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Abstract
Silicone is a common dielectric elastomer material. Actuators made from it show excellent
activation properties including large strains (up to 380%), high energy densities (up to
3.4 J g−1), high efficiency, high responsive speed, good reliability and durability, etc. When a
voltage is applied on the compliant electrodes of the dielectric elastomers, the polymer shrinks
along the electric field and expands in the transverse plane. In this paper, a silicone dielectric
elastomer is synthesized and the area strains are tested under different electric fields. Pre-strain
and a certain driving electric field are applied to the film and the induced large strain by the
Maxwell stress is measured. Barium titanate (BaTiO3) was incorporated into the silicone to
fabricate a new dielectric elastomer: the experimental results show that the elastic modulus and
dielectric constant were significantly improved. The experimental results coincide well with
those of finite element analysis at a large deformation. Also, a theoretical analysis is performed
on the coupling effects of the mechanical and electric fields. A nonlinear field theory of
deformable dielectrics and hyperelastic theory are adopted to analyze the electromechanical
field behavior of these actuators. Also the mechanical behavior of the dielectric elastomer
undergoing large free deformation is studied. Finally, the constitutive model of a dielectric
elastomer composite under free deformation and restrained deformation is derived.

(Some figures in this article are in colour only in the electronic version)

1. Introduction and actuation principle

In the past 10 years, electroactive materials, capable of
showing elongation and bending under electric fields, have
attracted much attention [1–7]. Among them, ‘piezo-’ and
‘ferro-’ electric materials are less developed due to their
poor mechanical performances. In contrast, an electroactive
polymer called a dielectric elastomer (DE) has become one
of the most promising materials of actuators. This is due
to its superb properties: e.g. large recoverable deformation

* This article was originally submitted for the special section ‘Smart
Composite Materials: Selected Papers from the International Conference on
Multifunctional Materials and Structures (MFMS 08) (Hong Kong, 28–31 July
2008)’, Smart Materials and Structures, volume 18, issue 7.
3 Authors to whom any correspondence should be addressed.

(up to 380%), high energy density (3.4 J g−1) and fast
response [8–11]. The DE is first proposed and studied in 1991
by SRI International. Later, Jet Propulsion Lab from NASA,
Penn State University, ETH Switzerland, etc, started their own
research on DE. With its excellent mechanical performance,
DE found its applications in such industrial areas where strictly
flexibility, small size and high precision are required.

The electroactive effect of the dielectric elastomer depends
on three factors: the electrical force between electrodes, the
microstructure and the mechanical properties of the material.
The electrodes are in fact compliant carbon grease spread
uniformly on both surfaces of the DE film [12–17]. When these
electrodes are applied with a voltage, the DE film will expand
in plane and contract perpendicularly, see figure 1.
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Figure 1. Working mechanism of the dielectric elastomer actuator.

Through this electrostatic model, one can deduce the
electrostatic force developed between electrodes. The pressure
P is found to be

P = ε0εr E2 = ε0εr

(
V

t

)2

(1)

where ε0 and εr denote the dielectric constants of the vacuum
and dielectric elastomer, respectively. V is the electric field
strength, E is the electric field constant and t represents the
thickness of the dielectric film.

In the above equation, P is generated by the in-plane
elongation and the vertical contraction. However, the effect
of the in-plane tension is predicted to be very small, and thus
neglected. Then the vertical contraction is the only factor to be
considered. The pressure induces a corresponding strain along
the thickness direction in the DE film, which is nonlinear in the
case of large deformation. With the boundary conditions, this
strain is found to be

εz = − p

Y
= −ε0εr

Y
E2 (2)

where Y is the elastic modulus, depending nonlinearly on the
strain itself. This is also true for εr . We now introduce a strain
ratio � = ε0εr/Y , which reflects the influence of the material’s
character on strain. Hence one has εz = −�E2.

Since the dielectric elastomer is assumed to be
incompressible, one immediately has

(1 + εx)(1 + εy)(1 + εz) = 1. (3)

Introducing the deformation ratio of the total area:

Sarea = (1 + εx)(1 + εy) − 1. (4)

one obtains (1 + Sarea)(1 + sz) = 1. (5)

This shows that Sarea is directly related to the strain along
the thickness direction. Measurement of the ratio of area
change is relatively precise and easy to perform. The theory
of continuum mechanics is employed to define the ratio of
area change. In this paper, we treat Sarea as an experimentally
measured quantity.

