
Contents lists available at ScienceDirect

Composites Part B

journal homepage: www.elsevier.com/locate/compositesb

Multi-stiffness topology optimization of zero Poisson's ratio cellular
structures

Jian Huanga,c, Qiuhua Zhanga, Fabrizio Scarpab,∗, Yanju Liua, Jinsong Lengc,∗∗

a Department of Aerospace Science and Mechanics, No. 92 West Dazhi Street, Harbin Institute of Technology (HIT), P.O. Box 301, Harbin 150080, PR China
b Bristol Composites Institute (ACCIS), University of Bristol, BS8 1TR, UK
c Center for Composite Materials and Structures, No. 2 Yikuang Street, Science Park of Harbin Institute of Technology (HIT), P.O. Box 301, Harbin, PR China

A R T I C L E I N F O

Keywords:
Topology optimization
Zero Poisson's ratio
Honeycomb
Cellular structures

A B S T R A C T

This work features a multi-stiffness topology optimization of a zero Poisson's ratio cellular structure for
morphing skin applications. The optimization is performed with stiffness constraints to minimize the weight by
using a state-of-the-art solid isotropic microstructure with penalty (SIMP) method. The topology optimization
has been performed to minimize flatwise compressive and transverse shear moduli for aerodynamic pressures
and shear forces. The multi-stiffness topology optimization is performed using a norm method with weighting
coefficients. Both the single-stiffness and the multi-stiffness topology optimization have generated new honey-
comb design by imposing symmetry conditions and geometric post-processing to avoid the presence of stress
concentrations. The mechanical performances of the new honeycomb designs are validated using two ap-
proaches: one based on force boundary conditions (HyperWorks) and another with displacement BCs (ANSYS).
The work shows some alternate potential topologies and configurations of cellular structures for lightweight zero
Poisson's ratio honeycomb designs.

1. Introduction

Honeycomb structures have been widely used in applications ran-
ging from marine to aerospace and automotive for their outstanding
lightweight and tailorable design mechanical performances [1,2]. The
mechanical performances of honeycomb structures are directly depen-
dent on their topological configurations and core material properties.
The conventional hexagonal honeycomb structure is a typical example
of a cellular configuration that exhibits in-plane positive Poisson's ratio
(PPR) [1]. Recent work performed on hexagonal cellular configurations
has however further developed the functionality of this particular lat-
tice topology. Liu et al. have proposed and developed a three-dimen-
sional unit cell model for the flatwise compressive properties of Nomex
hexagonal honeycomb cores with debonding imperfections in the
double cell walls [3]. Sun et al. have investigated the compressive
properties of composite sandwich structures with periodical grids re-
inforced hexagonal honeycomb cores [4]. Wang et al. have also dis-
cussed the mechanical behaviors of inclined cell honeycomb structures
under our-of-plane compressive loading through experiments and finite
element simulations [5]. Tao et al. have proposed a novel in-plane
graded honeycomb structure by introducing gradient into hexagonal

