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Elliptic flow and incomplete equilibration
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The dependence of eccentricity scaled elliptic flow on the partonic cross section in Au + Au collisions at
relativistic heavy ion collider (RHIC) energy

√
sNN = 200 GeV with impact parameter b = 8 fm is analyzed

using a multiphase transport (AMPT) model. It is shown that the dependence of eccentricity scaled elliptic flow
on the partonic cross section could be described well by a formula suggested by Bhalerao et al. The eccentricity
scaled elliptic flow of the parton is 19% ∼ 27% lower than its ‘hydrodynamic limit.’ The hadronization of the
parton through coalescence and hadronic dynamics (decay, collision) could influence the obtained deviation of
eccentricity scaled elliptic flow of the hadron from its ‘hydrodynamic limit.’ The hadronic final state interactions
and hadronization reduce the extracted ‘hydrodynamic limit’ by 20% and also reduce the deviation from the
‘hydrodynamic limit’ by 26%.
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I. INTRODUCTION

The purpose of ultrarelativistic heavy ion collisions is to
create nuclear matter under extremely high temperature and
pressure conditions and study its properties. It is speculated
that the quark and gluon plasma created at RHIC is strongly
coupled [1–5]. The large elliptic flow value observed in the
experiments [6–15] could be described by ideal relativistic
hydrodynamics [16,17] and the transport model with an
unphysically large cross section [18–26] (recently, a transport
model including perturbative 3 ↔ 2 interactions in gluon
matter could explain most of the elliptic flow at RHIC [27,28]).
Since the conditions, local equilibrium and/or nonviscous, are
required by ideal relativistic hydrodynamics, the consistence
between theoretical description and experimental data on
elliptic flow at a small transverse momentum region (pT <

1.5 GeV/c) and the dependence of differential elliptic flow on
hadron species as a function of transverse momentum leads
to the claim that the matter produced in RHIC experiments
is the most “perfect fluid” [29]. However, this claim is still
debatable [30–32]. The minimal ratio of shear viscosity to
entropy has been calculated in Refs. [33,34]. The effects of
viscosity on elliptic flow are studied in Refs. [27,28,35–40].

Elliptic flow results from the conversion of spatial
anisotropy to momentum anisotropy in noncentral heavy ion
collisions. It is sensitive to the properties of the system
at the early stage because of its self-quenching character
[3,41–43]. In the hydrodynamics scenario, the matter produced
at the initial stage is assumed under local equilibrium, and
the pressure gradient in the x direction (impact parameter
direction) is larger than in the y direction (perpendicular
to impact parameter direction and beam axis) in noncentral
collisions. Therefore, larger transverse momentum of matter
in the x direction than in the y direction is produced at the
final state of collisions. Generally, elliptic flow is defined
as the second order coefficient of the Fourier expansion of
the particle azimuthal distribution with respect to the reaction
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plane [44,45]
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where �r denotes the reaction plane angle (determined by the
impact parameter direction and the beam axis) and it is zero in
our calculations, and the sine terms vanish due to the reflection
symmetry with respect to the reaction plane.

Recently, Bhalerao et al. suggested a formula which was
expected to quantitatively describe the deviation of elliptic flow
from the ‘hydrodynamic limit’ for gas under an incomplete
equilibration condition [30,31]:
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hydro
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K−1

K−1 + K−1
0

, (2)

where ε is the eccentricity of the overlap region of the medium
at initial time; vhydro

2 was interpreted as the hydrodynamic limit
of elliptic flow; K0 was assumed to be a constant and should be
determined by fitting this formula to data; K was the Knudsen
number, which is defined as

K−1 = R̃

λ
, (3)

where R̃ = 1/
√

1
〈x2〉 + 1

〈y2〉 is the system size [30], and λ =
1/ρσ is the mean free path of the particle. Because of
the strongly longitudinal expansion of the medium at RHIC
energy, the particle density ρ decreases as the inverse of time
τ [30]:

ρ = 1

τS

dN

dy
, (4)

where dN/dy denotes the total multiplicity per unit rapidity,
and S = 4π

√
〈x2〉〈y2〉 is the transverse overlap area between

the two nuclei. It was argued in Ref. [30] that K should be
estimated at the timescale, τ = R̃/cs , when elliptic flow is
built up, i.e.,

1

K
= σ

S

dN

dy
cs, (5)
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where cs is the sound velocity of the fluid. The timescale
R̃/cs was interpreted as the time when all parts of the system
are “informed” about the initial spatial anisotropy (from the
viewpoint of hydrodynamics), i.e., the buildup of elliptic flow.
Recently, Eq. (2) was used to describe the elliptic flow of a
two-dimensional massless gas [32] and was used to fit data
[31].

In this paper, we study the dependence of elliptic flow on
the partonic cross section using a multiphase transport model
(AMPT) with impact parameter b = 8 fm. We use Eqs. (2)
and (5) to fit the elliptic flow data from the model and extract
the deviation from the ‘hydrodynamic limit.’ The paper is
organized as follows. In Sec. II, a brief description of AMPT
model is introduced. In Sec. III, the partonic elliptic flow with
different partonic cross section is fitted with Eqs. (2) and (5).
The deviation from the ‘hydrodynamic limit’ is extracted. In
Sec. IV, the hadronic elliptic flow with different partonic cross
section is fitted with Eqs. (2) and (5). The deviation from the
‘hydrodynamic limit’ is extracted. In Sec. VI, a brief summary
is given.