2. Synthesis and electroactive deformation test

The silicone dielectric elastomer (BJB TC5005 A-B/C)
comprises three components: silicone monomer, also known

Figure 2. Electric field versus surface strain with different
percentages of plasticizer C (pre-strain is 0%).

as silicone glue (A), catalyst (B) and plasticizer (C), where A
is mixed proportionally with B and C. The mixture of these
components is spread uniformly on a prepared matrix and
then a solidification follows, resulting in the silicone elastomer
being obtained. Furthermore, with carbon grease painted
uniformly on both of its surfaces, a silicone film actuator is
then fabricated.

A series of silicone films with different per cents of
component C have been developed: A + B, A + B + 10%C,
A + B + 20%C, A + B + 30%C, A + B + 35%C and A +
B + 40%C. Note especially that the first one A + B has no
component C in it and has a ratio of A:B = 10:1.

The silicone film actuators obtained from the matrix with
different per cents of plasticizer C all have a size of 100×100×
0.5 mm3. The carbon grease is applied around a central circle
with a radius of 30 mm. The silicone film actuator is fixed
to a special square mold. We performed electrically induced
deformation experiments on the silicone film actuator under
different pre-stretch rates (0%, 225%, 400%, 625% and 900%).
We listed only the two representative stretch rates of 0% and
400% (figures 2 and 3).

The relation between the electric field and the area strain
in figures 2 and 3 is given by the following steps:
(1) Calculation of the electric field

For both the pre-strained and un-pre-strained dielectric
elastic silicone film with different percentages of C and barium
titanate, the electric field is calculated according to the electric
field basic formula, E = U/d , in the condition that the voltage
U and the film thickness is imposed.
(2) Record and calculation of the area strain

In order to calculate the area strain of the working film,
the areas of the circular electrode before and after exerting the
electric field are firstly captured by a CCD camera with the
same modifiable parameters. Then the area strain is calculated
by comparing these two areas of the circular electrode. This
method is capable of calculating the area strain of different
situations, such as films with different percentages of C, with
different pre-strain ratios and different contents of barium
titanate. Through the above steps, we can obtain the relatively
accurate relation between the exerted electric field and the area
strain.
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Figure 3. Electric field versus surface strain with different
percentages of plasticizer C (pre-strain is 400%).

Figure 4. The curing time at various contents of C.

It is shown in figure 2 that the surfaces become larger
with a gradually increasing applied voltage. The more the
plasticizer C is present, the larger the extended surface of the
actuator. This is so since the elastic modulus of the silicone
film actuator reduces with the more plasticizer in it, resulting
correspondingly in larger strain of the actuator.

Comparing figures 2 and 3, one can see that, as the
pre-strain ratio increases, the area strain of the silicone film
actuator decreases while the breakdown voltage increases.
Also, the pre-strain ratio determines the rate of the area change
via the variation of interior microstructures. Such changes are
also responsible for the increasing rigidity of the material, i.e.
the increase of the elastic modulus and the breakdown voltage.

3. Silicone dielectric elastomer mixed with barium
titanate

A series of silicone film with different percentages of
component C, A + B, A + B + 10%C, A + B + 20%C,
A + B + 30%C, A + B + 40%C and A + B + 50%C, have
been obtained. The different solidification times were recorded
also. It is shown in figure 4 that the solidification time increases
with the increase of the percentage of component C, and

Figure 5. The elastic modulus at various contents of C.

the solidification time rises significantly when component C
exceeds 30%, i.e. 52 h for 50% of component C. The elastic
modulus of silicones with different percentages of component
C are presented in figure 5, which reveals the decline of the
elastic modulus when the content of C increases.

The process of fabrication of silicone filled with barium
titanate is presented as follows. Component C filled with
30% silicon is selected, as the silicone shows a solidification
of a short time, high modulus, and favorable elastic
performance. Barium titanate is a ferroelectric relaxation
material, which presents good dielectric and mechanical
performance. The barium titanate was incorporated into the
silicon and the composites are simplified to be expressed
as follows: A + B + 30%C + 0%BaTiO3, A + B + 30%C +
1%BaTiO3, A + B + 30%C + 2%BaTiO3, A + B + 30%C +
10%. BaTiO3 are stirred in a high velocity agitator, then the
bubbles are removed in a vacuum chamber, injected into an
aluminum model, and finally cured at room temperature.

