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Electromechanical Modeling of
Softening Behavior for Dielectric
Elastomers
Dielectric elastomer (DE) is a promising electroactive polymer. As DE material, rubbers
are often filled with functional particles to improve their electromechanical performance.
However, the filled particles also bring stress softening, which is known as Mullins effect.
In this paper, we prepared the carbon nanotube filled silicone elastomer (SE) as DE com-
posite and modeled its Mullins effect using the pseudo-elastic theory. Then, the thermody-
namics of DE was combined to predict the idealized electromechanical softening
behavior. Two cases are considered: linear dielectric and saturated dielectric. For linear
dielectric with an initial force, “residual strain” will appear after every voltage-
controlled cycle, and instability may be eliminated in reloading. For saturated dielectric,
the material response changes a lot after saturation, which also affects the subsequent
softening behavior. At last, viscoelasticity was further incorporated to account for rate-
dependent softening deformation, and we also carried out some simple electromechanical
experiments on VHB 4910 to explore its softening behavior. This work may lead to a bet-
ter understanding of the softening behavior in DEs undergoing electromechanical cou-
pling situations. [DOI: 10.1115/1.4040405]

Keywords: dielectric elastomer composite, Mullins effect, softening behavior, electrome-
chanical coupling, viscoelasticity

1 Introduction

Dielectric elastomer (DE) is a kind of soft and insulating mate-
rials. When a DE membrane sandwiched between two compliant
electrodes is subject to a high voltage, due to its high dielectric
constant and low modulus, Maxwell stress will cause the mem-
brane to reduce thickness and expand area. This electromechani-
cal transduction and its inverse process enable the mutual
conversion between mechanical and electrical energy. Besides,
the materials also possess desirable attributes, including good bio-
logical compatibility, high energy density, fast response, light
weight, low price, easy processing and manufacturing, etc [1–3].
Therefore, dielectric elastomers are now widely recognized as a
kind of high-tech smart material, which has a variety of applica-
tions, ranging from bionic robots to energy harvesting [4–7].

As a sort of DE material, rubbers are usually restricted by their
electromechanical coupling performance. One solution is to
enhance their dielectric property by filling functional particles
[3,8,9]. However, from the perspective of mechanics, the influ-
ence brought by filled particles has not been clearly recognized.
Rubber is a three-dimensional network composed of coiled molec-
ular chains, which have different lengths, and is held together by
crosslinks. By filling additional particles, these molecular chains
are adsorbed on the particle surfaces [10,11]. When the rubber is
subject to loads, the chains will slip and slide with friction on
these particles [10,11], which may result in the chain length
increase between two particles after unloading (as chain AA0 in
Fig. 1). Subject to loads again, the slipping and sliding are mostly

eliminated until the deformation reaches the former level; there-
fore, the required loads decrease. The stress softening under cyclic
load is a typical trait of filled rubbers, which is widely known as
Mullins effect [12,13]. Besides the filled rubbers, stress softening
is also reported in the most commonly used commercial dielectric
elastomer material, VHB 4910/4905 tapes [14].

The idealized macro performance of Mullins effect is shown in
Fig. 2. When we monotonously stretch the material, the loading
path goes along P0AP1BP2. If we unload it at point P1, the unload-
ing path will be below the loading path, such as P1A’P0, and the
subsequent reloading path will follow the unloading path before
exceeding the previous unloading point P1. After that, it will
recover the monotonous loading path P1BP2.

Stress softening affects the mechanical performance of dielec-
tric elastomers. In general, in order to obtain the real and stable
mechanical performance, the dielectric elastomers must be pre-
stretched several cycles to eliminate stress softening before

Fig. 1 Molecular chains and particles before, during, and after
loading
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testing. However, in practical applications, the effect cannot be
neglected and we should design the applications (such as actua-
tors, soft robots, and flapping wings) in terms of the real and sta-
ble mechanical performance after softening. Therefore, we need
to know the softening behavior, and the related study is necessary.

