathcal{H})$ for which

$$\mathcal{N}(T^+) = \mathcal{R}(T)\perp, \quad \mathcal{R}(T^+) = \mathcal{N}(T)\perp, \quad TT^+ f = f, \quad f \in \mathcal{R}(T).$$

We call the operator T^+ the pseudo-inverse of T. If T is invertible, then we have $T^{-1} = T^+$.

Lemma 1.4 [23]: (Cauchy inequality) Let (a_1, a_2, \ldots, a_m) and (b_1, b_2, \ldots, b_m) be two sequences of real numbers, then

$$\left(\sum_{i=1}^{m} a_i b_i \right)^2 \leq \left(\sum_{i=1}^{m} a_i^2 \right) \left(\sum_{i=1}^{m} b_i^2 \right),$$

with equality if and only if the sequence (a_1, a_2, \ldots, a_m) and (b_1, b_2, \ldots, b_m) are proportional.

2. The sums of g-frames

Let $\{\Lambda_i\}_{i \in I}$ and $\{\Gamma_i\}_{i \in I}$ be two g-frames for \mathcal{H}, then $\{\Lambda_i + \Gamma_i\}_{i \in I}$ may not be a g-frame for \mathcal{H}. In fact, if we take $\Gamma_i = -\Lambda_i$, it is easy to find that $\{\Lambda_i + \Gamma_i\}_{i \in I}$ is not a g-frame. If we take $\Lambda_i = \Theta_i$ for all $i \in I$ and $\Gamma_i = 0, \Gamma_i = \Theta_i (i \neq j)$, where $\{\Theta_i\}_{i \in I}$ is a g-orthonormal basis for \mathcal{H}. Then $\{\Lambda_i + \Gamma_i\}_{i \in I}$ is a g-frame for \mathcal{H}. However, $\{\Gamma_i\}_{i \in I}$ is not a g-frame but a g-sequence for \mathcal{H}.

It is natural to ask for condition under which $\{\Lambda_i + \Gamma_i\}_{i \in I}$ is a g-frame for \mathcal{H}. We first give a characterization of sum of g-frames with positively confined sequences.

Theorem 2.1: Let $\{\Lambda_i\}_{i \in I}$ be a g-frame for \mathcal{H} with bounds A, B. Let $\{\Gamma_i\}_{i \in I}$ be a g-sequence with synthesis operator $T\Gamma$. For any two positively confined sequences $\{a_i\}_{i \in I}$ and $\{b_i\}_{i \in I}$, if

$$\|T\Gamma\|^2 \leq \frac{A^{\inf}_{i \in I} a_i^2}{2 \sup_{i \in I} b_i^2},$$

then $\{a_i \Lambda_i + b_i \Gamma_i\}_{i \in I}$ is a g-frame for \mathcal{H}.
Proof: For any $f \in \mathcal{H}$, we have
\[
\sum_{i \in I} \|a_i \Lambda_i + b_i \Gamma_i \|^2 = \sum_{i \in I} \|a_i \Lambda_i f\|^2 + \sum_{i \in I} \|b_i \Gamma_i f\|^2 + 2 \text{Re} \sum_{i \in I} (a_i \Lambda_i f, b_i \Gamma_i f)
\]
\[
\leq 2 \left(\sum_{i \in I} \|a_i \Lambda_i f\|^2 + \sum_{i \in I} \|b_i \Gamma_i f\|^2 \right)
\]
\[
\leq 2 \left(\left(\sup_{i \in I} a_i^2 \right) \sum_{i \in I} \|\Lambda_i f\|^2 + \left(\sup_{i \in I} b_i^2 \right) \sum_{i \in I} \|\Gamma_i f\|^2 \right)
\]
\[
\leq 2 \left(\left(\sup_{i \in I} a_i^2 \right) B \|f\|^2 + \left(\sup_{i \in I} b_i^2 \right) \|T_{\Gamma_i} f\|^2 \right)
\]
\[
\leq 2 \left(\sup_{i \in I} a_i^2 \right) B + \left(\sup_{i \in I} b_i^2 \right) \|T_{\Gamma_i} f\|^2 \|f\|^2.
\]
Since
\[
\sum_{i \in I} \|a_i \Lambda_i f\|^2 = \sum_{i \in I} \|a_i \Lambda_i f - b_i \Gamma_i f\|^2
\]
\[
\leq 2 \left(\sum_{i \in I} \|a_i \Lambda_i f\|^2 + \sum_{i \in I} \|b_i \Gamma_i f\|^2 \right),
\]
we have
\[
2 \sum_{i \in I} \|a_i \Lambda_i + b_i \Gamma_i \|^2 \geq \sum_{i \in I} \|a_i \Lambda_i f\|^2 - 2 \sum_{i \in I} \|b_i \Gamma_i f\|^2
\]
\[
\geq \left(\inf_{i \in I} a_i^2 \right) \sum_{i \in I} \|\Lambda_i f\|^2 - 2 \left(\sup_{i \in I} b_i^2 \right) \|T_{\Gamma_i} f\|^2
\]
\[
\geq \left(\inf_{i \in I} a_i^2 \right) A - 2 \left(\sup_{i \in I} b_i^2 \right) \|T_{\Gamma_i} f\|^2 \|f\|^2 > 0.
\]
Hence, \(\{a_i \Lambda_i + b_i \Gamma_i\}_{i \in I} \) is a g-frame for \(\mathcal{H} \).

Let \(a_i = b_i = 1 \), we have the following corollary.

Corollary 2.2: Let \(\{\Lambda_i\}_{i \in I} \) be a g-frame for \(\mathcal{H} \) with bounds \(A, B \). Let \(\{\Gamma_i\}_{i \in I} \) be a g-sequence with synthesis operator \(T_{\Gamma} \). If \(\|T_{\Gamma} f\|^2 < \frac{A}{2} \), then \(\{\Lambda_i + \Gamma_i\}_{i \in I} \) is a g-frame for \(\mathcal{H} \).