The tests of the mechanical performance of the fabricated
silicone are performed in an electronic tensile machine by
using a dumbbell sample. Figure 6 gives the stress–strain
curve of the silicone composite material, which implied the
elastic modulus increases as the barium titanate increases and
the strain of this novel material exceeds 300%. Therefore,
compared with the traditional silicone, the present one is
demonstrated to have a significantly enhanced elastic modulus
without reducing its elastic ability.

Figures 7 and 8 represent the dielectric loss and
permittivity at different percentages of barium titanate. The
fact that the dielectric constant augments quickly as the
percentage increases implies that the proposed silicone has
more advantages than the traditional silicones in dielectric
performance.

4. Finite element analysis of modeling the dielectric
elastomer

4.1. The constitutive relationship of the dielectric elastomer

Regarding the silicone-like super-elastic materials, there is an
associated elastic potential energy functional in terms of the
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Figure 6. Elastic modulus at various barium titanate contents with
30%.

Figure 7. Dielectric loss of dielectric composites at varying particle
concentrations.

strain invariants or the stretching invariants. Its first derivative
with respect to the strain gives the corresponding second Piola–
Kirchhoff stress tensor [S] [18–20], i.e.

[S] = ∂W

∂[E] (6)

where W is the strain energy density functional and [E] is the
Lagrangian strain tensor. It is obvious that

[E] = 1
2 ([C] − I ) (7)

where [C] = [F]T[F] is the Cauchy–Green strain tensor and
[I ] denotes the identity matrix [21, 22].

The hyperelastic material is assumed to be homogeneous
and isotropic, hence W can be written as an explicit function
of the three strain invariants [23], i.e.

I1 = J −2/3(λ2
1 + λ2

2 + λ2
3)

I2 = J −2/3(λ2
1λ

2
2 + λ2

3λ
2
2 + λ2

1λ
2
3)

I3 = J −2/3(λ2
1λ

2
2λ

2
3)

(8)

Figure 8. Permittivity of dielectric composites at varying particle
concentrations.

where J is the ratio of initial and ultimate volume and λi (i =
1, 2, 3) are the principal stretch ratios.

4.2. Finite element analysis

In our FEA process (with ANSYS), the following two common
postulates are imposed.

(1) The silicone elastomer is treated as a hyperelastic material
and the two-term Ogden model is adapted.

(2) The silicone elastomer is incompressible.

According to the classical mathematical model for an
electromechanical coupling system (equation (1)), the stress in
the silicone rubber imposed by various electric fields could be
calculated. For the finite element analysis, the two-term Ogden
model is used here for its best approximation in the analysis
of large strain which can be up to 700%. The element type
is Shell-181 because of the good correspondence between the
two-term Ogden model and Shell-181.

The finite element model of the silicone film actuator is
depicted in figure 9. Dimensions of the element type are
10 × 10 × 0.5 mm3 and the element number is 100. Zero
displacement and rotation angles on the four domain sides are
imposed. From figure 9, it is shown that the meshes are regular
and uniform. With this set-up, results from FEA simulation
and experiment are compared in figure 10. It is clear that the
two results match well.

In the following analysis, a different theory is applied to
study the constitutive relation of the dielectric elastomers. The
analytical expressions for real and nominal stress are yielded.

5. Hyperelastic model of dielectric elastomers

As stated above, the electroactive polymer dielectric elas-
tomer is a super-elastic material, and assumed to be hyper-
elastic [24, 25], homogeneous, isotropic and incompressible
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Figure 9. Finite element model of the dielectric film actuator.

(J = 1). Then the associated elastic strain energy functional
W is a function of three strain invariants:

I1 = λ2
1 + λ2

2 + λ3
3,

I2 = λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

3λ
2
1 = λ−2

3 + λ−2
1 + λ−2

2 ,

I3 = λ2
1λ

2
2λ

2
3 = 1.

Taking the Ogden model, we have

W0(λ1, λ2, λ3) =
N∑

i=1

μi

αi
(λ

αi
1 + λ

αi
2 + λ

αi
3 − 3) (9)

where μi and αi are the material constants. Correspondingly,
the stresses are

σi = λi
∂W

∂λi
− p =

N∑
j=1

μ jλ
α j

i − p (10)

where p is the hydrostatic pressure: p = ∑N
j=1 μ jλ

−2α j

1 .
We now discuss two loading cases (figures 11 and 12).

