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Abstract
A shape memory light-induced microfluidic technology is applied in preprogrammed
microfluidic chip based on shape memory gold nanoparticles/poly (vinyl alcohol)
nanocomposites. The shape memory gold nanoparticles/poly (vinyl alcohol) nanocomposites
display excellent light-induced shape memory property with recovery ratio of nearly 100% in
visible light. The crosslinked network of light-induced shape memory gold nanoparticles/poly
(vinyl alcohol) nanocomposites forms by aldol reaction, esterification, and/or hydrogen bonding
of poly (vinyl alcohol), glutaraldehyde, and gold nanoparticles. The light-induced shape memory
mechanism of shape memory gold nanoparticles/poly (vinyl alcohol) nanocomposites is based
on photothermal effect of gold nanoparticles and shape memory effect of poly (vinyl alcohol)-
based shape memory polymer (SMP). In this report, a light-induced microfluidic microvalve is
demonstrated based on the shape memory gold nanoparticles/poly (vinyl alcohol)
nanocomposites. This research presents demonstration of the shape memory light-induced
intelligent microfluidic chip. The light-induced SMP microfluidic microvalve would yield
practical, physical, and technological advantages for disposable integrated microfluidic chip
laboratories.

Keywords: photothermal effect, crosslinked network, light-induced microfluidic, shape memory
polymer, nanocomposite

(Some figures may appear in colour only in the online journal)

1. Introduction

The SMP has the capacity to recover their permanent geo-
metry from large-strain deformation by external stimuli such
as heat, light, magnetic field, or electric current [1, 2]. The
main advantages of SMP are low material and fabrication cost

coupled with simple operation and integration [3, 4]. The
light-induced SMP can be remotely controlled without
touching the material and topically activated without
impacting other components [1, 3–5]. The challenge of light-
induced SMP is how to convert light-induced shape memory
effect (SME) between the molecular level and macroscopic
movement. In one hand, the photo-reversible covalent
crosslinking has been used as switch of SME under light
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radiation [6]. In other hand, some functional nanofillers have
been studied for light-induced SME [7–13]. The light-induced
SMP can convert optical energy into mechanical work which
has potential application in actuators, smart curtains, artificial
muscles, and microelectromechanical systems [14–18]. One
of the essential technologies for integrated microfluidic
devices is microfluidic microvalve. Sugiura et al proposed a
computer-controlled micropatterned on-chip fluid control
strategies of a photoresponsive hydrogel sheet [19]. Although
tremendous efforts have been devoted to developing various
microvalves for microfluidic chip [20, 21], there are still
many challenging issues to develop microfluidic systems for
disposable integrated microfluidic chip laboratories [22–25].

The light-induced SMP composites have a promising
application in novel microfluidic devices which is smaller
scales by soft-lithography, low material and fabrication cost
coupled with simple operation [3, 4]. A shape memory light-
induced microfluidic chip can be remotely controlled and
topically activated without impacting other components [1,
3–5], which have a promising application in microscale
solution mixing, detection and control of chemical reactions
with lower reagent or specimen consumption, preparing
sample for mass spectrometry as well as biomolecule and
biomedical cell separation [24, 26–31]. Lo et al reported an
infrared light-responsive poly(N-isopropylacrylamide)
hydrogel nanocomposite incorporating glycidyl methacrylate
functionalized graphene oxide (GO–GMA) [32]. It is gen-
erally known that gold nanoparticles (AuNPs) can efficiently
convert light energy into thermal energy [33, 34]. The pho-
tothermal effect of AuNPs can be used to trigger SME of the
light-induced SMP nanocomposites [33–39]. Poly (vinyl
alcohol)-based SMP has good thermally-driven shape mem-
ory property and ample hydroxyl group [40–43].

In this report, taking advantage of the photothermal effect
of AuNPs and the SME of poly (vinyl alcohol)-based SMP, a
shape memory light-induced microfluidic microvalve was
demonstrated in preprogrammed microfluidic chip based on
the shape memory gold nanoparticles/poly (vinyl alcohol)
nanocomposites (AuNPs/PVA). When the light-induced
microfluidic microvalve was exposed to light radiation, it can
recover its original shape and then generate a negative pres-
sure to inhale liquid samples into the microfluidic chip. The
light-induced AuNPs/PVA microfluidic chip can achieve
transduction at smaller scales, simpler, more reliable, and
lower-cost actuation in a restricted environment [24–26].