When \(\{\Gamma_i\}_{i \in I} \) is Bessel g-sequence, we give a sufficient condition under which \(\{\Lambda_i + \Gamma_i\}_{i \in I} \) is a g-frame.

Corollary 2.3: Let \(\{\Lambda_i\}_{i \in I} \) be a g-frame for \(\mathcal{H} \) with bounds \(A, B \) and frame operator \(S_{\Lambda} \). Let \(\{\Gamma_i\}_{i \in I} \) be a Bessel g-sequence for \(\mathcal{H} \) with Bessel bound \(M \). For any non-zero constant \(a, b \), if \(|b|^2 < \frac{|a|^2 A^2}{2M} \|S_{\Lambda}\|^{-1} \), then \(\{a \Lambda_i + b \Gamma_i\}_{i \in I} \) is a g-frame for \(\mathcal{H} \).

Proof: This follows immediately from Theorem 2.1 when we take \(|a| = \inf a_i \) and \(|b| = \sup b_i \) for all \(i \in I \).

Next, we consider \(\{\Lambda_i + \Gamma_i\}_{i \in I} \) with bounded operators when \(\{\Lambda_i\}_{i \in I} \) and \(\{\Gamma_i\}_{i \in I} \) are two g-frames for \(\mathcal{H} \).
Theorem 2.4: Let \(\{ \Lambda_i \}_{i \in I} \) and \(\{ \Gamma_i \}_{i \in I} \) be two g-frames for \(\mathcal{H} \), and let \(T_\Lambda \) and \(T_\Gamma \) be synthesis operators of \(\{ \Lambda_i \}_{i \in I} \) and \(\{ \Gamma_i \}_{i \in I} \), respectively. Let \(U, V \in L(\mathcal{H}) \). If \(T_\Lambda T_\Gamma^* = 0 \) and \(U \) or \(V \) is surjective, then \(\{ \Lambda_i U + \Gamma_i V \}_{i \in I} \) is a g-frame for \(\mathcal{H} \).

Proof: Since \(\{ \Lambda_i \}_{i \in I} \) and \(\{ \Gamma_i \}_{i \in I} \) are two g-frames, there exist \(0 < A_1 \leq B_1 < \infty \) and \(0 < A_2 \leq B_2 < \infty \) such that

\[
A_1 \|f\|^2 \leq \sum_{i \in I} \|\Lambda_i f\|^2 \leq B_1 \|f\|^2, \quad A_2 \|f\|^2 \leq \sum_{i \in I} \|\Gamma_i f\|^2 \leq B_2 \|f\|^2.
\]

Since \(T_1 T_2^* = 0 \), for any \(f \in \mathcal{H} \), we have

\[
\sum_{i \in I} \Lambda_i^* \Gamma_i f = \sum_{i \in I} \Gamma_i^* \Lambda_i f = 0.
\]

Hence, for all \(f \in \mathcal{H} \), we have

\[
\sum_{i \in I} \|(\Lambda_i U + \Gamma_i V)f\|^2 = \sum_{i \in I} \langle \Lambda_i U + \Gamma_i Vf, \Lambda_i U + \Gamma_i Vf \rangle \\
= \sum_{i \in I} \|\Lambda_i Uf\|^2 + \sum_{i \in I} \|\Gamma_i Vf\|^2 + 2\text{Re} \sum_{i \in I} \langle \Lambda_i^* \Gamma_i Vf, Uf \rangle \\
= \sum_{i \in I} \|\Lambda_i Uf\|^2 + \sum_{i \in I} \|\Gamma_i Vf\|^2 \\
\leq B_1 \|Uf\|^2 + B_2 \|Vf\|^2 \leq (B_1 \|U\|^2 + B_2 \|V\|^2) \|f\|^2.
\]

Without loss of generality, assume that \(U \) is surjective. Then there exists some constant \(C > 0 \) such that \(\|Uf\|^2 \geq C\|f\|^2 \) for any \(f \in \mathcal{H} \). Then we have

\[
\sum_{i \in I} \|(\Lambda_i U + \Gamma_i V)f\|^2 = \sum_{i \in I} \|\Lambda_i Uf\|^2 + \sum_{i \in I} \|\Gamma_i Vf\|^2 \\
\geq \sum_{i \in I} \|\Lambda_i Uf\|^2 \geq A_1 \|Uf\|^2 \\
\geq A_1 C\|f\|^2.
\]

So \(\{ \Lambda_i U + \Gamma_i V \}_{i \in I} \) is a g-frame for \(\mathcal{H} \).

\(\square \)

When \(U = 0 \) and \(V \) is surjective, we have the following result.

Corollary 2.5: Let \(\{ \Lambda_i \}_{i \in I} \) and \(\{ \Gamma_i \}_{i \in I} \) be two g-frames for \(\mathcal{H} \), and let \(T_\Lambda \) and \(T_\Gamma \) be synthesis operators of \(\{ \Lambda_i \}_{i \in I} \) and \(\{ \Gamma_i \}_{i \in I} \), respectively. Let \(V \in L(\mathcal{H}) \). If \(T_\Lambda T_\Gamma^* = 0 \) and \(V \) is surjective, then \(\{ \Lambda_i + \Gamma_i V \}_{i \in I} \) is a g-frame for \(\mathcal{H} \). Moreover, \(\{ \Lambda_i + \Gamma_i V^a \}_{i \in I} \) is also a g-frame for \(\mathcal{H} \) for any natural numbers \(a \).

The following corollary can be immediately from Theorem 2.4 when \(U = V = I_\mathcal{H} \).

Corollary 2.6: Let \(\{ \Lambda_i \}_{i \in I} \) and \(\{ \Gamma_i \}_{i \in I} \) be two g-frames for \(\mathcal{H} \), and let \(T_\Lambda \) and \(T_\Gamma \) be synthesis operators of \(\{ \Lambda_i \}_{i \in I} \) and \(\{ \Gamma_i \}_{i \in I} \), respectively. If \(T_\Lambda T_\Gamma^* = 0 \), then \(\{ \Lambda_i + \Gamma_i V \}_{i \in I} \) is a g-frame for \(\mathcal{H} \).