One is applying pre-strain in the film plane along directions
1 and 2; the other one is applying electrical voltage in the
thickness direction (direction 3). These two cases correspond
to the sub-index j (i = 1, 2) in the notation σ

j
i , where i stands

for the principal direction (i = 1, 2, 3). Then for uniform
stretching (loading case 1), one has

σ 1
1 (λ) = σ 1

2 (λ) =
N∑

j=1

μ j (λ
α j

1 + λ
−2α j

1 ), σ3(λ) = 0.

(11)
Then for loading case 2, the Maxwell stresses are

σ 2
1 (λ, u) = σ 2

2 (λ, u) =
N∑

j=1

μ j (λ
α j

1 +λ
−2α j

1 )−ε0ε
λ4

1U 2

h2
0

(12)

σ 2
3 (λ, u) = −ε0ε

λ4
1U 2

h2
0

. (13)

Figure 10. Comparing between finite element simulation and
experimentation.

6. Electromechanical analysis in dielectric elastomer

As a coupled system of mechanical and electric field, the
mechanical performance of the dielectric elastomer film
actuator can be analyzed by the nonlinear field theory on
the dielectric elastomer. For practical analysis, some basic
assumptions are put forward.

(1) The elastomer is considered as a hyperelastic material.
The viscoelastic action is not taken into consideration.

(2) The material of the electrode is an ideal liquid.
(3) The dielectric elastomer is supposed to be an ideal

dielectric.
(4) The response of the dielectric elastomer is an isothermal

process, namely the dissipation of thermal energy of the
dielectric elastomer is not taken into account.

The free energy function can be decomposed as
follows [26–30]:

W (λ1, λ2, λ3, D̃) = W0(λ1, λ2, λ3) + W1(λ1, λ2, D̃) (14)

where D̃ is the nominal electric displacement, and
W0(λ1, λ2, λ3) and W1(λ1, λ2, D̃) are the elastic strain energy
density functional and electric energy density functional, re-
spectively. With the simplest form of Ogden model, we take

W0(λ1, λ2, λ3) =
N∑

i=1

μi

αi
(λ

αi
1 + λ

αi
2 + λ

α3
3 − 3). (15)

Under the hypothesis of satisfying the above assumptions
and according to Suo’s nonlinear field theory on dielectric
elastomers [28], W1(D̃) is

W1(D̃) = 1

2ε
Di Di = 1

2ε
D2

3 (16)

D̃3 = Q

A
= Q

λ3a
= D3

λ3
(17)

where Q is the electric quantity that the dielectric elastomer
actuator carries in the flexible electrode, a is the original area of
the applied electrode on the dielectric elastomer film actuator
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Figure 11. Schematic picture of the dielectric film actuator.

and A is the area of the applied electrode imposed by external
voltage. D = λ3 D̃ is the true electric displacement. Note
W1(D̃) is taken from literature references. The free energy
function of the dielectric elastomer electromechanical coupling
system can be written as:

W (λ1, λ2, λ3, D̃) =
N∑

i=1

μi

αi
(λ

αi
1 +λ

αi
2 +(λ1λ2)

−αi −3)+ 1

2ε
D2

3

(18)

si K (F, D̃) = ∂W (F, D̃)

∂ Fi K
, ẼK (F, D̃) = ∂W (F, D̃)

∂ D̃K
(19)

si K (F, D̃), ẼK (F, D̃) is the nominal stress and electric field
of the electromechanical coupling system of the dielectric
elastomer, respectively. Fi K is the deformation gradient tensor:

s11 = ∂W

∂λ1
=

N∑
i=1

μi(λ
αi −1
1 − λ

−αi −1
1 λ

−αi
2 ) (20)

s22 = ∂W

∂λ2
=

N∑
i=1

μi(λ
αi −1
2 − λ

−αi −1
2 λ

−αi
1 ) (21)

s33 = ∂W

∂λ3
=

N∑
i=1

μiλ
αi −1
3 + D̃2

3

ε
λ3 (22)

Ẽ3(F, D̃) = ∂W (F, D̃)

∂ D̃K

= λ2
3

ε
D̃3 = λ3 E3. (23)

Considering the load cases of the dielectric elastomer
film, the nominal stress matrix of a electromechanical coupling
system is

si j =
[ s11 0 0

0 s22 0
0 0 s33

]
. (24)

The corresponding deformation gradient matrix is

Fi j =
[

λ1 0 0
0 λ2 0
0 0 λ3

]
. (25)

Based on the nonlinear field theory referred, the real stress
σi j of the electromechanical coupling system of the dielectric
elastomer is

σi j = Fj K

det(Fi j )
si K = Fj K

λ1λ2λ3
si K = Fj K si K (26)

Figure 12. Mechanical analysis in different stress state.