To model the effect, Mullins and Tobin [15] assumed that the
filled rubber exists in two phases, the hard and soft phases. They
considered that the material is full of hard phases at the beginning,
as the deformation increases, some hard phases gradually fracture
into soft phases so that the material softens. Thereafter, many
researchers have modeled Mullins effect. Ogden and Roxburgh
[16] developed a pseudo-elastic theory to consider the Mullins
effect. In this theory, they used an error function to modify the
strain energy function to change the stress during the unloading
and reloading process. Based on this method, some researchers
have tried to make the model more applicable in a wide scope.
Dorfmann and Ogden [17] replaced the error function by a hyper-
bolic tangent function. Soon afterward, they [18] also extended
their model to consider both the stress softening and the residual
strain. Yeom et al. [19] modified Dorfmann and Ogden model
[17] by introducing a nonlinear factor to describe high nonlinear-
ity. Rickaby and Scott [20–22] comprehensively combined the
inelastic features of stress relaxation, hysteresis, and residual
strain together to develop a model, which is able to describe the
Mullins effect for both stretch and compression. However, dielec-
tric elastomer needs to operate under electromechanical coupling
field. Similarly, softening will also happen. To the authors’
knowledge, the related research is barely reported. Accordingly,
we are going to study the electromechanical softening behavior in
this paper.

This paper is organized as follows: The preparation of carbon
nanotube (CNT) filled silicon elastomer and softening test are pre-
sented in Sec. 2. Section 3 demonstrates the application of the
pseudo-elastic theory on our material. Then, considering linear
dielectric and saturated dielectric, we theoretically analyzed of the
idealized softening behavior under electromechanical coupling field
in Sec. 4. We further introduced the viscoelastic model and carried
out experiments on VHB 4910 to explore its electrometrical soften-
ing behavior in Sec. 5. At last, all results are summarized in Sec. 6.

2 Preparation and Testing of Carbon Nanotube Filled

Silicon Elastomers

The CNT filled silicone elastomer (SE) was prepared as the
dielectric elastomer composite (DEC). The silicone elastomer is
TC 5005 A/B-C produced by BJB Enterprises, Inc., Tustin, CA. It
is a room temperature curing polydimethyl siloxane with three

components. Component A is silicone rubber base; component B
is catalyst; and component C is silicone fluid. TC-5005 A/B is
processed by adding curing agent B at a ratio of 10 parts by
weight to 100 parts by weight of A. Component C can be as much
as 50% to the total weight of TC-5005 A/B. Multiwalled carbon
nanotubes with length 30 lm and outer diameter 20–30 nm were
used. Figure 3 shows the preparation process of the dielectric elas-
tomer composite. Component C with 20% weight ratio was added
to synthesis the silicone matrix. The CNTs were first dried in vac-
uum oven at 200 �C for 24 h to eliminate trapped air bubble and
moisture. At last, the processed CNTs were mixed in silicone
matrix and stirred using centrifugal blender; then the mixture was
poured into a mold and cured under room temperature.

In our pervious study, we have explored the amount of filling
and the resulting enhancement of its dielectric properties of the
composites with respect to that of the pure silicone [9]. Figure 4
presents room-temperature dielectric spectra for both the pure sili-
cone and the composites (CNT weight percentage of 1, 2, 3, 4,
and 5) in the range of 10e2–10e7 Hz. Both the relative permittivity
and dielectric loss spectra monotonically decrease with frequency
over the whole range. As expected, by increasing the carbon nano-
tube content, a progressive increase of permittivity of the compo-
sites is achieved at all frequencies compared to pure silicone. That
is to say the permittivity of dielectric elastomer composites could
be significantly improved by adding CNT particles.

To reflect the influence of particle content, the composites with
particle weight percentage of 3 and 5 (named 3% CNT/SE and
5% CNT/SE for short in the rest of paper, respectively) were
tested by a stepwise cyclic tensile test to characterize the Mullins
effect. Rectangle specimens with the dimension
100 mm� 25 mm�H (0.89 mm for 3% CNT/SE and 0.80 mm for
5% CNT/SE) were cut out from the membrane. The test was con-
ducted on Zwick/Roell Z010 universal testing machine with an
optic extensometer. The loading rate was 200 mm/min, and the
step strain and maximal strain was 50% and 250%. Before the
test, a preload of approximately 0.1 N was induced to eliminate
out-of-plane buckle introduced during the clamping process.