The next theorem provides a necessary and sufficient condition for that the new g-frame is a tight g-frame.
\textbf{Theorem 2.7:} Let \(\{ \Lambda_i \}_{i \in I} \) and \(\{ \Gamma_i \}_{i \in I} \) be two Parseval g-frames for \(\mathcal{H} \), and let \(T_\Lambda \) and \(T_\Gamma \) be synthesis operators of \(\{ \Lambda_i \}_{i \in I} \) and \(\{ \Gamma_i \}_{i \in I} \), respectively, such that \(T_\Lambda T_\Gamma^* = 0 \). Let \(U, V \in L(\mathcal{H}) \). \(\{ \Lambda_i + \Gamma_i \}_{i \in I} \) is a \(\lambda \)-tight g-frame for \(\mathcal{H} \) if and only if \(U^* U + V^* V = \lambda I_\mathcal{H} \).

\textbf{Proof:} In fact, since \(T_\Lambda T_\Gamma^* = 0 \), we have

\[
\sum_{i \in I} \| (\Lambda_i U + \Gamma_i V) f \|^2 = \sum_{i \in I} \| \Lambda_i U f \|^2 + \sum_{i \in I} \| \Gamma_i V f \|^2
\]

\[
= \| U f \|^2 + \| V f \|^2 = \left\langle U f, U f \right\rangle + \left\langle V f, V f \right\rangle
\]

It follows that \(\{ \Lambda_i U + \Gamma_i V \}_{i \in I} \) is a \(\lambda \)-tight g-frame for \(\mathcal{H} \) if and only if \(U^* U + V^* V = \lambda I_\mathcal{H} \).

Let \(\{ \Lambda_i \}_{i \in I}, l = 1, 2, \ldots, m \) be \(m \) g-frames for \(\mathcal{H} \). Next, we give a necessary and sufficient condition for the finite sum of g-frames to be a g-frame.

\textbf{Theorem 2.8:} Let \(\{ \Lambda_i \}_{i \in I}, l = 1, 2, \ldots, m \) be a g-frame for \(\mathcal{H} \). Let \(\{ \alpha_i \}, l = 1, 2, \ldots, m \) be any scalars. Then \(\{ \sum_{i=1}^{m} \alpha_i \Lambda_i \}_{i \in I} \) is a g-frame if and only if there exists \(\beta > 0 \) and some \(k \in \{ 1, 2, \ldots, m \} \) such that

\[
\beta \sum_{i \in I} \| \Lambda_{k i} f \|^2 \leq \sum_{i \in I} \left\| \sum_{l=1}^{m} \alpha_l \Lambda_{l i} f \right\|^2, \quad \forall f \in \mathcal{H}.
\]

\textbf{Proof:} Let \(\{ \sum_{i=1}^{m} \alpha_i \Lambda_i \}_{i \in I} \) be a g-frame for \(\mathcal{H} \) with bounds \(A, B \), and for any \(k \in \{ 1, 2, \ldots, m \} \), let \(\{ \Lambda_{k i} \}_{i \in I} \) be a g-frame for \(\mathcal{H} \) with bounds \(A_k \) and \(B_k \). Then we have

\[
A \| f \|^2 \leq \sum_{i \in I} \left\| \sum_{l=1}^{m} \alpha_l \Lambda_{l i} f \right\|^2 \leq B \| f \|^2, \quad \forall f \in \mathcal{H},
\]

and

\[
\| f \|^2 \geq \frac{1}{B_k} \sum_{i \in I} \| \Lambda_{k i} f \|^2, \quad \forall f \in \mathcal{H}.
\]

Hence

\[
\sum_{i \in I} \left\| \sum_{l=1}^{m} \alpha_l \Lambda_{l i} f \right\|^2 \geq A \| f \|^2 \geq \frac{A}{B_k} \sum_{i \in I} \| \Lambda_{k i} f \|^2 = \beta \sum_{i \in I} \| \Lambda_{k i} f \|^2, \quad \forall f \in \mathcal{H},
\]

where \(\beta = \frac{A}{B_k} \).

Conversely, Since

\[
\beta \sum_{i \in I} \| \Lambda_{k i} f \|^2 \leq \sum_{i \in I} \left\| \sum_{l=1}^{m} \alpha_l \Lambda_{l i} f \right\|^2, \quad \forall f \in \mathcal{H},
\]

for all \(f \in \mathcal{H} \), we have
Lemma 2.9: There is a tight frame for a n-dimensional Hilbert space. We first see the result on frames. All authors in [24] had shown that every Bessel g-sequence (and therefore every g-frame) can be expanded to a tight g-frame by adding some elements.

Theorem 2.10: Let \(\{\Lambda_i\}_{i \in I} \) be a g-sequence for n-dimensional Hilbert space \(\mathcal{H} \) with respect to \(\{\mathcal{H}_i\}_{i \in I} \). Then \(\{\Lambda_i\}_{i \in I} \) can be extended to a tight g-frame with \(\Lambda_0 \in L(\mathcal{H}, \mathcal{H}_0) \) if and only if the following inequality is satisfied:

\[
\max_{1 \leq i \leq m} \{a_i^2\} \leq \frac{1}{n} \sum_{i=1}^{m} a_i^2.
\]

and by Cauchy inequality,

\[
\sum_{i=1}^{m} \left(\sum_{l=1}^{m} |a_l|^2 \right)^2 \leq m \left(\sum_{i=1}^{m} \|\Lambda_l f\|^2 \right)^2 \leq m \left(\max_{1 \leq i \leq m} |a_i|^2 \right) \left(\sum_{i=1}^{m} B_i \right) \|f\|^2 \leq B\|f\|^2,
\]

where \(B = m^2 \max\{|a|^2 B_i\} \). Hence, \(\{\sum_{i=1}^{m} a_i \Lambda_i \}_{i \in I} \) is a g-frame for \(\mathcal{H} \).