cellular materials, and studied its dynamic behavior when subjected to
out-of-plane compression using numerical simulation and theoretical
analysis [6]. Choi et al. have designed a novel broadband microwave-
absorbing hexagonal honeycomb structure produced with a lossy elec-
tromagnetic material [7]. Honeycomb structures with PPR show an-
ticlastic or saddle-shaped curvatures when subjected to out-of-plane
bending deformation [8,9]. On the contrary, if the in-plane Poisson's
ratio of the honeycomb structures is negative as in the re-entrant hex-
agonal [1,10,11], hexachiral [12–15], and anti-tetrachiral honeycombs
[16,17], the curvatures are synclastic and result in a dome-shaped bent
structure [13,18]. Honeycombs with negative Poisson's ratio (NPR) are
also described as auxetic [19–21]. Compared with conventional hex-
agonal honeycombs, the auxetic configurations feature compliant in-
plane shear and enhanced indentation resistance [9,19,22]. Subramani
et al. have developed novel auxetic structures from braided composites
using the re-entrant hexagonal cellular structure [23]. Jin et al. have
proposed an innovative sandwich structure with re-entrant hexagonal
cell cores [24]. Its dynamic performance and blast resistance under
explosion loading have been investigated numerically. Hou et al. have
described experimental tests of graded conventional/auxetic honey-
comb cores manufactured using Kevlar woven fabric/914 epoxy
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prepreg under flatwise compression and edgewise loading [25]. The
effect of translational disorder on hexachiral honeycombs has also been
investigated through a finite element approach [26]. The bending
performances of the honeycomb structures with PPR or NPR however
limit their applications in cylindrical bending morphing engineering
[27]. Cellular structures with zero Poisson's ratio (ZPR) like the SILI-
COMB [28–30], chevron [31–33], and accordion [34] however feature
no synclastic or anticlastic curvature when bent out-of-plane. ZPR also
implies that the solids exhibit no lateral deformations when subject to
uniaxial tensile or compressive loading. The two special properties
make cellular structures with ZPR performance more suitable for cy-
lindrical or one-dimensional morphing applications [31,35]. Honey-
comb structures have recently been proposed as a promising solution
for morphing skins, which is a critical technology for the design of
morphing aircrafts [36,37]. Honeycomb structures with ZPR perfor-
mance have been also applied in biomedical scaffolds [38], and one-
dimensional spanwise morphing flexible skins [34,36]. To increase the
bending flexibility of all the forementioned cellular structures the
flatwise compressive and the transverse shear stiffness will inevitably
decrease, because the minimization of cell walls thickness and the
maximization of the unit cell size are the only two ways to achieve the
objective in periodic regular monomaterial structures. Special attention
should be paid to novel ZPR and NPR honeycomb structures that can
achieve uncoupled in-plane and out-of-plane mechanical performances
by tessellation of thin plates and hexagons within the cells [39–42].

In this work we present the result of a multi-stiffness topology op-
timization of zero Poisson's ratio honeycomb structures to minimize the
weight with stiffness constraints for morphing skin applications using
the solid isotropic microstructure with penalty (SIMP) method.
Topology optimization (TO) has been previously applied to design
auxetic cellular structures with enhanced vibration damping behavior
[43], and other transverse auxetic core for flat sandwich panels [44]. As
far as the authors know this is the however the first targeted on the light
weight design of honeycomb morphing structures using topology opti-
mization technology. Honeycomb configurations used in morphing
skins as supporting structures not only bear the aerodynamic pressure,
but also aerodynamic-induced shear forces. We perform a lighter
weight design of the original ZPR morphing honeycomb configurations
against the flatwise compressive stiffness and the two transverse shear
stiffness values. Firstly, the single-stiffness topology optimization is
performed separately against the three engineering constants to obtain
the possible minimal weights under only one corresponding stiffness
constraint. A multi-stiffness topology optimization is then carried out
using a norm method with weighting coefficients. From these optimi-
zation processes we propose new morphing honeycomb designs. The
out-of-plane performances of the new designs have also been validated
using two Finite Element approaches: an analysis with force boundary
conditions (performed with HyperWorks) and one based with dis-
placement boundary conditions (ANSYS commercial software).

2. Basic theory of the topology optimization method

Structural optimization can be divided into three levels-topology,
shape and size optimizations, corresponding to the conceptual, pre-
liminary and detailed design periods during the structural design pro-
cess [45] (Fig. 1). The topology of a structure crucial for its optimality
can be interpreted as an arrangement of materials in the structure [45].
The topology optimization is performed at a very early stage of the
design process, and aims to find the very best possible configuration
from a weight reduction point of view, which is generally the most
critical factor of the structure efficiency. The shape and size optimiza-
tion do not provide any global change to the topology of a structure
when finding the characteristic optimal solutions. Therefore, the value
of the topology optimization lies in providing the optimal arrangement
of materials in the preprocessing of the shape and size optimization
[46,47].

The homogenization approach used to solve topology optimization
problems of continuum structures was first proposed by Bendsøe and
Kikuchi [48] in 1988. The homogenization method optimizes the
structural performances in terms of density variables, but the mathe-
matical complexity of this approach prevents its general application. A
year later, Bendsøe [49] proposed another density-based technique
known as the variable density method (VDM), by using the much
simplified assumption that the stiffness of the material is linearly de-
pendent on its density. Since then, VDM has been widely used and often
integrated with the finite element method (FEM). In VDM, the material
density of each element is used as the design variable and always varies
continuously between 0 and 1. In this case 0 represents the void, 1
represents the solid, and the values between 0 and 1 represent fictitious
materials that are impractical when determining the topology of the
structure in the design domain. Hence, the VDM with penalty factor
forces the final design density of the material to be approximately either
0 or 1 (solid isotropic microstructure with penalty (SIMP) [50,51]). For
two-dimensional or three dimensional solid elements, the SIMP method
can be expressed as following,