The step-up curves in Figs. 5(a) and 5(c) show obvious stress
softening. The loading and unloading curves of 3% CNT/SE basi-
cally coincide within the first two cycles, showing nearly no Mul-
lins effect, and the stress starts to soften from the third cycle,
while the 5% CNT/SE shows great stress softening since the first
cycle. That is to say, the higher filler content performs greater
stress softening. Besides, we also observe obvious and increasing
residual strain, which increases with the amount of filler content
and the amplitude of stretch. In the step-down test, Fig. 5(b)
presents that the following unloading and reloading curves coin-
cide with the first unloading curve, which also demonstrates the
internal mechanism of Mullins effect.

Fig. 3 Preparation process of CNT filled silicon elastomerFig. 2 Stress–stretch relation of idealized Mullins effect
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3 Modeling of Idealized Mullins Effect

Without interpreting the internal mechanism and merely using
the mathematic method, Ogden and Roxburgh [16] developed a
phenomenological theory of pseudo-elasticity to characterize
Mullins effect. They modified the strain energy function by incor-
porating an additional variable.

W
�
ðF; gÞ ¼ gW0ðFÞ þ /ðgÞ (1)

where W0ðFÞ is the strain energy function, g is the damage vari-
able with the maximal value of 1, and /ðgÞ is the damage

function. The damage variable can be active or inactive. When it
is inactive (g ¼ 1), the pseudo-elastic energy recovers elastic,
W
�
ðF; 1Þ ¼ W0ðFÞ. When it is active (gmin � g < 1), the damage

variable changes the mechanical response. The inclusion of dam-
age variable provides a means of changing the strain energy func-
tion during the deformation process and consequently changes the
character of mechanical response. In general, the mechanical
response is never elastic, so W

�
ðF; gÞ is called pseudo-elastic

model.
For uniaxial stretch, the constitutive equation incorporating

Mullins effect can be simplified as

Fig. 4 Relative permittivity and dielectric loss of silicone composite with different CNTs content at varying
frequencies [9] (Reprinted with permission from Elsevier # 2015)

Fig. 5 Step-up (a) and step-down (b) curves for 3% CNT/SE and step-up curves for 5% CNT/SE
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s ¼ g
@W0 kð Þ
@k

(2)

The former part is the damage variable, while the latter part is the
classical elastic response of rubber material. For Mullins effect,
when unloading starts, the damage variable changes from inactive
to active. Actually, the damage variable acts as a softening func-
tion here. Researchers have established various types of damage
function; see for instance Refs. [16–19].

As the 5% CNT/SE shows obvious Mullins effect, we utilize its
step-up test data to study in the rest of this paper. The experimen-
tal result must be processed as only idealized Mullins effect is
focused here, we follow the steps in literatures [23,24]: replace
the upper boundary by the pervious fitting curve; remove the
reloading curves, and consider they follow the unloading curves;
unloading curves are horizontally moved to point (1, 0) to elimi-
nate the residual strain.

To model Mullins effect, a proper strain energy function and
damage variable should be given. For an incompressible rubber
material, strain energy function can be regarded as a function of
the first and second invariant [25,26]:

W ¼
X1
i;j¼0

CijðI1 � 3ÞiðI2 � 3Þj (3)

where Cij are the material constants, and the term C00 is always
taken as a null value.

This model is quite complicated; thus, we start from the sim-
plest from until the accuracy meets our need. Neo-hookean model
[25,26], Mooney–Rivlin model [27], and Yeoh model [28] are fit-
ted. Fitting results are shown in Table 1 and Fig. 6(a). We find
Yeoh model with three material parameters

WYeoh ¼
X3

i¼0

Ci0ðk1
2 þ k2

2 þ k3
2 � 3Þi (4)

fits well with our experimental data, and it will be used in the fol-
lowing analysis.