Let \(\{f_i\}_{i \in I} \) be an A-tight frame for \(\mathcal{H} \), then by putting \(\mathcal{H}_i = \mathbb{C} \) and \(\Lambda(\cdot) = \{\cdot, f_i\} \) for \(i \in I \setminus j \), and \(\Lambda_j = 0 \). Given the g-sequence \(\{\Gamma_i\}_{i \in I} \) with \(\Gamma(\cdot) = \{\cdot, f_j\} \) and \(\Gamma_i = 0 \) for all \(i \in I \setminus j \), it is easy to see that the family \(\{\Lambda_i + \Gamma_i\}_{i \in I} \) is a A-tight g-frame for \(\mathcal{H} \). The authors in [24] had shown that every Bessel g-sequence (and therefore every g-frame) can be expanded to a tight g-frame by adding some elements.

We end this section by giving the following results concerning the expansions of tight g-frames from the view of frame theory. The g-sequence in our result is not necessary a Bessel g-sequence or g-frame. We first see the result on frames.

Lemma 2.9: There is a tight frame for a n-dimensional Hilbert space \(\mathcal{H} \) with m vectors having norms \(\|x_i\| = a_i \), \(i = 1, 2, \ldots, m \) if and only if the following inequality is satisfied:

\[
\max_{1 \leq i \leq m} \{a_i^2\} \leq \frac{1}{n} \sum_{i=1}^{m} a_i^2.
\]

Theorem 2.10: Let \(\{\Lambda_i\}_{i \in I} \) be a g-sequence for n-dimensional Hilbert space \(\mathcal{H} \) with respect to \(\{\mathcal{H}_i\}_{i \in I} \). Then \(\{\Lambda_i\}_{i \in I} \) can be extended to a tight g-frame with \(\Lambda_0 \in L(\mathcal{H}, \mathcal{H}_0) \) if and only if \(0 \leq |J_0| < n \) and

\[
\max_{i \in I, j \in I} \{(\Lambda_i^* e_j)^2\} \leq \frac{1}{n - |J_0|} \sum_{i \in I, j \in I} (\Lambda_i^* e_j)^2,
\]

where \(\{e_j\}_{j \in I} \) is an orthonormal basis for \(\mathcal{H}_i \) and \(\{e_0\}_{j \in J_0} \) is an orthonormal basis for \(\mathcal{H}_0 \).

Proof: Let \(u_{ij} = \Lambda_i^* e_j \) for all \(i \in I, j \in I_i \) and \(u_{0j} = \Lambda_0^* e_0 \). If \(\{u_{ij}\}_{i \in I, j \in I_i} \) is a tight frame for \(\mathcal{H} \), by Lemma 1.2, we have that \(\{\Lambda_i\}_{i \in I} \) is a tight g-frame for \(\mathcal{H} \) with respect to \(\{\mathcal{H}_i\}_{i \in I} \). In this case, we have \(\Lambda_0 = 0 \). Assume that \(\{u_{ij}\}_{i \in I, j \in I_i} \) is not a tight frame, by Lemma 2.9, we have

\[
\max_{i \in I, j \in I_i} \{|u_{ij}|^2\} > \frac{1}{n} \sum_{i \in I, j \in I_i} |u_{ij}|^2.
\]

Now we consider \(\{u_{ij}\}_{i \in I, j \in I_i} \cup \{u_{0j}\}_{j \in J_0} \). Then the left side and right side of (2) become

\[
\phi = \max \left\{ \max_{i \in I, j \in I_i} \{|u_{ij}|^2\}, \max_{j \in J_0} \{|u_{0j}|^2\} \right\}, \quad \varphi = \frac{1}{n} \left(\sum_{i \in I, j \in I_i} |u_{ij}|^2 + \sum_{j \in J_0} |u_{0j}|^2 \right).
\]

As we want \(\phi \) to be as small as possible and \(\varphi \) to be as large as possible. So we may assume \(|u_{0j}| = |u_{0k}| = a \) for all \(j, k \in J_0 \). Let \(\max_{i \in I, j \in I_i} \{|u_{ij}|^2\} = b \) and \(\sum_{i \in I, j \in I_i} |u_{ij}|^2 = c \),

\[
\sum_{i \in I} \sum_{l=1}^{m} |a_l|^2 \|\Lambda_l f\|^2 \geq \beta \sum_{i \in I} \|\Lambda_k f\|^2 \geq \beta A_k \|f\|^2,
\]
then we have \(\phi = \max\{a, b\} \) and \(\varphi = \frac{1}{n}(c + |J_0|a^2) \). Consider the function \(\omega(a) = \varphi - \phi : [0, +\infty) \rightarrow \mathbb{R} \) as
\[
\omega(a) = \begin{cases}
\frac{1}{n}(c + |J_0|a^2) - b^2 & \text{if } b^2 > a^2 \\
\frac{1}{n}(c + |J_0|a^2) - a^2 & \text{if } b^2 \leq a^2
\end{cases}.
\]
The sequence \(\{u_{ij}\}_{i \in I, j \in J_i} \cup \{u_{0j}\}_{j \in J_0} \) is a tight frame if and only if there exists \(a_0 \) such that \(\omega(a_0) \geq 0 \) by Lemma 2.9. In other words, we need the global maximum of \(\omega \) is nonnegative. Since \(\omega(a) \) is a piecewise monotone function, the global maximum occurs at either 0, \(b^2 \) or \(\infty \). And we can find that
\[
\omega(0) = \frac{c}{n} - b^2 < 0, \quad \omega(b^2) = \frac{c}{n} + \left(\frac{|J_0|}{n} - 1\right)b^2,
\]
and
\[
\lim_{a \to \infty} \omega(a) = \lim_{a \to \infty} \frac{c + (|J_0| - n)a^2}{n} = \begin{cases}
-\infty & \text{if } |J_0| < n \\
\frac{c}{n} & \text{if } |J_0| = n \\
\infty & \text{if } |J_0| > n
\end{cases}.
\]
Obviously, \(\omega(a^2) < 0 \) when \(|J_0| < n \) and \(\omega(0) < 0 \). So the \(\varphi - \phi \geq 0 \) if and only if \(\omega(b^2) \geq 0 \), which is equivalent to
\[
\max_{i \in I, j \in J_i} |u_{ij}|^2 = b^2 \leq \frac{c}{n - |J_0|} = \frac{1}{n - |J_0|} \sum_{i \in I, j \in J_i} |u_{ij}|^2.
\]
By Lemma 1.2, we hold the conclusion.