σ 2
1 = F1K s1K =

N∑
i=1

μi(λ
αi
1 − λ

−αi
1 λ

−αi
2 ) (27)

σ 2
2 = F2K s2K =

N∑
i=1

μi(λ
αi
2 − λ

−αi
2 λ

−αi
1 ) (28)

σ 2
3 = F3K s3K = λ3

( N∑
i=1

μiλ
αi −1
3 + D̃3

ε
λ3

)

=
N∑

i=1

μiλ
αi
3 + εE2

3 . (29)

7. Electromechanical constitutive relations with
variable dielectric constants

In this case, we still take

W0(λ1, λ2, λ3) =
N∑

i=1

μi

αi
(λ

αi
1 + λ

αi
2 + λ

α3
3 − 3). (30)

But a different W1(λ1, λ2, λ3, D̃), where

W1(λ1, λ2, λ3, D̃) = D2

2ε(λ1, λ2, λ3)
. (31)

Here, D = λ3 D̃. For the variable dielectric constant
ε(λ1, λ2, λ3), its relationship with the deformation for
VHB4910 has been given by Pelrine [31] and cited in figure 13.

The figure shows clearly a transition point where the
relation changes from a linearly decreasing behavior to a
constant as the area increase ratio λ1λ2 reaches 16. An
interpolation of the curves is found. We fit the expression of
the dielectric constant according to the experimental data for
VHB4910 obtained by Pelrine:

ε(λ1, λ2, λ3) =
{

(−0.016λ1λ2 + 4.716)ε0, λ1λ2 � 16

4.48ε0, λ1λ2 � 16.
(32)
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Figure 13. Dielectric constant versus area increase ratio of
VHB 4910.

For generality and representativity, the dielectric constant of
the dielectric elastomer can be expressed as follows:

ε(λ1, λ2, λ3) =
{

(c1λ1λ2 + c2)ε0, λ1λ2 � a

c3ε0, λ1λ2 � a.
(33)

Here c1, c2, c3, a are constants. For acrylic VHB4910, c1 =
−0.016, c2 = 4.716, c2 = 4.48, a = 16.

When λ1λ2 � a, by incompressibility, λ3 = 1/λ1λ2. The
electric energy density function and free energy function of the
dielectric elastomer can be expressed as follows:

W1(λ1, λ2, D̃) = D̃2

2ε0(c1λ1λ2 + c2)
λ−2

1 λ−2
2 (34)

W0(λ1, λ2, λ3) =
N∑

i=1

μi

αi
(λ

αi
1 + λ

αi
2 + λ

α3
3 − 3). (35)

When the shear deformation and nominal stress are ignored,
the electric field strength can be derived from equation (19),
where

s11 = ∂W

∂λ1
=

N∑
i=1

μi(λ
αi −1
1 − λ

−αi −1
1 λ

−αi
2 )

− D̃2

2ε0

3c1λ
−2
1 λ−1

2 + 2c2λ
−3
1 λ−2

2

(c1λ1λ2 + c2)2
(36)

s22 = ∂W

∂λ2
=

N∑
i=1

μi(λ
αi −1
2 − λ

−αi −1
2 λ

−αi
1 )

− D̃2

2ε0

3c1λ
−1
1 λ−2

2 + 2c2λ
−2
1 λ−3

2

(c1λ1λ2 + c2)2
(37)

s33 = ∂W

∂λ3
=

N∑
i=1

μiλ
αi −1
3 + D̃2

ε0(c1λ1λ2 + c2)
λ3 (38)

Ẽ = ∂W

∂ D̃
= D̃

ε0(c1λ1λ2 + c2)
λ−2

1 λ−2
2 . (39)

All other components are zero.
Combining equation (26), the true stresses and the true

electric field can be found [27] to be

σi j = Fj K

det(Fi j )
si K = Fj K

λ1λ2λ3
si K = Fj K si K (40)