Since the damage variable proposed by Yeom et al. [19] con-
tains an additional nonlinear term which can account for highly
nonlinear behavior, we adopt their model in our fitting and analy-
sis. The damage variable is given as

g ¼ 1� 1

r
tanh

Wmax �W0 kð Þ
mWmax

� �� �
W0 kð Þ
Wmax

� �n

(5)

where r, m, and n are material constants. Fitting results are shown
in Table 2 and Fig. 6(b). We can see the model fitting basically
well with the experiment when the stretch is larger than 1.5. These
parameters will be used in the following analysis.

4 Idealized Electromechanical Softening Behavior

Following Suo’s theory [29], when undergoing homogenous
deformation, the constitutive relation of dielectric elastomer under
electromechanical coupling field can be determined by its free
energy function W.

si ¼
@W k1; k2; k3; ~D
� �

@ki
i ¼ 1; 2; 3ð Þ (6a)

Wðk1; k2; k3; ~DÞ ¼ WSðk1; k2; k3Þ þWPðk1; k2; k3; ~DÞ (6b)

where WS and WP are the contributions due to stretching and
polarizing, respectively, siði ¼ 1; 2; 3Þ are the nominal stresses,
kiði ¼ 1; 2; 3Þ are the stretches in principal directions, and ~D is the
nominal electric displacement. If a free energy function W is
given, the state of dielectric elastomer will be determined.

The dielectric elastomer material is considered incompressible,
namely

k1k2k3 ¼ 1 (7)

To account for stress softening, we replace the contribution from
stretching by pseudo-elastic model, the state equations (6) of
incompressible dielectric elastomer become

si �
s3

ki
2kj
¼ @W �

s k1; k2ð Þ
@ki

þ @WP k1; k2; ~D
� �
@ki

i; j ¼ 1; 2 and i 6¼ jð Þ (8)

The dielectric material can polarize under electric field. For
dielectric elastomers, the polarization is caused by the rotation of
dipoles. When the electric field is low, the polarization is linear
and small; when the electric field is sufficient high, all dipoles
arrange perfectly along the direction of electric field, the polariza-
tion is saturated. Usually, the electric displacement can be
expressed as D ¼ e0Eþ P, where e0 is the vacuum permittivity
and P the polarization. In our previous work, we gave a formu-
lated relation of electric displacement to account for polarization
saturation but ignoring the first term [30]. We modify the expres-
sion as

D ¼ e0Eþ Pstanh
e� e0

Ps
E

� �
(9)

where e0 is the vacuum permittivity, e is the permittivity of DE,
and Ps is the saturated polarization. When ðe� e0ÞE=Ps � 1, the
relation between E and D recovers linear, D ¼ eE; when
ðe� e0ÞE=Ps � 1, the polarization saturates, D ¼ e0Eþ Ps.

The contribution from polarizing can be obtained by integratingÐD
0

EdD [29]. However, it is nearly impossible to analytically
express E from Eq. (9); therefore, we make the following simplifi-
cation: the electric displacement is all linear before polarization
saturation. Then, we have the corresponding electric energy

Wp
L k1; k2; ~D
� �

¼
~D

2

2e
k�2

1 k�2
2 when E < Es (10a)

Wp
H k1; k2; ~D
� �

¼
~D

2

2e0

k�2
1 k�2

2 �
~DPs

e0

k�1
1 k�1

2

þ ePs
2

2e0 e� e0ð Þ
when E > Es

(10b)

where Es is the electric field when polarization is saturated.
We consider equal-biaxial deformation, namely k1 ¼ k2 ¼ k,

and use the Yeoh model (4) and the damage variable (5), the
dimensionless state equations can be obtained

Table 1 Fitting parameters for 5% CNT/SE

Model Neo-hookean Mooney–Rivlin Yeoh

Parameter C10 C10 C01 C10 C20 C30

0.03524 0.0424 �0.01904 0.03193 �3.08801� 10�6 2.64232� 10�5
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s

C10

¼ g kð Þ @WYeoh kð Þ
@k

�
~Effiffiffiffiffiffiffiffiffiffiffiffi

C10=e
p

 !2

k3 (11a)

s

C10

¼ g kð Þ @WYeoh kð Þ
@k

�
~Effiffiffiffiffiffiffiffiffiffiffiffiffiffi

C10=e0

p
 !2

k3 �
~Effiffiffiffiffiffiffiffiffiffiffiffiffiffi

C10=e0

p Psffiffiffiffiffiffiffiffiffiffiffi
C10e0

p k

(11b)

In the following analysis, we use the fitting parameters of 5%
CNT/SE to predict the electromechanical softening behavior. We
assume all the equilibrium states and loading processes can be
realized, and only describe the theoretical curves of the highly
nonlinear softening behavior.