3. The stability of g-frames

In this section, we study the stability of g-frames. Recall the Corollary 2.2, Let \(\{\Lambda_i\}_{i \in I} \) be a g-frame for \(\mathcal{H} \), and let \(\{\Gamma_i\}_{i \in I} \) be a g-sequence such that \(\{\Lambda_i + \Gamma_i\}_{i \in I} \) is a Bessel g-sequence with Bessel bound \(D \), what is the condition under which \(\{\Gamma_i\}_{i \in I} \) is also a g-frame for \(\mathcal{H} \). In this direction, we first prove the following result.

Theorem 3.1: Let \(\{\Lambda_i\}_{i \in I} \) be a g-frame for \(\mathcal{H} \) with bounds \(A, B \) and frame operator \(S_{\Lambda} \). Let \(\{\Gamma_i\}_{i \in I} \) be a g-sequence such that \(\{\Lambda_i + \Gamma_i\}_{i \in I} \) is a Bessel g-sequence with Bessel bound \(D \). If \(D < \frac{A^2\|S_{\Lambda}\|^{-1}}{2} \), then \(\{\Gamma_i\}_{i \in I} \) is a g-frame for \(\mathcal{H} \).

Proof: For any \(f \in \mathcal{H} \), we have
\[
\sum_{i \in I} \|\Gamma_if\|^2 = \sum_{i \in I} \|(\Gamma_i + \Lambda_i)f - \Lambda_if\|^2 \\
\leq 2 \left(\sum_{i \in I} \|(\Gamma_i + \Lambda_i)f\|^2 + \sum_{i \in I} \|\Lambda_if\|^2 \right) \\
\leq 2(D + B)\|f\|^2,
\]
and by $B^{-1}I_H \leq S^{-1}_A \leq A^{-1}I_H$,
\[
2 \sum_{i \in I} \|\Gamma_i f\|^2 \geq \sum_{i \in I} \|\Lambda_i f\|^2 - 2 \sum_{i \in I} \|\Gamma_i + \Lambda_i f\|^2 \\
\geq A\|f\|^2 - 2D\|f\|^2 \geq (A^2\|S\|^{-1} - 2D)\|f\|^2 > 0.
\]

Hence $\{\Gamma_i\}_{i \in I}$ is a g-frame for H. \hfill \Box

Next, we give a necessary and sufficient condition under a Bessel g-sequence is stable.

Theorem 3.2: Let $\{\Lambda_i\}_{i \in I}$ be a g-frame for H with bounds A and B. Let $\{\Gamma_i\}_{i \in I}$ be a g-sequence for H. Then $\{\Gamma_i\}_{i \in I}$ is a Bessel g-sequence for H if and only if there exists a λ such that
\[
\sum_{i \in I} \|\Lambda_i - \Gamma_i f\|^2 \leq \lambda \sum_{i \in I} \|\Lambda_i f\|^2, \ \forall f \in H.
\]

Moreover, let T_Λ be the synthesis operator of $\{\Lambda_i\}_{i \in I}$. If $\lambda < \frac{\|T_\Lambda\|^{-2}}{2B}$, then $\{\Gamma_i\}_{i \in I}$ is a g-frame for H.

Proof: For any $f \in H$, we have
\[
\sum_{i \in I} \|\Gamma_i f\|^2 = \sum_{i \in I} \|\Gamma_i - \Lambda_i f + \Lambda_i f\|^2 \\
\leq 2 \left(\sum_{i \in I} \|\Gamma_i - \Lambda_i f\|^2 + \sum_{i \in I} \|\Lambda_i f\|^2 \right) \leq 2(B + \lambda)\|f\|^2.
\]

Conversely, let D be the bound of the Bessel g-sequence $\{\Gamma_i\}_{i \in I}$. Since
\[
\|f\|^2 \leq \frac{1}{A} \sum_{i \in I} \|\Lambda_i f\|^2, \ \forall f \in H.
\]

Then for any $f \in H$, we have
\[
\sum_{i \in I} \|\Gamma_i f\|^2 \leq D\|f\|^2 \leq \frac{D}{A} \sum_{i \in I} \|\Lambda_i f\|^2, \ \forall f \in H.
\]

Therefore,
\[
\sum_{i \in I} \|\Lambda_i - \Gamma_i f\|^2 \leq 2 \left(\sum_{i \in I} \|\Lambda_i f\|^2 + \sum_{i \in I} \|\Gamma_i f\|^2 \right) \\
\leq 2 \left(1 + \frac{D}{A} \right) \sum_{i \in I} \|\Lambda_i f\|^2 \\
= \lambda \sum_{i \in I} \|\Lambda_i f\|^2,
\]

where $\lambda = 2\left(1 + \frac{D}{A}\right)$.

