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Abstract
This paper describes a new concept of an active honeycomb structure for morphing wingtip
applications based on tubular inflatable systems and an auxetic cellular structure. A work-energy
model to predict the output honeycomb displacement versus input pressure is developed together
with a finite element formulation, and the results are compared with the data obtained from a
small-scale example of an active honeycomb. An analysis of the hysteresis associated with
multiple cyclic loading is also provided, and design considerations for a larger-scale wingtip
demonstrator are made.
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(Some figures may appear in colour only in the online journal)

Nomenclature

a Length of the oblique wall of a honeycomb
unit cell.

b Length of the straight wall of a honeycomb
unit cell.

α Top angle between the oblique and straight
honeycomb walls.

β Lower angle between the oblique and straight
honeycomb walls.

θ Angle between the two straight honeycomb
cell walls.

h Distance between the center of the tube and
the intersection of the lines related to the
straight honeycomb cell walls.

R0 Initial (baseline) radius of the tube.

θ0 Value of θ while the tube has a circular cross
section.

r1 Radius of the lower circular arc.

r2 Radius of the upper circular arc.

c Length of the contact surface between the
straight honeycomb cell walls and the tube.

Δh Distance between the midpoints of c and b.

αmin Minimum value of the top angle.

βmin
Minimum value of the lower angle.

Win Input work to the system.

Wout Output work from the system.

WP Work done by the pressurized air inside
the tube.

WG Work done by the weight.

WH Work related to the deformation of the
honeycomb.

WV Work related to the volumetric expansion of
the tube.
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WE Work related to the elastic expansion of
the tube.

P Input pressure to the internal surface of
the tube.

θ1 Initial angle of the honeycomb configuration.

w Width of the rigid wall.

Gwall Weight of the upper wooden wall.

G Loading weight.

S Displacement of the loading weight.

L Length of the upper rigid wall.

V Volume of the tube.

ΔV Volume variation of the tube.

E Young’s modulus of the tube material.

A Tube’s cross-sectional area.

R Radius of the tube.

t Thickness of the tube.

tb Thickness of the honeycomb wall.

tm Thickness of the wooden wall.

′P Input pressure to the tube.

θ′ Final angle between the cell walls under the
applied pressure, ′P .

H1 Initial height of point B.

ΔH Deformation of point B.

WAn Energy absorbed within the nth cycle.

θ10 Initial angle of the honeycomb configuration,
θ1.

θ1n nth cycle initial angle of the honeycomb
configuration.

θ −1(n 1) (n− 1)th cycle initial angle of the honeycomb
configuration.

ΔH n1 Height variation after the nth cycle.

Δ −H n1( 1) Height variation after the (n− 1)th cycle.

W Applied work during the loading phase.

ΔW Dissipated energy during the loading phase.

η Loss factor.

1. Introduction

Morphing technologies have demonstrated a clear ability to
improve the general performance of aircraft [1, 2]. The
morphing wingtip is a typical example of a shape-changing
structure that improves the lift-to-drag ratio during climb by
effectively changing the length of the wingspan [3, 4].
Additional advantages of using a morphing wingtip include
the reduction of the induced drag at high speeds, the increase
of the maneuverability by using the wingtip as an added
surface control, and the reduction of the overall fuel con-
sumption in high-altitude long-endurance flights. Another

advantage provided by morphing wing tips is the possibility
of reducing the parking size of airplanes, similar to the
foldable wing tips used in carrier-based aircraft. Over the last
two decades, new classes of structures and materials have
been evaluated for morphing aircraft applications, including
mechanical structures actuated by a motor [5, 6], inflatable
systems [7], corrugated skins [8], multistable structures
[9, 10], and shape-memory-alloy- (SMA) actuated compo-
nents [11]. Honeycombs and cellular structures also constitute
viable design options for morphing wing configura-
tions [12, 13].

Honeycombs play an important role in reducing the mass
of traditional airframe structures by providing a very high
bending stiffness per unit weight, a feature which has also
been extensively used in wingbox design [14–17]. The
advantages of a honeycomb or cellular structure also lay in its
deformability, which has been used to produce novel furniture
designs [18] and various morphing configurations applied to
wind turbine blades [13], spanwise [19–21] and chordwise
morphing [22, 23], and variable camber wing designs [24].
Cellular morphing structures have also been used for
deployable antennas [25] and morphing reflectors [26]; the
latter exhibits a zero Poisson’s ratio effect and negative
stiffness under large deformations [27].