First, we focus on the first case: the electric field is low so that
the dielectric is far less than polarization saturation, or the DE
material is considered to be an ideal linear dielectric. Figure 7
shows the curves of nominal electric field versus stretch and nomi-
nal stress versus stretch under different electromechanical cou-
pling situations. In Fig. 7(a), the existing force acts as a dead load
prestretch, which improves the voltage-induced deformation. The
existing force moves the curve to the right, resulting in a larger
stretch with same voltage. Also, the prestretch lowers the thresh-
old of instability. As the force increases, the declining rate of the

left local maximum point is faster than the right local minimum
point, which will definitely cause the two local extreme points
vanish. Therefore, instability is eliminated. In Fig. 7(b), with the
increasing of voltage, the stress–stretch response changes from
monotonous to nonmonotonous, showing an up-down-up shape.

Figure 8 shows the voltage-controlled loading and unloading
curves with s=C10 ¼ 0 and s=C10 ¼ 1. Due to softening, the
unloading lowers the critical snap-through voltage, thus causing
some interesting phenomena. If the equilibrium state at the stretch
of 2.5 on the loading curve can be obtained, two snap-through
processes may exist during reloading, see Fig. 8(a), however, the
equilibrium state in the descending branch is nearly impossible to
obtain. In a voltage-controlled loading and unloading, the process
follows the path O-A-B-C-D-E-O; in the subsequent reloading
and unloading, the process will follow the path O-F-H-C-D-E-O.
The DE material is usually prestretched to improve its voltage-
induced deformation or to eliminate electromechanical instability.
In the electromechanical coupling loading situation, the existing
force acts as a dead load prestretch. In Fig. 8(b), the unloading
curves will never go back to the starting point, which looks like
“residual strain.” It is caused by softening; the decreasing modu-
lus enlarges stretch under same force. We can also observe that
snap-through instability is eliminated during the reloading
process.

Figure 9 shows the force-controlled loading and unloading

curves with ~E=
ffiffiffiffiffiffiffiffiffiffiffiffi
C10=e

p
¼ 0:25 and ~E=

ffiffiffiffiffiffiffiffiffiffiffiffi
C10=e

p
¼ 0:55. If the

applied voltage is low, the curves have the similar trend with the
only force-controlled case; compare Figs. 6(b) and 9(a). If the ini-
tial voltage is sufficient high, the electromechanical coupling has
a strong impact on the material response, resulting in a highly
nonlinear behavior with an N-shaped force-controlled loading

Fig. 6 Fitting results with different models (a) and of Mullins effect (b)

Table 2 Fitting parameters of Mullins effect

Parameter r m N

Value 2.397974 0.132968 0.29536

Fig. 7 Nominal electric field—stretch curves with different initial forces (a) and nominal
stress–stretch curves with different initial voltages (b)

Journal of Applied Mechanics NOVEMBER 2018, Vol. 85 / 111010-5

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/appliedm

echanics/article-pdf/85/11/111010/6364670/jam
_085_11_111010.pdf by H

arbin Institute of Technology user on 01 M
arch 2020



curve (Fig. 9(b)), which is similar as the curves in voltage-
controlled cases. As we prescribe that the stretch starts form 1, the
existing voltage will cause a negative starting force, and it will
definitely have a change from negative to positive. See Fig. 9(b),
the negative stress (orange dashed lines) exists in an extensive
stretch range during unloading. Meanwhile, the reversed increas-
ing force will trigger snap-back at local minimum point.