2. Experimental section

2.1. Materials

Poly (vinyl alcohol) (PVA, Mw=85 000–124 000, >99%
hydrolysis), glutaraldehyde (GA, ∼50% in H2O), hydrogen
tetrachloroaurate (HAuCl4·3H2O) and sodium citrate
(Na3C6H5O7·2H2O, for molecular biology, �99%) were
bought from Sigma-Aldrich. Poly (dimethyl siloxane)
(PDMS, 184) was purchased from Dow Corning. SU-8
negative tone photoresist was purchased from MicroChem

Corp. Cyanoacrylate adhesive was purchased from Join
Leader Adhesive Co., Ltd. The ultrapure deionized water was
used throughout the experiments.

2.2. Synthesis of light-induced shape memory gold
nanoparticles/poly (vinyl alcohol) nanocomposites

HAuCl4 solution (20 ml, 1 mM) was mixed with Na3C6H5O7

solution (2 ml, 1 wt%) and stirred for 5 min at 100 °C. The
gold nanoparticles (AuNPs) were claret. The light-induced
shape memory AuNPs/PVA was prepared by PVA, GA, and
AuNPs. 8 g PVA was dissolved in 100 ml ultrapure deionized
water for 3 h at 98 °C. The PVA solution was mixed with a
certain amount of AuNPs at room temperature and then stir-
red for 1 h. The pH value of the solution was adjusted to 3.5
by adding hydrochloric acid, and then 3 ml GA was added in
the solution. After stirring for 2 h, the bubble-free SMP pre-
cursor sol was obtained in vacuum and then poured into the
mold at room temperature. It was dried for 48 h at room
temperature and then for 3 h at 60 °C and 24 h at 50 °C in
vacuum oven to obtain the light-induced shape memory
AuNPs/PVA. The as-constructed nanocomposites were
assigned as x wt% Au/PVA (x wt% is AuNPs content relative
to nanocomposites weight: 0.1 wt% Au/PVA, 0.2 wt% Au/
PVA, and 0.3 wt% Au/PVA, respectively). For a comparison,
pure PVA-based SMP was assigned as PVA which was
synthesized in the same conditions without AuNPs.

2.3. Fabrication of poly (dimethyl siloxane) microchannel

The PDMS microchannel was prepared by soft-lithography
technique. The silicon wafer was washed by acetone and
concentrated HNO3. The SU-8 negative tone photoresist was
spin-coated onto silicon wafer. The silicon wafer was heated
at 100 °C to evaporate solvent, and then exposed in ultraviolet
through the designed mask. The SU-8 negative tone photo-
resists selectively crosslinked in the exposed region at 110 °C.
The master was formed by removing the non-crosslinked SU-
8 negative tone photoresists with SU-8 developer. The PDMS
pre-polymer and the curing agent were blended at a certain
mass ratio (10:1), removed bubble under vacuum, poured
onto the master, and heated for 30 min at 80 °C. The PDMS
with designed microfluidic channels was stripped away the
master. The height and width of microfluidic channels are
100 μm, respectively. The inlets were made by perforating
holes at designed positions of PDMS microfluidic channels.

2.4. Characterization

The samples were examined by x-ray powder diffraction
(XRD) with Empyrean XRD instrument (Panalytical, Hol-
land). The Fourier transform infrared spectra (FTIR) of the
samples were tested by Spectrum 100 Spectrometer (Perkin
Elmer, America). Dynamic mechanical analysis (DMA) was
carried out DMA/SDTA861e (Mettler-Toledo, Switzerland)
in a tension mold. The transmission electron microscope
(TEM) were performed on HITACHI H-7650 (HITACHI,
Japan). The ultraviolet–visible (UV–vis) spectrum of the
samples were tested by Shimadzu UV-3600 spectrometer
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(Shimadzu, Japan). Surface enhanced Raman scattering
(SERS) analyses were performed with XploRA™ PLUS
Raman spectromete (HORIBA, France). The temperature
distribution was recorded with VarioCAM® hr thermal
infrared camera system (Infra Tec, Germany).