The majority of the morphing honeycomb solutions
proposed so far consist of passive designs. However, some
research groups have evaluated two active honeycomb con-
figurations based either on SMA cores [28, 29] or shape
memory polymers [30]. An actuation strategy adopted in
morphing honeycombs consists of using a pressured fluid
within the honeycomb cells. The concept of a pneumatic
pressured honeycomb for a variable camber wing has been
developed by producing an adaptive change via the applica-
tion of either uniform [31] or differential pressures in different
cells [32, 33]. Hydraulic tubes can also be used within hon-
eycombs or segmented structures in cases such as biomimetic
beam-steering antenna concepts [34, 35], robotic platforms
[36–38], and prosthetic hands [39].

This paper describes a morphing honeycomb configura-
tion with a negative Poisson’s ratio (auxetic) topology,
actuated by inflatable tubes. A sample unit cell of the active
honeycomb is manufactured and tested, and relations between
the input pressure in the inflatable tube and the overall
deformation of the morphing structures are measured. Auxetic
configurations feature a volumetric expansion of the solid
under tensile loading and converse shrinking when the load-
ing is compressive [40–42]. The type of auxetic honeycomb
considered in this work has the classical re-entrant (butterfly)
configuration [43]. As we show in the following paragraphs,
the auxetic honeycomb is instrumental in avoiding the crea-
tion of external bumps during the morphing of the wingtip.
An approximate analytical model is also developed to
describe the behaviour of the output work of the active
honeycomb versus the input pressures and other geometry
parameters that define the unit cell. A finite element (FE)
model is developed both for further benchmarks and to assess
the limits of the validity of the analytical model. A reduced-
scale sample of the active honeycomb concept was also
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produced, showing satisfactory agreement with the predic-
tions provided by the model. The sample also shows some
specific behaviour associated with the hysteresis of the system
when undergoing cyclic loading, a feature that must be taken
into account when dealing with different aspects of the
morphing wingtip design.

2. Morphing wingtip concept

The honeycomb structural concept for the morphing wingtip
developed in this paper is shown in figure 1. It consists of a
wing box, the wingtip, a hinge system, and a recovery spring.
A negative-Poisson’s-ratio butterfly honeycomb with internal
pressured tubes and a flexible composite skin make the cel-
lular structure. The fundamental layout of the morphing
wingtip demonstrator is as follows:

1. The wingtip is kept horizontal by a keyway, while the
pressurized tube in the honeycomb helps sustain the
loading.

2. When the pressure in the tube is reduced to zero, the
wingtip leaves the keyway and flaps around the hinge
under the action of the lift force and a recovery spring
(figure 2). The skin follows the contraction of the cellular
structure, maintaining the smoothness of the external

surface. The wingtip slots into another keyway to form
an angle with the horizontal plane.

3. When air is pressurized into the tube, the wingtip leaves
the keyway and overcomes the lift force and the recovery
from the spring to return to a horizontal position. At the
same time, the flexible composite skin is kept under
tension.

The selection of a negative-Poisson’s-ratio honeycomb
for the cellular layout is clear from observing figure 2. When
the wingtip flaps upwards, the honeycomb is compacted, and
by auxetic effect the cellular core tends to deform toward the
interior of the transverse wing section. On the contrary, the
use of a positive-Poisson’s-ratio honeycomb provides an
external expansion of the structure during compression,
reducing the flapping angle and adding drag by the creation of
a bump.

3. Modeling

Two aspects considered for the active actuating honeycomb
concept are the change in geometry during the deformation
and the output work of the structure. The model described in
this paragraph consists of a geometric part and a work-energy
component. The deformations of the active honeycomb under
different input pressures were also simulated using ABAQUS
with linear elastic (LE) and hyperelastic properties of the
tubes, respectively.

3.1. Honeycomb cell geometry

The geometry of a single cell of the active actuating honey-
comb is shown in figure 3. The two circular tubes are fixed to
the honeycomb’s straight cell walls. When the straight walls
are compressed, the tubes assume a new shape, with their
section consisting of two circular arcs at the upper and lower
sides and two straight lines at the left and right ends. There
are four assumptions made to model this structure:

Figure 1. Structural layout of the morphing wingtip.