′ = ×K ρ Kρ
P

( ) (1)

In (1) ρ is the relative density of the solid element and K′ and K
represent the penalized and the real stiffness matrix, respectively. P is
the penalty factor, always larger than 1. As shown in Fig. 2, a larger
penalty factor leads to a more discrete result. Because of its simplicity in
conception, assumption and numerical implementation, the SIMP
method has become the most popular and successful approach in

Fig. 1. Optimization methods for different structural design stages.

Fig. 2. Schematic graph of the SIMP method with varying penalization factors.
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structural topology optimization. There are however several alternative
methods proposed, such as the evolutionary structural optimization
(ESO) developed by Xie and Steven [52], the level-set [53–55], the
phase filed [56], bubble [57], and the topological derivative methods
[58].

3. Model demonstrations

3.1. Geometry of the unit cell

The zero Poisson's ratio cellular structures consist of two parts that
provide tailorable mechanical performances: one is a re-entrant hex-
agonal structure that provides the out-of-plane compressive stiffness
and in-plane compliance, the other one is the thin plates connecting the
re-entrant hexagons and providing large out-of-plane flexibility (Fig. 3)
[39,41]. The unit cell is composed of four inclined walls with same
length l and tilt angle θ, two vertical walls equal length h= αl, and two
thin plates located in the middle of the re-entrant hexagon along the
thickness direction. All the inclined and vertical walls have a same
thickness represented by the parameter βl. The thickness of the unit cell
along the 3-direction is represented by the parameter b. The two thin
plates have same dimensions ηl, thickness λb and width equal to the
length of the vertical walls. In these simulations we use parameters with
value of l=10mm, θ=15°, α=1.5, β=0.1, b=10mm, η=0.3,
λ=0.1. The isotropic material properties of the core are
Es=2129MPa and νs=0.42 [39].

3.2. The finite element model and the equivalent stiffness

The commercial finite element software HyperWorks (Version 12.0,
Altair Engineering, Inc.) has been used in the topology optimization
process, and the finite element model of a unit cell is shown in Fig. 4. To
ensure the continuity of the optimized results, the unit cell has been
split up into two sections: the design domain and the non-design

domain, with only the design domain been set as the design variable.
The volume fraction of the design domain is 70.63%. The unit cell has
been meshed using the property of P-SHELL with quads only mesh type
and an element size of l/20. A master node has also been created at the
center of the top surface. All the nodes located on the top surface have
been coupled with the master node with a rigid element RBE2 to si-
mulate the mechanical boundary conditions typical of the skin/core
interface interaction in sandwich structures. All the translational and
rotational degrees of the nodes on the bottom surface have been fixed
(clamped). To consider the interaction among the unit cells into ac-
count, anti-symmetric boundary conditions have been applied on the
six free edges of the two thin plates [59]. To allow for some control over
the member size of the final topology and the simplicity of the final
design, all the topology optimization in this work has been however
carried out using a minimum member size control of l/10. When the
minimum member size control is used, the penalty factor starts at 2 and
then increases to 3 during the second and third iterative phases to
obtain a more discrete result [HyperWorks 12.0 help]. To calculate the
flatwise compressive modulus E3 and the two transverse shear modulus
G13 and G23, three forces of F3=1000N, F1=1000N, F2=1000N have
been loaded on the master node for the three cases respectively. The
equivalent stiffness of the out-of-plane mechanical performance of the
unit cell can be calculated by using the following expressions:
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In (2) the parameters δ33, δ13, δ23 represent the corresponding dis-
placements of the master node along the 3-, 1-, 2-directions of the three
loading cases respectively. The ZPR behavior of the cellular structure is
caused by the presence of the thin plates [39,41]; in this work those
plates belong to the non-design domain, and one can therefore infer
that the ZPR performance of optimized results is not affected by the
topology optimization process.