Then, we consider the second case: the electric field is sufficient
high so that the polarization of dielectric elastomer is fully satu-
rated. In our simplification, the dielectric elastomer is linear
dielectric before Es, while the polarization is saturated after Es;

the critical electric field ~Es=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C10=e0

p
¼ ðPs=

ffiffiffiffiffiffiffiffiffiffiffi
C10e0

p
=ðer � 1Þk2Þ,

where er ¼ e=e0 is the relative permittivity. Suitable initial
~E=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C10=e0

p
and Ps=

ffiffiffiffiffiffiffiffiffiffiffi
C10e0

p
need be determined to meet this con-

dition. From Fig. 4, 5% CNT/SE has a er value of 5 in a wide

range of frequency, so ~E=
ffiffiffiffiffiffiffiffiffiffiffiffi
C10=e

p
¼

ffiffiffi
5
p

~E=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C10=e0

p
. We plot the

nominal electric field versus stretch relations with various

Ps=
ffiffiffiffiffiffiffiffiffiffiffi
C10e0

p
in Fig. 10(a). For linear model, the relation follows

the blue curve, and snap-through from A to B happens under con-
tinuous loading. Considering polarization saturation, the curves
follow the linear model at the beginning as the electric field is
low, then turn to the paths of saturated model (green curves) after
reaching Es. When the saturated polarization is small

(Ps=
ffiffiffiffiffiffiffiffiffiffiffi
C10e0

p
¼ 1), the DE is easy to saturate under low voltage,

and also the critical voltage to trigger snap-through is increased.

As Ps=
ffiffiffiffiffiffiffiffiffiffiffi
C10e0

p
increases, snap-through disappears. When

Ps=
ffiffiffiffiffiffiffiffiffiffiffi
C10e0

p
¼ 10, the snap-through deformation decreases; see in

Fig. 10(a). Therefore, it can be concluded that the polarization sat-
uration can enhance the stability of electromechanical coupling
system of dielectric elastomer. Figure 10(b) plots the unloading

Fig. 8 Idealized voltage-controlled loading and unloading curves with s/C10 5 0 (a) and
s/C10 5 1 (b)

Fig. 9 Idealized force-controlled loading and unloading curves with ~E /
ffiffiffiffiffiffiffiffiffiffiffi
C10/e
p

5 0:25 and
~E /

ffiffiffiffiffiffiffiffiffiffiffi
C10/e
p

5 0:55

Fig. 10 Nominal electric field—stretch curves (a) and idealized voltage-controlled loading
and unloading curves (b) for saturated model with various Ps /

ffiffiffiffiffiffiffiffiffiffiffiffi
C10e0

p
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paths (red curves) for saturated model when s=C10 ¼ 0. From Fig.
8(a), reloading at k ¼ 2:5 has two snap-through processes. But the

one caused by softening disappears (Ps=
ffiffiffiffiffiffiffiffiffiffiffi
C10e0

p
¼ 1). Because

polarization saturation affects Maxwell stress, the softening
behavior, compared with the red curves in Fig. 8(a), also changes
when DE undergoing polarization saturation.

Figure 11(a) presents the influence of Ps=
ffiffiffiffiffiffiffiffiffiffiffi
C10e0

p
on stress ver-

sus stretch relation. We set two groups of values, when
~E=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C10=e0

p
¼ 0:5, Ps=

ffiffiffiffiffiffiffiffiffiffiffi
C10e0

p
¼ 0:1, Ps=

ffiffiffiffiffiffiffiffiffiffiffi
C10e0

p
¼ 1. and

Ps=
ffiffiffiffiffiffiffiffiffiffiffi
C10e0

p
¼ 2; when Ps=

ffiffiffiffiffiffiffiffiffiffiffi
C10e0

p
¼ 0:5, ~E=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C10=e0

p
¼ 0:2, and

~E=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C10=e0

p
¼ 0:3 When the saturated polarization Ps is small,

the linear term e0E in Eq. (9) dominates the electric displacement
D, the curve is nearly close to the ideal linear case (red and green
curves); while with the increasing of Ps, the second nonlinear
term takes the main role so that the curves become nonmonotonic
(blue and purple curves). Figure 11(b) compares the linear model
and saturated model. Physically, polarization saturation decreases
the Maxwell stress, resulting in a higher stress level under same
voltage. Besides, the curves tend to be monotonous, that is to say
the polarization saturation can make the electromechanical cou-
pling system of dielectric elastomer more stable. The unloading
behaviors are expected to be similar as the cases in Fig. 9, which
will not be repeated here.