Figure 2. Deformation mechanism of the proposed morphing
wingtip.

Figure 3. Unit cell model of the active honeycomb.
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1. The honeycomb configuration and the tubes are assumed
to be symmetric with respect to the interface line between
the two tubes.

2. The section of a tube is symmetric with respect to the line
that connects the centers of the two arcs. This line
intersects the two straight cell walls at point O.

3. There is no sliding between the tubes and the honeycomb
walls during pressurization and depressurization (i.e., the
parameter, h, is a constant).

4. Hoop strains in the tubes are neglected.

When the circumference of the tube is constant, the fol-
lowing relation is satisfied:

π θ π θ π− + + + =⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠r c r R

2
2

2
2 . (1)1 2 0

From (1), it is possible to derive:
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For a constant value of h, it is possible to derive from
(1)–(3) the expressions of c, r1, and r2 as functions of θ, and
therefore reconstruct the change of geometry of the unit cell:
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The behaviour of the nondimensional parameters c R/ 0,
r R/1 0, and r R/2 0 for =h 65 mm is shown in figure 4. When

= =r r 01 2 , the tube is compressed to a surface, and c

assumes its maximum value. However, this particular case is
only theoretical; because of the presence of a finite thickness
of the tube for =c 0 and = =r r R1 2 0, the tube becomes
circular, and the value of the θ for this particular case is
defined as θ0.

From inspection of the unit cell geometry (figure 3), it is
also possible to express the parameters α and β as functions
of θ. From observing the triangle A1A2B2, one can infer that

α α= =A B A A asin sin1 2 1 2 . Similarly, from triangle OA1B2,
it is possible to observe that

= = +θ θ( )A B OB A B OAtan tan1 2 2 2 2 2 2 2
. The segments

A1B2 and OA2 can be further expanded as:

α α

Δ

= =

= − −

A B A A a

OA h h
b

cos cos ,

2
. (7)

2 2 1 2

2

Therefore, Δ α= − − + θ( )A B h h a cos tanb
1 2 2 2

, and

the following relation can be obtained:

Δ α θ α− − + =⎜ ⎟⎛
⎝

⎞
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2
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2
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Similarly, from triangle A3A4B1, one obtains
β β= =A B A A asin sin4 1 3 4 . From triangle OA4B1, one

obtains = = −θ θ( )A B OB OA A Btan tan4 1 1 2 3 3 1 2
. The seg-

ments A3B1 and OA3 can also be expressed as:

β β
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= − +
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2
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3

In this case, the segment A4B1 can be expanded as

Δ β= − + − θ( )A B h h a cos tanb
4 1 2 2

. It is possible, there-

fore, to find the following recursive relation:

Δ β θ β− + − =⎜ ⎟⎛
⎝

⎞
⎠h h

b
a a

2
cos tan

2
sin . (10)

The minimum values αmin and βmin are reached when the
oblique cell ribs are tangential to the circular arcs of the tube:

β Δ
=

− −b c
h

r
tan

2
2 2 (11)min

2

α Δ
=

− +b c
h

r
tan

2
2 2 . (12)min

1

3.2. Work-energy model

Figure 5 shows a schematic diagram of a single-cell active
honeycomb. The bottom cell wall is fixed, while the upper
straight and oblique cell ribs are in constant contact with a
rigid wall connected to a hinge at an angle of θ. The initial
angle of the configuration is θ1. The length of the upper rigid
wall is L. The distance between the center of the straight cell
wall honeycomb and the hinge (point O) is h. The transverse
width of the structure is w. The unit cell is subjected to

Figure 4. Relationships between c R/ 0, r R/1 0, and r R/2 0 versus θ for
=h 65 mm.
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loading by weight through a concentrated force located at the
tip of the inclined rigid wall.