4. Single-stiffness topology optimization

The single-stiffness topology optimization has been done using the
following model:

− = … … < ≤ = …
−

≥

Find ρ ρ ρ ρ ρ ρ n n
Minize V ρ
Subject to E E m

: ( , , , , , ), 0 1, 1,2, ,
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ij ij

1 2

0

d

(3)

In (3) ρn is the pseudo-density variable describing a void or a solid
finite element when it is 0 or 1; nd is the number of density variables,
while m > 1 is a coefficient determining the stiffness constraints. The
design objectives consist in minimizing the volume fraction of the zero
Poisson's ratio honeycomb structure separately, according to the three
out-of-plane mechanical engineering constants. As the honeycomb
structure is made by using one isotropic material phase only, to

Fig. 3. Layout of the zero Poisson's ratio cellular structures (a); the
geometry of a unit cell (b).

Fig. 4. The FE model used in the topology optimization process with the design domain
(red), the non-design domain (blue) and a master node on the top surface. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the Web
version of this article.)
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minimize its volume fraction implies the minimization of its weight. As
minimizing the volume fraction will inevitably decrease the mechanical
performances of the honeycomb structure, we have set half of the ori-
ginal values of the stiffness (m=2) as the lower limit of the constraints,
to make sure the optimized structure still retains some stiffness.
According to equation (2), the constraints of this single-stiffness to-
pology optimization have been obtained by applying the displacements
of the master node for varying load steps under different boundary
conditions.

4.1. Results of the single-stiffness topology optimization

The results of the topology optimization using the solid isotropic
microstructure with penalty (SIMP) method are usually expressed by
the relative density of every element not only in the design domain but
also in the non-design domain. Therefore, elements with low relative
density (ρ < 0.3) have been artificially removed to provide a clear
shape of the optimized topology of the structure (Fig. 5). In this section,
the coefficient m in equation (3) has been set as 2. From the results of
the single-stiffness topology optimization, it is possible to appreciate
the necessity to divide the unit cell into design and non-design domains
in order to keep the connectivity of the topology. As shown in Fig. 5, the
vertical walls are not necessary to maintain the flatwise compressive
stiffness (modulus E3) and transverse shear (modulus G13). The vertical
walls are however critical for the transverse shear load capability
(modulus G23). The inclined walls play on the opposite some a very
important role to ensure the flatwise and traverse shear stiffness in the
13 plane, but they offer little load bearing capability for the transverse

shear in the 23 plane. For single-stiffness topology optimization the new
honeycomb designs shown in Fig. 5 have been obtained by edge
smoothing and by transforming into symmetric areas the voids, to
prevent stress concentration. Also, elements with relative density be-
tween 0.3 and 1 have been artificially changed into solid ones.

4.2. Stiffness validation of the new designs

The validation of the out-of-plane mechanical performances of the
new designs following the single-stiffness topology optimization has
been performed in two ways: the first is by using the HyperWorks code
with force boundary conditions, and the second using ANSYS (Version
13.0, ANSYS Inc.) with displacement BCs. After convergence tests, the
finite element models of the new designs (shown in Fig. 6) used in the
HyperWorks and ANSYS analyses have been freely meshed with an
element size of 20/l because of the irregular geometry. The elements
used were both quadrilateral with 4 nodes with 6° of freedom (P-SHELL
and the SHELL 181 in HyperWorks and ANSYS analyses respectively).
The boundary conditions of the HyperWorks simulations are the same
used for the topology optimization (Section 3.2) and the results are also
calculated using equation (2). The ANSYS analyses are performed using
the displacement boundary conditions following [59], because of the
convenience of using the internal APDL language to obtain the corre-
sponding average stresses. In all three loading cases all the degrees of
freedom of the nodes at the bottom surface are constrained, while the
nodes at the six free edges of the end thin plates are loaded with anti-
symmetric boundary conditions to consider the periodicity of the unit
cells layout. All the nodes on the top surface are loaded with one of the

Fig. 5. Results of the single-stiffness topology optimization
with elements' density ρ≥ 0.3 and the new designs ac-
cording to the optimized results: (a) and (b), flatwise
compressive modulus E3; (c) and (d), transverse shear
modulus G13; (e) and (f), transverse shear modulus G23.
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three imposed displacements u3, u1, u2, according to the three cases of
E3, G13 and G23 respectively. The average strains corresponding to the
three loading cases are calculated using the ratios between the imposed
displacements and the gauge thickness of the structure. The three out-
of-plane moduli are obtained as the ratios between the average stresses
and the imposed strains.