σ 2
1 = F1K s1K = λ1s11 =

N∑
i=1

μi (λ
αi
1 − λ

−αi
1 λ

−αi
2 )

− D̃2

2ε0

3c1λ
−1
1 λ−1

2 + 2c2λ
−2
1 λ−2

2

(c1λ1λ2 + c2)2
(41)

σ 2
2 = F2K s2K = λ2s22 =

N∑
i=1

μi (λ
αi
2 − λ

−αi
2 λ

−αi
1 )

− D̃2

2ε0

3c1λ
−1
1 λ−1

2 + 2c2λ
−2
1 λ−2

2

(c1λ1λ2 + c2)2
(42)

σ 2
3 = F3K s3K = λ3s33 =

N∑
i=1

μiλ
αi
3

+ D̃2

ε0(c1λ1λ2 + c2)
λ2

3. (43)

When λ1λ2 > a, the electric energy density function
and free energy function of the dielectric elastomer can be
expressed as follows:

W1(λ1, λ2, D̃) = D̃2

2c3λ
2
1λ

2
2ε0

(44)

W (λ1, λ2, λ3, D) =
N∑

i=1

μi

αi
(λ

αi
1 + λ

αi
2 + (λ1λ2)

−αi − 3)

+ D̃2

2c3λ
2
1λ

2
2ε0

. (45)

Substituting equation (44) into equation (18), the nominal
stress and the nominal electric field can be expressed
respectively as follows:

s11 = ∂W

∂λ1
=

N∑
i=1

μi(λ
αi −1
1 − λ

−αi −1
1 λ

−αi
2 )

− D̃2

c3ε0
λ−3

1 λ−2
2 (46)

s22 = ∂W

∂λ2
=

N∑
i=1

μi(λ
αi −1
2 − λ

−αi −1
2 λ

−αi
1 )

− D̃2

c3ε0
λ−2

1 λ−3
2 (47)

s33 = ∂W

∂λ3
=

N∑
i=1

μiλ
αi −1
3 + D̃2

c3ε0
λ3 (48)

Ẽ = ∂W

∂ D̃
= D̃

c3ε0
λ−2

1 λ−2
2 . (49)

Consider the relation between the true and the nominal
stress. Expression of the true stress can be derived:

σ 2
1 = F1K s1K = λ1s11 =

N∑
i=1

μi (λ
αi
1 − λ

−αi
1 λ

−αi
2 )

− D̃2

c3ε0
λ−2

1 λ−2
2 (50)

σ 2
2 = F2K s2K = λ2s22 =

N∑
i=1

μi (λ
αi
2 − λ

−αi
2 λ

−αi
1 )

− D̃2

c3ε0
λ−2

1 λ−2
2 (51)

σ 2
3 = F3K s3K = λ3s33 =

N∑
i=1

μiλ
αi
3 + D̃2

c3ε0
λ2

3. (52)
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8. Dielectric elastomer undergoing free deformation

In sections 5–7, we establish the constitutive relation
of the dielectric elastomer based on the assumption of
incompressibility. The incompressibility is regarded as a
constraint condition, namely the deformation is not arbitrary.
In this section we establish the constitutive relation of the
dielectric elastomer undergoing free deformation imposed by
electromechanical excitation.

Introducing the Lagrange multiplier p, we modify the
Ogden hyperelastic strain energy function W0(λ1, λ2, λ3) to

W ′
0(λ1, λ2, λ3) =

N∑
i=1

μi

αi
(λ

αi
1 +λ

αi
2 +λ

α3
3 −3)− p(λ1λ2λ3−1).

(53)
When the dielectric elastomer undergoes free deformation,

λ1λ2λ3 �= 1. Substitute equations (16) and (17) into (19)
and (26). Similar to the above, the expression of the nominal
and real stress in the dielectric elastomer can be yielded
from the electric field energy density function with invariable
dielectric constant:

s11 = ∂W

∂λ1
=

N∑
i=1

μi(λ
αi −1
1 − λ

−αi −1
1 λ

−αi
2 ) − pλ−1

1 (54)

s22 = ∂W

∂λ2
=

N∑
i=1

μi(λ
αi −1
2 − λ

−αi −1
2 λ

−αi
1 ) − pλ−1

2 (55)

s33 = ∂W

∂λ3
=

N∑
i=1

μiλ
αi −1
3 −pλ−1

3 + D̃2
3

ε
λ3 (56)