The model considers the adopted assumptions to simulate
the actuation of the ‘smart-stick’ concept, which is inspired by
the deformation mechanism of spider legs [36–38]. The
whole system deforms under a rigid-type body motion pro-
duced by the inflation of the air inside the tubes (figure 5(a)).
As a first approximation, the contribution provided by the
restoring force of the tubes subjected to compression by an
external load is neglected [36–38]. Therefore, the system
receives as input work (Win) the one generated by the inflation
of the two tubes with air (WP):

=W W2 . (13)in P

The input work has to overcome the work done by the
weight (WG), the one related to the deformation of the hon-
eycomb (WH), the volume expansion of the tube (WV ), and the
work related to the tube’s elastic expansion (WE). Therefore,
the sum (Wout) of these energies is:

= + + +W W W W W2 2 . (14)out G H V E

Neglecting the influence of nonconservative forces (i.e.,
friction) in the system, by conservation of energy one can
obtain:

=W W . (15)in out

The work of the pressured air is equal to the internal
pressure in one tube ( θP ( )) multiplied by the contact area

between the tube and the wall, and the distance, θhd 2:

∫ θ θ θ=
θ

θ
W

P c wh
d

( ) ( )

2
, (16)P

1

where θc ( ) can be obtained from equation (4).
The work done by the weight consists of two parts: the

contribution from the loading weight (G), and the work done
by the weight of the upper rigid wall (Gwall),

∫ ∫
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sin 2
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1
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Note that the contribution from the honeycomb cell wall
is neglected because of the intrinsic low weight on the core.
The contribution from the strain energy associated with the
flexing of the honeycomb ribs (WH) is also neglected because
of the very weak in-plane stiffness induced by the low relative
density of the core used for this design.

The angle of the system is θ0 when the tube assumes a
circular shape. For θ θ⩽ 0, the work of the tube is equal to the
work related to its volume expansion (WV ). The volume of the
tube can be obtained from inspection as:

θ π θ θ θ θ θ

π θ θ

= − + +

+ +
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2

Therefore, the work related to the volume change is:

∫
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1

If the pressure is kept constant, the work associated with
the volume expansion depends only on the difference
between the values of the initial and final volumes.
Equation (19) can be therefore simplified into:

θ θ= −( )( )W P V V( ) . (20)V 1

For θ θ> 0, the work on the tube is the work related to
the elastic expansion of the tube itself. In that case, the tube
will be dilated into a larger circle, and the corresponding
mechanical work can be expressed as:

∫ π π=
−

= −
( )

( )W
EA R R

R
dR

EA

R
R R2 . (21)E

R

R 0

0 0
0

2

0

From inspection, = θ( )R h tan
4
, and equation (21) can be

therefore be expressed as:
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2

Figure 5. (a) Layout of the forces and pressures acting on the single
unit cell. (b) Work of the forces and pressures present in the system.
Quantities denoted in blue indicate the input energies, and quantities
in black are related to the output energies.
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3.3. FE model

Figure 6(a) shows the solid model of the prototype structure,
which was used to develop the FE mesh and simulation using
ABAQUS 6.10. The lower (wooden) beam is fixed. The
intersection line of the two beams is fixed in displacement and
free in rotation, allowing the upper wooden beam to rotate
freely around this line. Forces along the vertical direction are
applied on the nodes of the right end of the upper beam to
represent the loading weights. The honeycomb unit cell is
fixed between the two beams. The compressed shape of the
tube is calculated by using equations (4)–(6). The two tubes
are in contact with the honeycomb walls and with each other,
but no contact friction is considered in this analysis. A uni-
form pressure distribution is applied to the internal surface of
the tube (figure 6(b)). The deformations of the honeycomb are
obtained under different loading weights and input pressures.
In this work, the tube is described by as having both LE and
hyperelastic (Mooney-Rivlin) properties. Both the linear
elastic isotropic material (Young’s modulus 3MPa [44],
Poisson’s ratio of 0.4) and the hyperelastic isotropic material
(C10 = 2.3MPa, C01 = 0.58MPa [45], and D1 = 0.001) are
referred to the polyvinyl chloride (PVC) material of the tubes.
Each tube was meshed using 9952 C3D20R elements (10
elements across the thickness of the tubes). The wooden
plates (Young’s modulus of 12 GPa, Poisson’s ratio of 0.2)
and the paper honeycomb (Young’s modulus of 246 GPa,
Poison’s ratio of 0.10) were meshed using 2000 and 4976
C3D20R elements, respectively. The solver used consisted of
a medial axis algorithm.