4.3. Results and discussions

The values of the out-of-plane mechanical performances and weight
reduction of the new designs against the original ones are listed in
Table 1. The values of the new designs from the displacement BCs
analysis (ANSYS) show stiffer properties than the HyperWorks one for
the engineering constants E3, G13 and G23 (1.48%, 7.45% and 3.93%
respectively). All the values of the new designs are 50% larger than the
corresponding original design ones, which represent the lower limits of
the stiffness constraint used in the topology optimization process. This
phenomenon is induced by artificially changing the elements with

relative density between 0.3 and 1 into solid ones. Weight reductions of
30.13%, 38.13% and 45.57% are achieved for the three single-stiffness
topology optimization cases.

To investigate the influence of the parameter m in the stiffness
constraint, the single-stiffness topology optimizations have been re-
peated for varying m= 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0. The
geometrical shapes of the optimized results are shown in Fig. 7. An
increasing value of m leads to more material being removed in the
design space. The variation of the volume fraction of the design space
versus the stiffness constraint parameter m is shown in Fig. 8. Increasing
values of m result in decreasing of the volume fraction, and the slope of
the curves also decreases gradually. When m increases from 1.2 to 3.0,
the volume fraction of the flatwise compression case is subjected to a
large decrease from 82.50% to 23.44%. In other words, large weight
reductions can be achieved under the design requirement for the flat-
wise compressive stiffness. For the other two transverse shear cases the
volume fraction decreases from 50.18% to 37.22%–10.48% and 10.04%
respectively when m increases from 1.2 to 3.0. Special attention should
be paid to the two values of 50.18% and 37.22%, which represent the
volume fraction for the transverse shear moduli G13 and G23 cases. The
two transverse moduli decrease in this case to 5/6 of the original va-
lues. From observing Fig. 7 (b), one can also draw the conclusion that
the vertical walls account little in the transverse stiffness, with a very
little decrease of the G13 modulus resulting in a large amount of the
material in the vertical walls being removed. The same phenomenon is
also present for the inclined walls, this time for the G23 engineering
constant.

Fig. 6. Finite element models of the HyperWorks (red) and
ANSYS (blue) analyses used to validate the out-of-plane
mechanical performances of the new designs: (a) and (b),
flatwise compressive modulus E3; (c) and (d), transverse
shear modulus G13; (e) and (f), transverse shear modulus
G23. (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of
this article.)

Table 1
Stiffness and weight reduction of the new designs compared with the original design for
the single-stiffness topology optimizations.

Stiffness (MPa) Weight Reduction

E3 G13 G23 E3 G13 G23

Original HyperWorks 487.61 95.23 87.67 30.13% 38.13% 45.57%
New ANSYS 296.30 70.65 60.07

HyperWorks 291.92 65.75 57.80
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5. Multi-stiffness topology optimization

In real operational environments the morphing skins are loaded
with a combination of all the aerodynamic compressive pressure and
transverse shear forces, making therefore the multi-stiffness topology
optimization of the zero Poisson's ratio honeycomb structure necessary

to meet the requirements of realistic loading conditions. In this work,
we present a norm method with weighting coefficients [60–62] for the
multi-stiffness topology optimization. The methodology can be ex-
pressed as follows:
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Where, V is the volume fraction of the current iterative, Vmax the
maximal volume fraction of the design domain, V3min, V1min and V2min

are the minimal volume fraction obtained from the single-stiffness to-
pology optimization for the cases of E3, G13 and G23 respectively. E30,
G130 and G230 are the values for the original design, while m, n, k are the
coefficient for the stiffness constraints. The most important feature of
for this methodology is the weighting coefficients w3, w1 and w2, which
are respectively corresponding to E3, G13 and G23 under the condition
w3+w1+w2=1. In this section, m= n= k=2.0, w3=0.4, and
w1=w2=0.3 have been used for the topology optimization. For this
multi-stiffness topology optimization the stiffness constraints are also

Fig. 7. Topology of the optimized results VS the constraint's parameter m: (a) flatwise compressive modulus E3; (b) transverse shear modulus G13; (c) transverse shear modulus G23.