3. Results and discussion

3.1. Characterization of light-induced shape memory
AuNPs/PVA

The light-induced shape memory AuNPs/PVA was prepared
via a simple solution co-blending method, such as descrip-
tions in experimental section. XRD was used to examine the
crystalline structure of the shape memory AuNPs/PVA.
Figure 1(A) is XRD diffraction patterns of pure PVA-based
SMP (designated as PVA), shape memory AuNPs/PVA
(designated as 0.1 wt% Au/PVA, 0.2 wt% Au/PVA, 0.3 wt%
Au/PVA), and gold nanoparticles (designated as Au). There
is a broad peak at about 2θ=19.5°, which can be assigned to
PVA. It is generally known that PVA is a crystalline polymer
with abundant hydrogen bonding between nearby hydroxyl
groups [44–46]. The peaks intensity at about 19.5° of PVA is
reduced when AuNPs are added. It suggests that the AuNPs
disturb the hydrogen bonding to decrease crystallinity. The
XRD diffraction patterns of AuNPs at 38°, 44°, 65°, and 78°,
corresponding to the (111), (200), (220), and (311) diffrac-
tion, is shown in figure 1(A-inset) [47]. The average crys-
talline size of AuNPs estimated by the Debye–Scherrer
equation is approximately 12 nm. The XRD diffraction pat-
terns of shape memory AuNPs/PVA reveal the diffraction
peaks for PVA at 19.5° and predominantly Au (111) at 38°,
confirming that AuNPs are doped into the PVA-based SMP
matrix.

FTIR was aimed at identify the interaction between
AuNPs and PVA-based SMP matrix. As shown in
figure 1(B), the AuNPs exhibit characteristic absorptions of –
OH bond bending vibration (1261 cm−1, 1396 cm−1) cou-
pling with C–O bond stretching vibration, C–O bond
stretching vibration of ester group (1020 cm−1, 1095 cm−1),
C=O bond stretching vibration of carboxylate group in
sodium citrate (1586 cm−1), and hydrogen bond waging
vibration (800 cm−1) [48–50]. In the spectrum of PVA, the
bands at 1234 cm−1, 1324 cm−1, 1375 cm−1, and 1420 cm−1

are due to –OH and –CH bending vibration [46, 49]. The
PVA also exhibits characteristic absorptions of C=O bond
stretching vibration (1651 cm−1, 1712 cm−1), C–O bond
stretching vibration (1088 cm−1), and hydrogen bond waging
vibration (845 cm−1) [46, 50–60]. The –OH bond bending
vibration peaks, C–O bond stretching vibration peak, and the
C=O bond stretching vibration peaks weaken and shift to
lower wavenumber with increasing AuNPs content in the
shape memory AuNPs/PVA (figure 1(B)). The FTIR results
reveal that there are hydrogen bonding and/or covalent
bonding between oxygen-containing functional groups of
AuNPs and PVA-based SMP matrix [52, 53]. Moreover, with
increasing AuNPs content, the crosslink density of the shape
memory AuNPs/PVA maybe increase since there are shorter
chain length between crosslink point, and more reduced –OH
group on the PVA molecular chain. Such bonding might
decrease the crystallinity of PVA matrix. As a rule of thumb,
the intensities of the 916 and 1141 cm−1 bands are sensitive
to the crystallinity of PVA matrix [49]. As shown in
figure 1(B), the intensities of the 916 and 1141 cm−1 bands
weaken with increasing AuNPs content of the shape memory
AuNPs/PVA. It suggests the crystallinity of PVA matrix
reduce with increasing AuNPs content of the shape memory
AuNPs/PVA, which match well with the XRD result. These
results provide an evidence to support our previous statement.

Figure 1. Crystalline structure and interaction. XRD patterns (A) and FTIR (B) of PVA, 0.1 wt% Au/PVA, 0.2 wt% Au/PVA, 0.3 wt% Au/
PVA, and Au (inset).
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The oxygen-containing functional groups of AuNPs can
connect to PVA chain via hydrogen bonding and/or covalent
bond. AuNPs and PVA matrix can stably co-exist in the shape
memory AuNPs/PVA, and AuNPs content of the nano-
composites can be controlled.

As shown in figure 2(A), the crosslinked network of the
shape memory AuNPs/PVA is constructed by aldol reaction,
esterification, and/or hydrogen bonding of –OH groups on
the PVA molecular chains, two C=O groups of glutar-
aldehyde, and/or oxygen-containing functional groups of
AuNPs. The –OH group on the PVA molecular chain can
form hydrogen bonding, hemiacetal, and/or full acetal of six-
membered ring with two C=O groups of glutaraldehyde [41].
The polymer chains also can connect with oxygen-containing
functional groups of AuNPs.