4. Displacement-pressure relation and experimental
model

Figure 7 shows the unit cell active honeycomb demonstrator
used for the experimental analysis. The tubes (in red) are
made of PVC (Shenzhen Longxiang Electronic Co., LTD).
The central radius of the tube is =R 2.5 mm0 , with thickness

equal to =t 1 mm. The tubes were glued between the hon-
eycombs using 3M double-sided adhesive to avoid mis-
alignment during the deformation. The negative-Poisson’s-
ratio butterfly honeycombs (in orange) are made from paper
glued on wood beams (in black) with =t 0.3 mmb thickness,
and the distance between the center of the tube and O is equal
to =h 65 mm. The length of the upper rigid wall, OA, is

=L 116 mm. The length of the honeycomb oblique rib is
=a 8 mm, while the length of the straight rib is =b 32 mm.

The two wood panels are joined by a steel hinge (in purple)
with a width of =w 25 mm and a thickness equal to

=t 4 mmm a. The lower wood panel is fixed with a jaw vice
(in blue). A Kevlar wire rope is used to suspend different
weights (in green). The angle between the two wood panels is
given by the following equation:

θ
Δ

′ =
+H H

h
tan . (23)1

During the actuation of the honeycomb, the input pres-
sure, ′P , is kept constant at specific steps, and θ′ is considered
to be the final angle between the cell walls under the applied
pressure, ′P . The main mechanical sources of deformation in
the system are considered to be the input air pressure and the
recovery force of the tube. The primary output work is
assumed to be generated from the load provided by the
weight. Because the contribution provided by the tubes during
the deformation may be considered small (i.e., both WE and
WV are negligible), equation (16) can therefore be simplified
as:

∫ θ θ

θ θ

′ ′ ′

= + ′ −
θ

θ′

( ) ( )

P c whd

G G L

2 ( )

/2 sin sin . (24)wall 1

1

By differentiating both sides of equation (23), one
obtains:

θ θ′ ′ = + ′( )whP c G G L2 ( ) /2 cos . (25)wallmin

Figure 6. FE model of the system composed by the inflatable tubes
and the auxetic unit cell. (a) Solid model. (b) View of the tubes when
pressure is applied to the internal surface.

A

Figure 7. The frame and structure of the testing device.

6

Smart Mater. Struct. 23 (2014) 125023 J Sun et al



θ
θ

′ =
+ ′

′
( )

P
G G L

whc

/2 cos

2 ( )
. (26)

wall

Equations (21) and (24) can be used to predict the input
pressure for a needed vertical height, ΔH , on the honeycomb
structure.

In the experimental case, the initial geometry parameters
are =H 4 mm1 and θ = °3.521 . The distance, ΔH , is mea-
sured using a laser distance-measuring instrument (KEY-
ENCE LK-GD500, accuracy: 0.01 mm) from a distance of
450 mm.

For this experiment, only one tube is used. The tube was
observed to undergo some localized kinking, but no internal
air blockage was apparent. One end of the tube was closed,
and the opposite was connected to an air compressor pump. A
pneumatic relief valve controlled the input pressure. The
pressure was measured using an air pressure gauge (YB-
150A, Hongqi Instrument Co. Ltd, range: 0–0.6MPa, accu-
racy: 0.005MPa). The distance, ΔH , is measured at increas-
ing values of input pressure under different weights (600 g,
800 g, and 1000 g). The step for a single increase test is
20 kPa, and the step for the three cyclic tests is 40 kPa.

5. Results and discussions

Figure 8 shows the ΔH-P′ relations predicted by FE using the
LE and hyperelastic mechanical properties for the tubes,
respectively. As expected, the higher the weight, the lower the
maximum change in height ΔH. When the input pressure is
larger than 0.1MPa, it is apparent that the deformation
increases linearly with the input pressure, and the deformation
in the LE model is larger than the deformation obtained from
the hyperelastic system. The LE model consistently provides
a softer response than the hyperelastic model. The softening
becomes significantly important when the input pressure is
higher, and it reaches a 22% decrease in ΔH for pressure
values of 0.28MPa. This fact can be explained by observing
that at the beginning of the pressure loading, the LE tubes first
tend to expand horizontally (along the h-direction) without

normal deformation, a feature that the hyperelastic tubes do
not show. Therefore, the tubes defined by the linear elastic
material tend to have a bigger deformation along the output
displacement.