Moreover, let T_A be the synthesis operator of $\{\Lambda_i\}_{i \in I}$, since T_A is onto, by Lemma 1.3, there exists an operator T_A^+ such that $T_A T_A^+ = I_H$ with $B^{-1} \leq \|T_A^+\| \leq A^{-1}$. Then for all $f \in \mathcal{H}$,

$$\|f\|^2 = \|T_A T_A^+ f\|^2 \leq \|(T_A^+)^* T_A^+ f\|^2 = \|T_A^+\|^2 \sum_{i \in I} \|\Lambda_i f\|^2,$$

thus

$$\sum_{i \in I} \|\Lambda_i f\|^2 \geq \|T_A^+\|^2 \|f\|^2 \geq \frac{\|T_A^+\|^2}{B} \sum_{i \in I} \|\Lambda_i f\|^2.$$

Since

$$\sum_{i \in I} \|\Lambda_i f\|^2 = \sum_{i \in I} \|(\Lambda_i - \Gamma_i) f + \Gamma_i f\|^2 \leq 2 \left(\sum_{i \in I} \|(\Lambda_i - b_i \Gamma_i) f\|^2 + \sum_{i \in I} \|\Gamma_i f\|^2 \right),$$

by hypotheses, we also have

$$\sum_{i \in I} \|\Gamma_i f\|^2 \geq \frac{1}{2} \left(\sum_{i \in I} \|\Lambda_i f\|^2 - 2 \sum_{i \in I} \|(\Gamma_i - \Lambda_i) f\|^2 \right) \geq \frac{1}{2} \left(\frac{\|T_A^+\|^2}{B} - 2\lambda \right) \sum_{i \in I} \|\Lambda_i f\|^2 > 0$$

Hence $\{\Gamma_i\}_{i \in I}$ is a g-frame for \mathcal{H}.

In [13], the authors characterized the stability of g-frames under small perturbation as follows.

Theorem 3.3: Let $\{\Lambda_i\}_{i \in I}$ be a g-frame for \mathcal{H} with bounds A and B. Suppose that $\Gamma_i \in L(\mathcal{H}, \mathcal{H})$ and there exist constants $\lambda_1, \lambda_2, \mu \geq 0$ such that $\max\{\lambda_1 + \mu/\sqrt{A}, \lambda_2\} < 1$ and

$$\left(\sum_{i \in I} \|(\Lambda_i - \Gamma_i) f\|^2 \right)^{1/2} \leq \lambda_1 \left(\sum_{i \in I} \|\Lambda_i f\|^2 \right)^{1/2} + \lambda_2 \left(\sum_{i \in I} \|\Gamma_i f\|^2 \right)^{1/2} + \mu \|f\|, \quad \forall f \in \mathcal{H}.$$

Then $\{\Gamma_i\}_{i \in I}$ is a g-frame for \mathcal{H}.

Moreover, the authors in [19] gave a new perturbation which is more general than Theorem 3.3.

Theorem 3.4: Let $\{\Lambda_i\}_{i \in I}$ be a g-frame for \mathcal{H} with bounds A and B. Let $\{c_i\}_{i \in I}$ be an arbitrary sequence of positive numbers such that $\sum_{i \in I} c_i^2 < \infty$. Suppose that $\Gamma_i \in L(\mathcal{H}, \mathcal{H})$ and there exist constants λ_1, λ_2 such that $(1 - \lambda_1)\sqrt{A} > \left(\sum_{i \in I} c_i^2 \right)^{1/2}$ and

$$\|\Lambda_i f - \Gamma_i f\| \leq \lambda_1 \|\Lambda_i f\| + \lambda_2 \|\Gamma_i f\| + c_i \|f\|, \quad \forall f \in \mathcal{H}.$$

Then $\{\Gamma_i\}_{i \in I}$ is a g-frame for \mathcal{H}.

We give a sufficient condition under which a g-frame is stable under small perturbations in terms of positively confined sequence.

Theorem 3.5: Let $\{\Lambda_i\}_{i \in I}$ be a g-frame for \mathcal{H} and let $\{a_i\}_{i \in I}$ and $\{b_i\}_{i \in I} \subset \mathbb{R}$ be two positively confined sequences. Suppose that $\Gamma_i \in L(\mathcal{H}, \mathcal{H})$ and there exist constants $0 \leq \lambda_1, \lambda_2$ such that $\max\{\lambda_1 + \mu/\sqrt{A}, \lambda_2\} < 1$ and

$$\left(\sum_{i \in I} \|(\Lambda_i - \Gamma_i) f\|^2 \right)^{1/2} \leq \lambda_1 \left(\sum_{i \in I} \|\Lambda_i f\|^2 \right)^{1/2} + \lambda_2 \left(\sum_{i \in I} \|\Gamma_i f\|^2 \right)^{1/2} + \mu \|f\|, \quad \forall f \in \mathcal{H}.$$
\(\lambda, \mu < 1/2\) such that

\[
\sum_{i \in I} \| (a_i \Lambda_i - b_i \Gamma_i) f \|^2 \leq \lambda \sum_{i \in I} \| a_i \Lambda_i f \|^2 + \mu \sum_{i \in I} \| b_i \Gamma_i f \|^2, \quad f \in \mathcal{H}.
\]

Then \(\{ \Gamma_i \}_{i \in I}\) is a g-frame for \(\mathcal{H}\) with bounds

\[
\frac{(1 - 2\lambda)(\inf_{i \in I} a_i)^2}{2(1 + \mu)(\sup_{i \in I} b_i)^2} A \quad \text{and} \quad \frac{2(1 + \lambda)(\sup_{i \in I} a_i)^2}{(1 - 2\mu)(\inf_{i \in I} b_i)^2} B.
\]

Proof: For any \(f \in \mathcal{H}\),

\[
\sum_{i \in I} \| b_i \Gamma_i f \|^2 = \sum_{i \in I} \| (b_i \Gamma_i - a_i \Lambda_i) f + a_i \Lambda_i f \|^2
\]

\[
\leq 2 \left(\sum_{i \in I} \| (a_i \Lambda_i - b_i \Gamma_i) f \|^2 + \sum_{i \in I} \| a_i \Lambda_i f \|^2 \right)
\]

\[
\leq 2 \left(\lambda \sum_{i \in I} \| a_i \Lambda_i f \|^2 + \mu \sum_{i \in I} \| b_i \Gamma_i f \|^2 + \sum_{i \in I} \| a_i \Lambda_i f \|^2 \right),
\]

then we have

\[
(1 - 2\mu) \left(\inf_{i \in I} b_i \right)^2 \sum_{i \in I} \| \Gamma_i f \|^2 \leq 2(1 + \lambda) \left(\sup_{i \in I} a_i \right)^2 \sum_{i \in I} \| \Lambda_i f \|^2.
\]