Figure 2(B) presents the evolution of loss tangent (tan δ)
versus temperature for PVA and the shape memory AuNPs/
PVA. In the graph, the tan δ peak is attributed to the glass
transition in amorphous domains of the PVA-based SMP
matrix and the maximum tan δ peak is designated as the
transition temperature (Ttrans) [58–65]. The external energy is
effectively stored in the SMP below Ttrans, and completely
released above Ttrans [52, 55]. The XRD and FTIR results
confirm the crosslink density of the shape memory AuNPs/
PVA maybe increase with increasing AuNPs content. As
shown in figure 2(B), Ttrans moves to higher temperature as
AuNPs content increase, which can be attributed to stronger
restriction of chain segments movement in amorphous region
with crosslink density increasing [41]. As stated, Ttrans of the
shape memory AuNPs/PVA can be adjusted by AuNPs
content.

To demonstrate the light-induced SME of the shape
memory AuNPs/PVA, rectangular strip shape memory
AuNPs/PVA was cut by laser for testing its light-induced
shape recovery behavior. The straight bar shaped (permanent

shape) AuNPs/PVA was heated above Ttrans+20 °C for
10 min in oven. After that, the shape memory AuNPs/PVA
was bent into ‘V’-like shape. The bent shape memory
AuNPs/PVA was fixed on the mandrel by external force and
cooled to 25 °C holding for 20 min. The bent shape memory
AuNPs/PVA was left at room temperature for 24 h without
apparent recovery. To investigate the light-induced shape
recovery behavior of shape memory AuNPs/PVA, the bent
shape memory AuNPs/PVA was exposed in visible light
(0.2W cm−2). The shape recovery angle was designated as
the angle between the two halves of bent shape memory
AuNPs/PVA and directly read from protractor values. The
shape recovery ratio (Rr) is quantified as follows:

= ´( )R
A

A
% 100.r

r

p

Here, Ap is initial angle and Ar is recovered angle.
The shape recovery ratio was plotted as a function of the

light exposure time. In figure 3, the light-induced shape
memory recovery ratio of shape memory AuNPs/PVA
composites are nearly 100% in visible light. However, PVA
has no apparent recovery in visible light. The light-induced
shape memory recovery ratio of shape memory AuNPs/PVA
composites increase with exposed time in visible light. Fur-
thermore, the light-induced shape memory recovery ratio of
the composites increase with AuNPs content at the same
exposed time. The shape recovery ratio of shape memory
AuNPs/PVA composites strongly depended on the AuNPs
content. The 0.3 wt% shape memory AuNPs/PVA can
recover its original shape from ‘V’-like shape (temporary
shape) within 5 s in the visible light. This result confirms that
shape memory AuNPs/PVA composites have good light-
induced shape memory property and AuNPs play a key role in
light-induced SME of the composites. The light-induced

Figure 2. Crosslinked network and thermodynamic property. The crosslinked network of the shape memory AuNPs/PVA (A) and loss
tangent (tan δ) versus temperature curves (B) of PVA, 0.1 wt% Au/PVA, 0.2 wt% Au/PVA, and 0.3 wt% Au/PVA.
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shape memory property of the composites can be controlled
by programming the AuNPs content.

3.2. Mechanism of light-induced SME

Herein, the light-induced SME mechanism of the AuNPs/
PVA is studied. The morphology of AuNPs was examined by
using TEM as shown in figure 4(A-inset). It can be seen that
AuNPs are quasi spherical nanoparticle with good dis-
persibility and the average diameters of AuNPs are approxi-
mately 12 nm, which are consistent with FTIR and XRD

results. The optical absorption behavior of AuNPs was ana-
lyzed using UV–vis absorption spectrometer.