Figure 9 shows the general comparison of the ΔH-P′
relations from the experimental, hyperelastic FE, and analy-
tical models for three different weight configurations. It is
apparent that the model tends to always be conservative
against both the experimental output deformation and the FE
deformation, especially when the input pressure is lower than
0.20MPa. However, the analytical model tends to approach
both the experimental and FE predictions at higher pressures.
One can also see a very good agreement when the lowest
weight loading condition (600 g) is applied. The FE model
also tends to provide a softer response under 0.18MPa,
although it is stiffer than the one predicted by the analytical
model. From observing figures 8 and 9, it is apparent that
contact friction and stick-slip (neglected both in the analytical
and FE models) play a significant role at lower levels of input
pressure and external weight. Moreover, a precise modeling
of both the geometry and the nonlinear geometric deformation
of the tubes also appears to be an important aspect that the
analytical model does not take into account at low P’ and high
G values. The analytical model is also limited by the rigid-
body load transfer assumption typical of the smart-stick
actuation unit. Another limit of the analytical model presented
in equation (24) and represented in figure 9 is the lack of the
resorting force from the compressed tubes. However, it is
worth noting that in the present model and sample, only one
inflatable unit was present, while the ‘smart-stick’ concept
(and the related analytical model) tend to work efficiently
when large numbers of smaller repeating units are connected
together [36], similar to the configuration proposed in
figure 1. High levels of input pressure show that stick-slip and
contact friction are significantly less important, and the
approximation used to describe the tubes in the analytical
model (circular with linear isotropic material) is sufficient to
provide an adequate comparison with the experimental
results.

Figure 8. ΔH-P′ relations from the FE simulations using both the LE
and hyperelastic tube models. Figure 9. Curves of ′p versus ΔH for the experimental, FE

hyperelastic material, and analytical models.
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The dependence of the pressure-displacement perfor-
mance of the honeycomb actuator from the radius of the tube,
R0, can be evaluated from the experimental tests shown in
figure 10. All the curves show an initial marked increase of
output displacement for small values of the input pressure,
followed by a stiffening effect at larger values of p’ due to a
decrease of the produced ΔH . For a constant value of θ′, the
contact length, θ′c ( ), increases for higher values of R0 (see
equation (4)), and larger actuation forces could be obtained
with larger values of θ′c ( ) using the same input pressure, ′P .
As a result, the output, ΔH , increases with the augmentation
of the radius of the tube, R0, by an average of 75% when the
R0 varies between 2.5 mm and 3.5 mm in the stiffening part of
the displacement-pressure curve. For smaller input pressures,
the sensitivity of the displacement variation, ΔH , versus the
tube radius is even more significant, with a 2.75-fold increase
of the displacement when the structure is subjected to a
1000 g loading.

Hysteresis effects are also apparent when the honeycomb
cell is subjected to cyclic loading (figure 11). The curves
corresponding to the unloading phase are at lower ΔH
amplitude compared to the loading configuration, with a
residual displacement left. It is also apparent that the first
cycle provides the largest value of the residual displacements,
while successive loading-unloading has a significantly smal-
ler residual component, with almost all the slack in the system
eliminated after the first cycle. The deflection of the honey-
comb cell therefore depends not only on the input pressure,
but also on the loading procedure used. In the system con-
sidered in this paper, the major component of the output work
is used to oppose the deformation from the loading weight.
Therefore, the energy absorbed can be considered to be
related to the potential energy of the loading weight after a
single sinusoidal cycle:

θ θ= − =−( )W GL nsin sin 1.2.3... (27)An n n1 1( 1)

where n corresponds to the nth cycle. In the experimental
configuration used in this work, θ θ= = °3.5210 1 .