Thus

\[
\sum_{i \in I} \| \Gamma_i f \|^2 \leq \frac{2(1 + \lambda)(\sup_{i \in I} a_i)^2}{(1 - 2\mu)(\inf_{i \in I} b_i)^2} \sum_{i \in I} \| \Lambda_i f \|^2 \leq \frac{2(1 + \lambda)(\sup_{i \in I} a_i)^2}{(1 - 2\mu)(\inf_{i \in I} b_i)^2} B \| f \|^2, \quad \forall f \in \mathcal{H}.
\]

On the other hand, since

\[
\sum_{i \in I} \| a_i \Lambda_i f \|^2 = \sum_{i \in I} \| (a_i \Lambda_i - b_i \Gamma_i) f + b_i \Gamma_i f \|^2
\]

\[
\leq 2 \left(\sum_{i \in I} \| (a_i \Lambda_i - b_i \Gamma_i) f \|^2 + \sum_{i \in I} \| b_i \Gamma_i f \|^2 \right)
\]

\[
\leq 2 \left(\lambda \sum_{i \in I} \| a_i \Lambda_i f \|^2 + \mu \sum_{i \in I} \| b_i \Gamma_i f \|^2 + \sum_{i \in I} \| b_i \Gamma_i f \|^2 \right),
\]

we have

\[
(1 - 2\lambda) \left(\inf_{i \in I} a_i \right)^2 \sum_{i \in I} \| \Lambda_i f \|^2 \leq 2(1 + \mu) \left(\sup_{i \in I} b_i \right)^2 \sum_{i \in I} \| \Gamma_i f \|^2.
\]
Thus,
\[\sum_{i \in I} \| \Gamma_{i} f \|^2 \geq \frac{(1 - 2\lambda)(\inf_{i \in I} a_i)^2}{2(1 + \mu)(\sup_{i \in I} b_i)^2} \sum_{i \in I} \| \Lambda_{i} f \|^2 \geq \frac{(1 - 2\lambda)(\inf_{i \in I} a_i)^2}{2(1 + \mu)(\sup_{i \in I} b_i)^2} A \| f \|^2. \]

Hence \{\Gamma_{i}\}_{i \in I} is a g-frame for \mathcal{H} with bounds
\[\frac{(1 - 2\lambda)(\inf_{i \in I} a_i)^2}{2(1 + \mu)(\sup_{i \in I} b_i)^2} A \text{ and } \frac{(1 + \lambda)(\sup_{i \in I} b_i)^2}{(1 - 2\mu)(\inf_{i \in I} a_i)^2} B. \]

Next, we consider stability of finite sum of g-frames.

Theorem 3.6: For \(l \in J = \{1, 2, \ldots, m\} \), let \{\Lambda_{li}\}_{i \in I} be a g-frame for \mathcal{H}. Let \(\Gamma_{li} \in L(\mathcal{H}, \mathcal{H}) \) and \(U : \oplus \mathcal{H}_i \to \oplus \mathcal{H}_i \) be a bounded linear operator such that \(U(\sum_{i \in I} \Gamma_{li} f) = \{\Lambda_{li} f\} \) for some \(l \in J \). If there exists a constant \(\lambda \geq 0 \) such that
\[\sum_{i \in I} \| (\Lambda_{li} - \Gamma_{li}) f \|^2 \leq \lambda \sum_{i \in I} \| \Lambda_{li} f \|^2, \quad \forall f \in \mathcal{H}, \ l \in J. \]

Then, \(\{\sum_{i \in I} \Gamma_{li}\}_{i \in I} \) is a frame for \mathcal{H}. Further, let \(A_l \) and \(B_l \) be the bounds of \(\{\Lambda_{li}\}_{i \in I} \) for all \(l \in J, \ i \in I \), then the bounds of \(\{\sum_{i \in I} \Gamma_{li}\}_{i \in I} \) are given by
\[\| U \|^{-2} \min_{l \in J} A_l \text{ and } 2m^2(1 + \lambda) \max_{l \in J} B_l. \]

Proof: Let \(A_l \) and \(B_l \) be the bounds of \(\{\Lambda_{li}\}_{i \in I} \) for each \(l \in J \), by Cauchy inequality, then we have
\[\sum_{i \in I} \left\| \sum_{j \in J} \Gamma_{ij} f \right\|^2 \leq m \sum_{l \in J} \sum_{i \in I} \| \Gamma_{i} f \|^2 = m \sum_{i \in I} \| (\Lambda_{li} - \Gamma_{li}) f + \Lambda_{li} f \|^2 \]
\[\leq 2m \sum_{l \in J} \left(\sum_{i \in I} \| (\Lambda_{li} - \Gamma_{li}) f \|^2 + \sum_{i \in I} \| \Lambda_{li} f \|^2 \right) \]
\[\leq 2m(1 + \lambda) \sum_{l \in J} \sum_{i \in I} \| \Lambda_{li} f \|^2 \leq 2m(1 + \lambda) \sum_{l \in J} B_l \| f \|^2 \]
\[\leq 2m^2(1 + \lambda) \max_{l \in J} B_l \| f \|^2, \]
and
\[\sum_{i \in I} \| \Lambda_{li} f \|^2 = \sum_{i \in I} \left\| U \sum_{j \in J} \Gamma_{ij} f \right\|^2 \leq \| U \|^2 \sum_{i \in I} \left\| \sum_{j \in J} \Gamma_{ij} f \right\|^2. \]

Thus,
\[\sum_{i \in I} \left\| \sum_{j \in J} \Gamma_{ij} f \right\|^2 \geq \frac{1}{\| U \|^2} \sum_{i \in I} \| \Lambda_{li} f \|^2 \geq \frac{A_l}{\| U \|^2} \| f \|^2 \geq \| U \|^{-2} \min_{l \in J} A_l \| f \|^2. \]
The following result gives a sufficient condition for stability of finite sum of Bessel g-sequence.