Fig. 8. vol fraction of the design domain for the optimized results VS the constraint's
parameter m.
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been executed using the displacement of the master node for the dif-
ferent load steps.

5.1. Results and discussions

Result of the multi-stiffness topology optimization for the zero
Poisson's ratio honeycomb structures are shown in Fig. 9. To assure the
three out-of-plane engineering constants meeting the constraints, the
elements in the design space of the vertical walls and the inclined walls
are only partially removed. Like in the previous single optimization
case, the new honeycomb design has been adjusted by imposing sym-
metric features and edge smoothing to avoid stress concentrations. Also
in this case, elements with relative density ρ < 0.3 have been removed
from the final configuration. To validate the out-of-plane mechanical
performances of the new honeycomb design, force boundary conditions
(Hyperworks) and displacement boundary conditions (ANSYS) have
been used for the simulations. The HyperWorks and ANSYS calculations
are performed following the same procedure used for the cases related
to the single-stiffness topology optimization in Section 4.2 (see Fig. 10).

The out-of-plane mechanical performances of the new honeycomb
design obtained from the HyperWorks and ANSYS analyses are listed in
Table 2. For the new design the flatwise compressive modulus E3 from
the ANSYS analysis is 6.20% stiffer than the analogous value from the
HyperWorks analysis. For the cases of the two transverse shear moduli
HyperWorks gives however 6.81% and 8.11% larger values than the
displacement BCs analysis. In any case the values obtained both from
the HyperWorks and ANSYS analyses meet the requirement of the
stiffness constraints used in the topology optimization when compared
with the corresponding values of the original honeycomb configuration.

A weight reduction of 31.77% is been achieved by this multi-stiffness
topology optimization procedure. To understand the influence of the
weighting coefficients on the geometric shape of the result, a TO using
varying weighting coefficients is been carried out and the results are
shown in Fig. 11. When the three moduli make equal contributions to
the optimized result (w3=0.34, w1=w2=0.33) and only the flatwise
compressive modulus E3 and the transverse shear modulus G23 are
taken into account (w3=w2=0.5, w1=0), similar results as the one
in Fig. 9 are obtained. Topology optimizations for other two groups of
combinations of the weighting coefficients considering only two of the
three mechanical moduli clearly show different geometric shapes
(Fig. 11 (b) and (d)).

The cellular configurations shown in this work have all a zero
Poisson's ratio behavior. ZPR is an essential mechanical parameter for
span and chord length morphing, in particular for wing and rotary
blade morphing. When combined with elastomeric of compliant ma-
trices, they could be used as reinforcements for skins in span, chord
length and camber adaptive applications [37,63]. The advantage of
these TO-optimized ZPR cellular structures is the high specific trans-
verse shear stiffness, that allows to increase the bending resistance of
the skin, with no specific compromise on the in-plane compliance. The
presence of the connecting plate at the end of the cell also allows an
easier modular manufacturing of a skin with this particular type of
reinforcement, as put in evidence by the demonstrator shown in Ref.
[42].

6. Conclusions

The out-of-plane multi-stiffness topology optimization of the zero
Poisson's ratio cellular structures for their applications in morphing
skins has been presented in this work. The topology optimization has
been performed using the combination of the popular SIMP method and
the norm method with weighting coefficients. The optimized material
distribution has been found meeting the requirement of both flatwise
compressive and transverse shear stiffness, with a weight reduction of
31.77%. The topology optimization is the basis for the shape optimi-
zation and size optimization of the honeycomb design and could pro-
vide good guidance for designers to obtain an improved material dis-
tribution at the early design stage.

Fig. 9. Result of the multi-stiffness topology optimization with re-
lative density ρ≥ 0.3 (left) and the new design according to the
optimized result (right).

Fig. 10. Finite element models of the HyperWorks (red) and ANSYS
(blue) analyses used to validate the out-of-plane mechanical per-
formances of the new design. (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web ver-
sion of this article.)

Table 2
Stiffness and weight reduction of the new design compared with the original design for
the multi-stiffness topology optimization.

Stiffness (MPa) Weight Reduction

E3 G13 G23

Original HyperWorks 487.61 95.23 87.67 31.77%
New ANSYS 287.01 51.23 44.13

HyperWorks 270.26 54.72 47.71
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