From equations (23) and (27) one obtains:
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The values of the energy absorbed under different
weights and calculated from equation (28) are listed in
table 1. Note that the stored energy tends to decrease at each
cycle. The configuration corresponding to the lowest weight
(600 g) has a three-fold drop of energy absorbed between the
first and third cyclic loadings, while for the highest weight,
the energy lost tends to stabilize after the second cycle. The
significant differences in terms of energy lost between the
weight configurations is another indication that at lower mass
loading, the system needs to be subjected to repeated cycles to
oppose the slack in the layout and the stick-slip effects that
occur between the contact surfaces of the inflatable tubes and
the honeycomb walls. Another measure of the energy lost
during the cyclic loading is the loss factor, η, defined as the
ratio between the dissipated energy (ΔW ) and the applied
work (W ) during the loading phase:

η Δ= W

W
. (29)

Loss factors for each cyclic loading are also presented in
table 1. Similar to the case of the energy dissipated, the loss
factors in general tend to decrease between the first and third
cyclic loadings. However, the loss during the cyclic loading is
more uniform between the different weight configurations,
with an average 50% drop between the first and third cycles.
It is interesting to note that at constant cyclic loading, loss
factors tend to differentiate very little between weights of
600 g and 800 g, and to increase significantly at the highest
loading, up to 80% for the second (figure 11(d)) and third
cycles.

The inflatable auxetic honeycomb concept relies on the
use of a suitable elastomeric skin to follow the deformation
behaviour of the cellular structure during morphing. From a
design perspective, a suitable solution may be provided by
matrix-dominated carbon-silicone elastomeric composites
[19], which can provide up to 70%–80% tensile strain
deformation. However, because of the auxetic butterfly hon-
eycomb configuration with large negative Poisson’s ratio
values [46], an equivalent auxetic elastomeric skin may be
used to guarantee the compatibility of the displacements
between skin and core by Poisson’s effect [47]. However, it
must be noted that in this case, the maximum tensile strains
may be reduced because of the high in-plane uniaxial/shear
coupling existing in those skins. A common design issue in
cellular structures for morphing wing sections is how to
design the interface between the honeycomb ribs and the
skins themselves. Although this topic goes beyond the scope
of this work, we note that the problem has been partially
solved in chiral wingbox configurations by using modified

Figure 10. Displacement, ΔH , versus input pressure for different
tube radii and loading weights.
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circular-node layouts in the vicinity of the skin of the airfoil
[48]. Not only is the cylindrical node typical of chiral auxetic
configurations, but it has also been used to produce center-
symmmetric modified hexagonal honeycombs [49, 50] like
the one used for the morphing concept proposed in this paper.
Another aspect to be considered in the design of a realistic
wing tip based on an inflatable honeycomb actuation is the
choice of the fluid in the tubular structures. A hydraulics-
based system would provide higher control displacement
precision, but the weight penalty may be considerable in light
of the potential aeroelastic problems stemming from the
presence of the added mass from the hydraulic systems close
to the tip of the wing. Pressurized air may be used instead, but
that brings both a potential loss of control precision and added

weight induced by the presence of heat exchangers to cool the
spilled air from the aeroengine compressors. Nevertheless, the
kinematics provided by the auxetic inflatable honeycomb for
the morphing configuration is appealing because it offers the
possibility of producing a continuous-profile wing variation
without the creation of external bumps that cause unwanted
aerodynamics consequences.

6. Conclusion

This paper has introduced the concept of a novel active
honeycomb configuration based on inflatable tubes and an
auxetic centresymmetric cellular topology. A

Figure 11. The variation of ΔH versus the input pressure under three cyclic loadings for (a) 600 g, (b) 800 g, and (c) 1000 g. (d) A summary
of the deformation, ΔH , for different weights corresponding to the second cyclic loading.

Table 1. Energy dissipation during the cyclic loading.

600 g loading 800 g loading 1000 g loading

Cyclic test # WAn(mJ) η(%) WAn(mJ) η(%) WAn(mJ) η(%)

1 0.0209 10.83 0.0370 9.54 0.0620 19.39
2 0.0149 8.04 0.0135 7.84 0.0248 12.21
3 0.0074 5.51 0.0108 6.58 0.0023 9.96
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phenomenological model from the work-energy equation has
been developed to obtain an input pressure/output displace-
ment relation for the actuation system. An experimental
model has also been developed, and the results have been
compared with the predictions from the analytical model and
FE simulations representing the tube/auxetic cell prototype.
An analysis of the hysteresis due to cyclic loading on the
active honeycomb configuration has also been performed.
The sample has shown the feasibility of the concept for
possible wingtip morphing configurations, and the promise of
using the auxetic active honeycomb for further designs.
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