Theorem 3.7: For \(l \in J = \{1, 2, \ldots, m\} \). Let \(\{\Lambda_{li}\}_{i \in I} \) be a Bessel g-sequence for \(\mathcal{H} \) with synthesis operator \(T_{\Lambda}^{(l)} \). Let \(\{\Gamma_{li}\}_{i \in I} \) be a g-sequence for \(\mathcal{H} \) such that

\[
\sum_{i \in I} \|(\Lambda_{li} - \Gamma_{li})f\|^2 \leq \lambda \sum_{i \in I} \|\Lambda_{li}f\|^2, \quad \lambda \geq 0, \quad \forall f \in \mathcal{H}, \quad l \in J.
\]

If for some \(k \in J \), there exists \(A_k > 0 \) such that

\[
\sum_{i \in I} \|\Lambda_{ki}f\|^2 \geq A_k \|f\|^2, \quad \forall f \in \mathcal{H}
\]

and

\[
\left(2(m - 1) \sum_{l \neq k} \|T_{\Lambda}^{(l)}\|^2 + 4m\lambda \sum_{l \in J} \|T_{\Lambda}^{(l)}\|^2\right) < A_k.
\]

Then \(\{\sum_{i \in I} \Gamma_{li}\}_{i \in I} \) is a g-frame for \(\mathcal{H} \).

Proof: For all \(f \in \mathcal{H} \), we have

\[
\sum_{i \in I} \|\Lambda_{ki}f\|^2 = \sum_{i \in I} \left(\sum_{l \in J} \Lambda_{li} - \sum_{l \neq k} \Lambda_{li}\right) f \right)^2 \leq 2 \sum_{i \in I} \|\Lambda_{li}f\|^2 + 2 \sum_{i \in I} \|\Lambda_{li}f\|^2,
\]

it follows that

\[
\sum_{i \in I} \left(\sum_{l \in J} \Lambda_{li} f \right) \|^2 \geq \frac{1}{2} \left(\sum_{i \in I} \|\Lambda_{ki}f\|^2 - \sum_{i \in I} \|\Lambda_{li}f\|^2\right).
\]

Let \(T_{\Lambda}^{(l)} \) be the synthesis operator of \(\{\Lambda_{li}\}_{i \in I} \), for all \(f \in \mathcal{H} \), we have

\[
\sum_{i \in I} \|\Lambda_{li}f\|^2 = \|(T_{\Lambda}^{(l)})^*f\|^2 \leq \|\Lambda_{li}f\|^2 = \|T_{\Lambda}^{(l)}\|^2 \|f\|^2.
\]

Then by Cauchy inequality, we have

\[
\sum_{i \in I} \left(\sum_{l \in J} \Gamma_{li} f \right) \|^2 \geq \frac{1}{2} \left(\sum_{i \in I} \left(\sum_{l \in J} \Lambda_{li} f \right) \|^2 - 2 \sum_{i \in I} \left(\sum_{l \in J} (\Gamma_{li} - \Lambda_{li})f \right) \|^2 \right)
\]

\[
\geq \frac{1}{2} \left(\frac{1}{2} \sum_{i \in I} \|\Lambda_{ki}f\|^2 - \sum_{i \in I} \|\Lambda_{li}f\|^2 \right)^2 - 2 \sum_{i \in I} \left(\sum_{l \in J} (\Gamma_{li} - \Lambda_{li})f \right) \|^2
\]

\[
\geq \frac{1}{2} \left(\frac{1}{2} \sum_{i \in I} \|\Lambda_{ki}f\|^2 - (m - 1) \sum_{l \neq k \in I} \|\Lambda_{li}f\|^2 - 2m \sum_{l \in J} \sum_{i \in I} \|(\Gamma_{li} - \Lambda_{li})f\|^2\right)
\]

□
\[
\geq \frac{1}{2} \left(\frac{1}{2} A_k \|f\|^2 - (m - 1) \sum_{l \neq k} \| T^{(l)}_\Lambda \|^2 \|f\|^2 - 2m \lambda \sum_{l \in J} \| T^{(l)}_\Lambda \|^2 \|f\|^2 \right) \\
= \frac{1}{4} \left(A_k - 2(m - 1) \sum_{l \neq k} \| T^{(l)}_\Lambda \|^2 - 4m \lambda \sum_{l \in J} \| T^{(l)}_\Lambda \|^2 \right) \|f\|^2 > 0.
\]

On the other hand, let \(B_l \) be the Bessel bound of \(\{ \Lambda_{li} \}_{i \in I} \) for each \(l \in J \). For all \(f \in \mathcal{H} \), we have

\[
\sum_{i \in I} \left\| \sum_{l \in J} \Gamma_{li} f \right\|^2 \leq 2m \sum_{l \in J} \left(\sum_{i \in I} \| (\Lambda_{li} - \Gamma_{li}) f \|^2 + \sum_{i \in I} \| \Lambda_{li} f \|^2 \right) \\
\leq 2m(1 + \lambda) \sum_{l \in J} \sum_{i \in I} \| \Lambda_{li} f \|^2 \leq 2m(1 + \lambda) \sum_{l \in J} B_l \|f\|^2.
\]

Hence \(\{ \sum_{l \in J} \Gamma_{li} \}_{i \in I} \) is a g-frame for \(\mathcal{H} \).

\[\square \]

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

The research was supported by the National Natural Science Foundation of China [grant number 11271001], [grant number 61370147].

References