The quasi spherical AuNPs display an intense optical
absorption band (λmax≈524 nm) in figure 4(A), which is
attributed to surface plasmon resonance (SPR) effect of
AuNPs [66]. The d electrons of AuNPs are free to travel
through the material. When the incident light wavelength is
much larger than the nanoparticle size, the resonant oscilla-
tions of conduction electrons at the interface between nega-
tive and positive permittivity are stimulated by the incident
light [66, 67]. The enhanced electromagnetic field of metal
nanoparticles can affect the local environment to enhance
Raman signal of molecule on the metal nanoparticles surface
[66]. From figure 4(B), the AuNPs have the strong band
around 1583 cm−1 in SERS spectroscopy. These results
clearly demonstrate that the as-prepared AuNPs have good
SPR property.

The photothermal effect of PVA and the shape memory
AuNPs/PVA can be assessed by thermal infrared camera
system [68]. When the visible light irradiate on the sample,
the temperature variation on the irradiated region of sample
was detected by thermal infrared camera system. As shown in
figure 5, the temperature of irradiated PVA and the irradiated
shape memory AuNPs/PVA rises with exposed time in
visible light. For pure PVA, there is no significant change.
However, the temperature of the irradiated shape memory
AuNPs/PVA can rises to above Ttrans within 5 s. At the same
time, the temperature of the irradiated shape memory AuNPs/
PVA increase with increasing AuNPs content. AuNPs can
transform light energy into thermal energy [33–39]. AuNPs
are ideal functional component for light-induced SMP com-
posites due to its good photothermal property, dispersibility,
stability, and controllability. Therefore, the photothermal
effect of AuNPs can be used to trigger SME of the light-
induced SMP nanocomposites. The photothermal property of

Figure 3. Shape memory property. Light-induced shape recovery
behavior of Au/PVA with different Au content in visible light
(0.2 W cm−2): shape recovery ratio versus light exposure time.

Figure 4. Optical performance and microstructure. UV–vis absorption spectrum of Au (inset: (a) TEM image of Au and (b) claret colloidal
Au) (A) and SERS spectroscopy of Au (inset: photothermal effect of AuNPs) (B).
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AuNPs/PVA is attributed to good visible light absorption and
SPR property of AuNPs as represented in figures 4 and 5. The
light-induced SME of AuNPs/PVA is based on the photo-
thermal effect of AuNPs and the SME of PVA-based SMP.

The temporary shape of SMP is deformed by extra force
with frozen stress [4]. By external stimulus, the frozen stress
will release to increase flexibility and result in recovering to
original stress-free state of polymer chains [1–4]. PVA-based
SMP has good thermally-driven shape memory property. The
photothermal effect of AuNPs absorbs light energy and
transforms it into thermal energy to trigger SME of the
AuNPs/PVA in visible light irradiation. The macroscopic
light-induced shape recovery property of shape memory
AuNPs/PVA is observed in figure 3. These results imply that
the light-induced shape memory AuNPs/PVA can convert
light energy into mechanical energy with release strain
energy. The polymer-based microfluidic systems is more
inexpensive and disposable alternatives to early silicon-based
and glass-based microfluidic systems [23]. It will enable the
design and creation of disposable integrated microfluidic chip
laboratories in an efficient and economical fashion. In con-
clusion, the light-induced shape memory AuNPs/PVA has
promising application prospects in remotely controlling or
topically activating microfluidic devices for disposable inte-
grated microfluidic chip laboratories.

3.3. Light-induced microfluidic chip

The shape memory light-induced microfluidic chip is con-
structed with the light-induced AuNPs/PVA microfluidic
microvalve, microfluidic channel, and glass wafer (figure 6).
The light-induced AuNPs/PVA microfluidic microvalve can
be predefined designate functions in the microfluidic chips.
The polytetrafluoroethylene mold with bump structure was

used to prepare the light-induced AuNPs/PVA microfluidic
microvalve with cavity volume in figure 6. To structurally
preprogrammed (predefine) the light-induced SMP micro-
fluidic microvalve, its morphology was changed to the flat
surface by hot embossing machine with heat (above
Ttrans+20 °C) and pressure (1MPa) for 10 min and then
keeping the pressure during the cooling process. The struc-
turally preprogrammed light-induced AuNPs/PVA micro-
fluidic microvalve can produce vacuum pressure via
recovering the cavity volume (permanent shape) from the flat
surface (temporary shape). Under light radiation, the pre-
programmed light-induced AuNPs/PVA microfluidic micro-
valve recovers the cavity volume to generate negative
pressure in the microfluidic chip. The liquid samples are
sucked into the light-induced microfluidic chip by the vacuum
pressure.