5 Viscoelasticity and Electromechanical Testing

In the previous analysis, the mechanical response of material is
considered fully elastic. However, viscoelasticity is a typical trait
of dielectric elastomer. In this section, we work on VHB 4910
material, since the commercial material has good performance sta-
bility and strong viscoelasticity. Also, the wide using of the VHB
material in real applications makes the experiments significant.
Same step-up test as in Sec. 2 was conducted on VHB 4910. We
set two loading rates: 40 mm/min and 80 mm/min, and step strain
100%. It can be seen from the testing curves (Fig. 12) that stress
softening and residual strain appear obviously. Viscoelasticity
lowers the stress level under low loading rate. Besides, it is worth
noting that the tensile curve forms the upper boundary of the step-
up curves, which is very close to the idealized Mullins effect
assumption.

To account for rate-dependent deformation, the viscoelastic
model, consisting of two springs and one dashpot [31,32] (as
shown in Fig. 13), is introduced into the theory. According to mul-
tiplication rule, the stretch in spring a is the multiplication of the

stretches of spring b and dashpot, k1
A ¼ k1

Bn1 and k2
A ¼ k2

Bn2.
In order to incorporate softening, we replace the energy of

spring a by pseudo-elastic energy model. The total energy of the
dielectric elastomer is the sum of the contribution of the two
springs

Fig. 11 Nominal stress–stretch curves with various saturated polarizations (a) and different
initial voltages (b)

Fig. 12 Tensile curves (red) and step-up curves (blue) for VHB 4910 under different loading
rate (a) 40 mm/min and (b) 80 mm/min

Table 3 Fitting parameters of Yeoh model and damage
variables

Parameter C10 C20 C30 r m n

Value 0.01996 �1.43718� 10�4 1.17624� 10�6 3.026 0.453 0.051
Fig. 13 Viscoelastic model consists of springs and dashpot

Journal of Applied Mechanics NOVEMBER 2018, Vol. 85 / 111010-7

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/appliedm

echanics/article-pdf/85/11/111010/6364670/jam
_085_11_111010.pdf by H

arbin Institute of Technology user on 01 M
arch 2020



WSðk1; k2; n1; n2; gÞ ¼ k W
�

Aðk1; k2; gÞ

þ ð1� kÞWBðk1n1
�1; k1n2

�1Þ (12)

where 0 � k � 1 is the constant which determines the
viscoelasticity.

The stretch rate in the dashpot can be described as

dni

nidt
¼ 1

3g
ki
@WB

@ki
� kj

@WB=2

@kj

 !
i; j ¼ 1; 2 and i 6¼ jð Þ (13)

where g is the viscosity of the dashpot.
We first find out a set of available parameters by fitting the

experimental curves using the idealized model. In our experiment,
the curve patterns have same trend although the loading rate
varies. Table 3 gives a set of acceptable fitting parameters for
loading rate 40 mm/min.

In the viscoelastic model, the above Yeoh parameters are used
for the two springs, and we simulate different viscoelastic
behavior by adjusting k. We introduce relaxation time sv ¼ g=C10

to make Eq. (13) dimensionless. Figure 14 plots the theoretical
results using viscoelastic model (a) and pseudo-elastic-
viscoelastic model (b), respectively. The blue curves represent

Fig. 14 Nominal stress–stretch curves with sv 5 100 s and different k using viscoelastic
model (a) and pseudo-elastic–viscoelastic model (b)