σ 2
1 = F1K s1K =

N∑
i=1

μi(λ
αi
1 − λ

−αi
1 λ

−αi
2 ) − p (57)

σ 2
2 = F2K s2K =

N∑
i=1

μi(λ
αi
2 − λ

−αi
2 λ

−αi
1 ) − p (58)

σ 2
3 = F3K s3K = λ3

( N∑
i=1

μiλ
αi −1
3 − pλ−1

3 + D̃3

ε
λ3

)

=
N∑

i=1

μiλ
αi
3 − p + εE2

3 . (59)

In terms of (34), (53), (19) and (26), we obtain the
formulation of the real stress in the dielectric elastomer by use
of an electric field energy density function (when λ1λ2 � a)
with variational dielectric constant

σ 2
1 =

N∑
i=1

μi(λ
αi
1 − λ

−αi
1 λ

−αi
2 ) − p

− D̃2

2ε0

3c1λ
−1
1 λ−1

2 + 2c2λ
−2
1 λ−2

2

(c1λ1λ2 + c2)2
(60)

σ 2
2 =

N∑
i=1

μi(λ
αi
2 − λ

−αi
2 λ

−αi
1 ) − p

− D̃2

2ε0

3c1λ
−1
1 λ−1

2 + 2c2λ
−2
1 λ−2

2

(c1λ1λ2 + c2)2
(61)

σ 2
3 =

N∑
i=1

μiλ
αi
3 − p + D̃2

ε0(c1λ1λ2 + c2)
λ2

3. (62)

Considering equations (44), (53), (19) and (26), the real
stress of the electromechanical coupling system is obtained
when λ1λ2 > a:

σ 2
1 =

N∑
i=1

μi (λ
αi
1 − λ

−αi
1 λ

−αi
2 ) − p − D̃2

c3ε0
λ−2

1 λ−2
2 (63)

σ 2
2 =

N∑
i=1

μi (λ
αi
2 − λ

−αi
2 λ

−αi
1 ) − p − D̃2

c3ε0
λ−2

1 λ−2
2 (64)

σ 2
3 =

N∑
i=1

μiλ
αi
3 − p + D̃2

c3ε0
λ2

3. (65)

9. Constitutive law of novel silicone dielectric
elastomer

It is shown in figure 6 that the solidification time increases
as the increase of the percentage of component C and
the solidification time rises significantly when component
C exceeds 30%, i.e. 52 h for 50% of component C.
It demonstrates that, compared with the pure silicone, the
silicone filled with barium titanate has better mechanical
performances (elastic modulus, driving force, etc), but does
not lose the silicone’s excellent hyperelastic. To describe the
elasticity of this new type of silicone, a developed Ogden
model is given as follows:

W0(λ1, λ2, λ3, v) =
N∑

i=1

μi(v)

αi
(λ

αi
1 + λ

αi
2 + λ

αi
3 − 3) (66)

where μi(v) are the material constants which depend on the
percentage of component C. According to the experimental
data, the dielectric constant can be expressed as follows:

ε(v) = ε′
0 + c(v)ε′

0 (67)

where ε′
0 is the dielectric constant at C% = 30% and c(v) is a

coefficient depending on the percentage of barium titanate. We
make a linearization of c(v):

c(v) = a + bv (68)

where a and b are the constants related to the percentage of
barium titanate. When c(1%) = 0.106, c(4%) = 0.365, then
a = 0.02, b = 8.6; if c(5%) = 0.546, c(10%) = 1.701, then
a = −0.609, b = 23.1. C(v) can be expressed as an fractional
function:

c(v) =
{

0.02 + 8.6v, 0 � v � 0.04

−0.609 + 23.1v, 0.04 < v � 0.1.
(69)

Considering the mathematical expression of the free
energy of the dielectric silicone-based electromechanical
coupling system:

W (λ1, λ2, λ3, v, D̃) =
N∑

i=1

μi(v)

αi
(λ

αi
1 + λ

αi
2 + λ

αi
3 − 3)

+ D̃2

2(1 + a + bv)ε′
0

λ−2
1 λ−2

2 . (70)

8
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The nominal stresses of the silicone composite material
are expressed as follows;

s11 =
N∑

i=1

μi(v)(λ
αi −1
1 − λ

−αi −1
1 λ

−αi
2 )