As shown in figure 6, the microfluidic channels include
two inlets, channel, detection region, and a microcapsule in
this research by soft-lithography. The detection region is
smaller scales which have a promising application in micro-
scale solution mixing, detection and control of chemical
reactions with lower reagent or specimen consumption, pre-
paring sample for mass spectrometry as well as biomolecule
and biomedical cell separation [24, 26–31]. The transparent
PDMS with designed microfluidic channels and the glass
wafer with one connecting micropore of the microfluidic chip
substrate were implemented bonding utilizing vacuum oxy-
gen plasma. The connecting micropore of glass wafer can
interconnect between the microfluidic channels and the light-
induced microfluidic microvalve to inhale air and waste liquid
samples into the microvalve. Finally, the light-induced SMP
microfluidic microvalve was assembled with the bonded
microfluidic chip substrate using cyanoacrylate adhesive.

To verify the performance of the light-induced shape
memory AuNPs/PVA microfluidic chip, liquid samples (red
ink and blue ink) were dropped on the inlets of microfluidic
chip by pipette, respectively. The liquid samples kept on the
inlets before light irradiation. As shown in figure 7, the liquid
samples are inhaled into the light-induced microfluidic chip in
visible light. The liquid samples take approximately 40 s to
completely fill the microfluidic channels and arrive at the
detection region. Under light irradiation, the preprogrammed
light-induced shape memory AuNPs/PVA microfluidic
microvalve can generate negative pressure for sucking the
liquid samples via the shape transformation with releasing
preprogrammed strain energy to perform mechanical work
(figure 7). The light-induced SMP AuNPs/PVA microfluidic
microvalve can be scaled down to the nanometer scale using
nanoimprinting and hot-embossing manufacturing technolo-
gies to achieve miniaturization of chemical and biological
analysis microfluidic laboratories.

Most chemical and biological analysis systems require
microfluidic operations at room temperature. The light-
induced method can reduce actuation power consumption
without significantly affecting samples or other components,
so it would be better than thermal, electrical and other driven
methods. Moreover, the light-induced SMP microfluidic chip
is a typical single-use device and can benefit avoiding the

Figure 5. Photothermal effect in 5 s. Temperature versus light
exposure time and infrared thermal images at 5 s of PVA, 0.1 wt%
Au/PVA, 0.2 wt% Au/PVA, and 0.3 wt% Au/PVA (3D surface
temperature distribution at 5 s) in visible light (0.2 W cm−2).
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Figure 6. Design and packaging process of light-induced microfluidic chip. The transparent PDMS with designed microfluidic channels
including two inlets, channel, detection region, and a microcapsule. The glass wafer with one connecting micropore. The light-induced
AuNPs/PVA microfluidic microvalve with cavity volume.

Figure 7. Design principle (A) and performance of light-induced microfluidic chip (B). The liquid samples (red ink and blue ink) stayed on
the inlets before light irradiation. In visible light, the vacuum pressure (Pvacuum) was generated by recovering the cavity volume (permanent
shape) from the flat surface (temporary shape) of the light-induced AuNPs/PVA microfluidic microvalve. Liquid samples were sucked into
the microfluidic chip (Pvacuum<P0).
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cross-contamination in the chemical and biological analysis
[19–23]. Therefore, the light-induced SMP AuNPs/PVA
microfluidic device would be a promising alternative for
disposable chemical and biological analysis microfluidic
laboratories.

4. Conclusions

In this study, the shape memory light-induced shape memory
AuNPs/PVA microfluidic chip was demonstrated. The shape
memory AuNPs/PVA was synthesized by a simple solution
co-blending method. The shape memory AuNPs/PVA
exhibited excellent light-induced shape memory property in
the visible light. The 0.3 wt% shape memory AuNPs/PVA
can recover its original shape within 5 s in the visible light.
The light-induced SME mechanism was attributed to the
photothermal effect of AuNPs and the SME of PVA-based
SMP. Under light irradiation, the preprogrammed light-
induced shape memory AuNPs/PVA microfluidic microvalve
generated negative pressure for inhaling the liquid samples
via recovering the cavity volume (permanent shape) from the
flat surface (temporary shape). This shape memory light-
induced microfluidic chip is expected to contribute the prac-
tical application of disposable integrated microfluidic chip
laboratories.
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