Fig. 15 Force–strain curves (a) and force–time curves (b) with different initial voltages and the comparison of
fitting and experimental curves at 1.25 kV (c)
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loading paths; the red curves represent unloading paths; while the
black dotted curves represent the reloading paths before reaching
the former unloading points. Compared with the idealized model,
viscoelastic model accounts for residual strain, and separates the
unloading and reloading curves. We can find that k affects the
material response greatly. Larger k corresponds to higher stress
level, smaller residual strain and closer unloading and reloading
curves. It is easy to understand from the theoretical model: spring
a determines softening and elastic deformation; spring b together
with dashpot determine viscous deformation, while k determines
the proportion of the two parts in the model. A larger k means the
DE is closer to an elastic material, which has lower relaxation,
smaller hysteresis and more idealized Mullins effect. Further,
comparing the two models, the stress softens obviously in (b-1)
and (b-2), due to the pseudo-elastic model.

Then, we carried out some simple experiments to explore the
electromechanical situation. Pure shear VHB 4910 specimens
with effect dimensions 100 mm� 10 mm� 1 mm were tested. The
electromechanical loading was also conducted on Zwick/Roell
Z010 universal testing machine. The electric loads were applied
on the specimens through a function signal generator and voltage
amplifier.

We conducted a force-controlled test with different initial vol-
tages. We set the loading rate 10 mm/min, and the step strain is
100%. Different initial voltages, 0 kV, 1.25 kV, and 2.5 kV, were
applied throughout the experiment. The recorded force–strain
curves are shown in Fig. 15(a). As the theoretical predictions only
consider the idealized situation, we remove the reloading curves,
and compare the remaining curves with Fig. 9(a). The initial force
starts from negative, and the stress softens after every cycle. Com-
paring the curves with different voltages, large initial voltage cor-
responds to lower stress level, which is consistent with our
experience. This fact can also be obvious found in the peak area
in force–time curves (Fig. 15(b)). The parameters used in Fig.
9(a) are from 5% CNT/SE, not VHB 4910, so we further fit the
experiment results of 1.25 kV with linear model in Fig. 15(c).

Different from a mechanical test, it is hard to control the load-
ing, unloading, and reloading in a constant strain rate by voltage.
We fixed the pure-sheared VHB 4910 specimens at 300% strain,
and then apply an AC voltage with amplitude 3 kV and frequency
0.05 Hz. We expected to read the force change during the applica-
tion of AC voltage. When the AC voltage is on, the active area
expands; the force will reach a local minimum at the peak of AC
voltage. If the material softens after every cycle, the force to
maintain the fixed strain will drop. But in the practical experi-
ment, although we recorded the force minimum and the force
drop, the strong viscoelasticity-induced stress relaxation exists; it
is hard to tell to what extent the softening contributes to the phe-
nomenon. But we still believe the softening happens under the
repeated voltage. Thus, it is a challenge to investigate the soften-
ing behavior under voltage-controlled process. We hope to discuss
more about this area in the future.

6 Conclusions

In this paper, we investigated the electromechanical softening
behavior of CNT filled silicon elastomer and VHB 4910. We pre-
pared the carbon nanotube filled silicon elastomer and character-
ized its softening behavior by stepwise cyclic tensile test. Based
on the pseudo-elastic theory, we modeled the Mullins effect, and
the model fits well with the stepwise cyclic tensile test. Then we
investigated the idealized softening behavior under electrome-
chanical coupling field by combining the thermodynamics of DE
and pseudo-elastic theory. Two cases are considered: linear
dielectric and saturated dielectric. For linear dielectric with an ini-
tial force, because of softening, “residual strain” will appear after
every voltage-controlled cycle, and instability may be eliminated
in reloading. For saturated dielectric, we assume the dielectric is
all linear before polarization saturation. After saturation, the mate-
rial response changes a lot, which also affects the following

softening behavior. At last, viscoelasticity was further incorpo-
rated to account for rate-dependent softening deformation, and we
also carried out some simple electromechanical experiments on
4910 to explore its softening behavior.

In our paper, we provide a broadly applicable method to study
softening behavior under electromechanical coupling field, the
research object can be extended into a class of material—the soft
deformable dielectrics, and the conclusions are expected to be
similar. However, due to the limit of conditions, how to fully dem-
onstrate these results is still a challenge. We hope to discuss these
matters in future.
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