− D̃2

(1 + a + bv)ε′
0

λ−3
1 λ−2

2 (71)

s22 =
N∑

i=1

μi(v)(λ
αi −1
2 − λ

−αi −1
2 λ

−αi
1 )

− D̃2

(1 + a + bv)ε′
0

λ−2
1 λ−3

2 (72)

s33 =
N∑

i=1

μi(v)λ
αi −1
3 + D̃2

(1 + a + bv)ε′
0

λ3. (73)

Correspondingly, the true stress is

σ 2
1 =

N∑
i=1

μi(v)(λ
αi
1 − λ

−αi
1 λ

−αi
2 ) − D̃2

(1 + a + bv)ε′
0

λ−2
1 λ−2

2

(74)

σ 2
2 =

N∑
i=1

μi(v)(λ
αi
2 − λ

−αi
2 λ

−αi
1 ) − D̃2

(1 + a + bv)ε′
0

λ−2
1 λ−2

2

(75)

σ 2
3 =

N∑
i=1

μi (v)λ
αi
3 − D̃2

(1 + a + bv)ε′
0

λ2
3. (76)

Based on the study of sections 7 and 8, when both the
constraint deformation and free deformation are considered,
the true stress at free deformation can be given:

σ 2
1 =

N∑
i=1

μi(v)(λ
αi
1 − λ

−αi
1 λ

−αi
2 ) − p

− D̃2

(1 + a + bv)ε′
0

λ−2
1 λ−2

2 (77)

σ 2
2 =

N∑
i=1

μi(v)(λ
αi
2 − λ

−αi
2 λ

−αi
1 ) − p

− D̃2

(1 + a + bv)ε′
0

λ−2
1 λ−2

2 (78)

σ 2
3 =

N∑
i=1

μi(v)λ
αi
3 − p − D̃2

(1 + a + bv)ε′
0

λ2
3. (79)

Summarizing sections 6–9, we derived the constitutive
relation of the traditional and new types of dielectric elastomer
under the condition of free deformation and deformation
under restraint. Equations (27)–(29) are the stress–strain
relation of the ideal dielectric elastomer under the condition of
restrained deformation, derived by applying the Ogden elastic
strain energy function and the invariable dielectric constant
of the electric field energy density function. Equations (41)–
(43) and (50)–(52) give the stress–strain relationship of the
ideal dielectric elastomer under the condition of restrained
deformation and free deformation, both of which are derived
by applying the Ogden elastic strain energy function and
nonlinear dielectric constant of the electric field energy density
function. Equations (74)–(76) and (77)–(79) present the

constitutive relation of the new dielectric elastomer under the
condition of restrained deformation and free deformation, both
of which are derived by applying the developed Ogden elastic
strain energy function of the dielectric constant and linear
changes in the electric field energy density function.

10. Conclusion

In this paper, fabrication of a silicone film actuator is presented.
Its deformation behavior is then studied both experimentally
and numerically by finite element analysis. Experimental
results show that the pre-strain ratio greatly affects the
performance of the actuator. A larger pre-strain ratio leads
to higher breakdown voltage and area strain. These findings
are supported by the numerical simulations on three kinds of
actuators. Another factor affecting the change of the area
of the silicone film actuator is the content percentage of the
plasticizer. When the plasticizer in the material becomes
greater, the elastomer becomes softer and the solidification
is longer, which degrades the performance of the actuator.
The barium titanate with high permittivity was added to the
raw silicone to fabricate a new dielectric elastomer. The
experimental results showed that the elastomer modulus and
permittivity were significantly improved.

Also, the nonlinear field theory of deformable dielectrics
and hyperelastic theory are used to analyze the electrome-
chanical field appearing in these actuators. An applied elastic
strain energy function is obtained from the representative Og-
den model. The electric energy function involves invariant and
variable dielectric constant, respectively. Then we deduce the
constitutive relation for the dielectric elastomer film actuator
based on the selected function. Furthermore the mechanical
behavior of the dielectric elastomer undergoing large free de-
formation is studied. The constitutive modulus of the dielectric
elastomer composite under free deformation and restrained de-
formation is derived. Finally the Ogden model was developed
to characterize the elastic behavior of the new dielectric elas-
tomer. The constitutive modulus of the dielectric elastomer
composite under free deformation and restrained deformation
is derived. This is a promising analysis method for the study of
coupled fields and mechanical properties of the dielectric film
actuator.
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