II. AMPT MODEL

The AMPT model is a transport model [20] including
both partonic and hadronic phase dynamics. Two different
scenarios, i.e., default and string melting, are implemented
in AMPT model. The string melting scenario has been used
to reproduce RHIC elliptic flow [20–26] and HBT [20,46]
data. In the string melting scenario, the initial partons are
produced by converting the hadrons produced by using the
HIJING model [47] to their valence quarks and antiquarks with
current masses. The collisions between the produced partons
are implemented by using the Zhang’s parton cascade (ZPC)
model [48]. Only the elastic collisions between partons are
included in the ZPC model with the elastic differential cross
section:

dσ0

dt
≈ 9πα2

s

2

(
1 + µ2

s

)
1

(t − µ2)2
, (6)

and the total cross section is

σ0 ≈ 9πα2
s

2µ2
, (7)

where the strong coupling constant αs is 0.4714; s and t are
Mandelstam variables; µ is the screen mass and could be
adjusted to fix total cross section. The total cross section is
3 mb in the pQCD calculation, but a large cross section 6–
10 mb has to be used to describe RHIC elliptic flow data.
After stopping interactions (freeze-out), the two nearest quarks
and antiquarks in spatial space are combined to form a meson
and the three nearest quarks or antiquarks in spatial space
are combined to form a baryon or antibaryon. Interactions
between hadrons are implemented by using a relativistic
transport (ART) model [49]. The incomplete equilibration
has been included in AMPT model dynamically. In this
paper, we simulate Au + Au collisions at RHIC energy√

sNN = 200 GeV with impact parameter b = 8 fm for dif-
ferent partonic cross sections as we did in Ref. [50]. The

version of AMPT model used in this paper is v2.11, and
10 000 events are produced for each cross section. The random
seed is the obtained runtime. In the following sections, our
calculations focus on the midrapidity region (−1 < y < 1).

III. PARTONIC ELLIPTIC FLOW

Strictly speaking, Eqs. (2) and (5) was obtained assuming
the sound velocity cs is constant and the number of particles
is conserved (elastic collision) during the evolution of the
medium, and it was only tested for 2D massless gas under these
two conditions with an isotropic cross section and Gaussian
distribution of the particle in the transverse plane [32]. In
AMPT model, although hadron dynamics does not conserve
the number of hadrons, the parton cascade conserves the
number of partons. Furthermore, the masses of partons are
their current masses, so the parton could be considered as a
massless particle. We also have checked that the distribution
of the parton at initial time is approximately Gaussian. Thus,
we expect Eq. (2) could be used to describe the elliptic flow
data from AMPT model, at least for partons.

As shown in Eq. (5), the elliptic flow of the partons in
Eq. (2) could be plotted as a function of dN

Sdy
or σ or their

product. In Ref. [31] Eq. (1) was used to fit the data as a
function of dN

Sdy
. However, in order to obtain good agreement

with the data, the eccentricity fluctuation of the participant
nucleons should be carefully considered. Based on the model
data we analyzed in Ref. [50], we will plot Eq. (1) as a
function of σ

S
dN
dy

cs ( dN
Sdy

is almost independent of partonic cross
section and cs , in fact, is a constant). For collisions with fixed
impact parameter, the eccentricity fluctuation of the participant
nucleons should be expected to be not important for our results
for different cross sections, except for a scale factor for elliptic
flow.

One should note some important differences between the
AMPT model and the model constructed in Ref. [32]. In AMPT
model, the partons could move in three-dimensional spatial
space, but only 2D transverse moving is allowed in the model
used in Ref. [32]. It was argued in Ref. [32] that the same result
should be obtained for a 3D massless gas as 2D case assuming
the validity of the longitudinal boost invariant. However, this
expectation has still not been tested exactly. Another difference
is the differential cross section which is isotropic in the model
used in Ref. [32] but is a Debye screened one in AMPT model
for partons. As discussed in Ref. [32], one should use the
isotropic cross section in Eq. (2) and the Debye screened one
should be converted to the isotropic one. For the production of
elliptic flow, the transport cross section should be the relevant
one, i.e., the elliptic flow only depends on the transport cross
section if other conditions are fixed (dN/Sdy, T , b) [19]. For
the differential cross section used in Eq. (6), the transport cross
section could be expressed as [19]

σt ≡
∫

dσelsin2θc.m.

=
∫

dt
dσel

dt

4t

s

(
1 − t

s

)
= σ04z(1 + z) [(2z + 1)ln(1 + 1/z) − 2] , (8)
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FIG. 1. Elliptic flow of the parton for different partonic cross
sections. The solid line is the fitting result of Eqs. (2) and (5) to data
from AMPT model (see text).

where z ≡ µ2/s. For the isotropic case (µ → ∞), σt/σ0 =
2/3. Thus, for the differential cross section in Eq. (6), the
equivalent isotropic cross section is

σ = 3σ0

2

σt

σ0
. (9)

To the calculations for partons in present paper, the average
c.m.s. energy is s ≈ 0.35 GeV2 and s ≈ 0.21 GeV2 for partons
at initial time and final time (t → ∞), respectively. s is
calculated for parton pairs in midrapidity in AMPT model
directly. Since the elliptic flow is mainly built up at the early
time of the evolution of the system, we set s ≈ 0.35 GeV2

as our default choice. In AMPT model, the total elastic cross
section σ0 in Eq. (7) is fixed by tuning µ, so the ratio of σt to
σ0 varies for different cross sections.

In Fig. 1 we plot the eccentricity scaled elliptic flow of the
parton v2/ε as a function of σ

S
dN
dy

cs for Au + Au collisions
at

√
sNN = 200 GeV with fixed impact parameter b = 8 fm

and σ0 = 3, 6, 10, 14 mb. Table I gathers relevant parameters
for the parton. The horizontal error bar in Fig. 1 is due to the
statistical fluctuation of the partons’ multiplicity (∼ √

N ) and
the vertical error bar (too small to be seen) denotes the error
obtained when we use Eq. (1) to fit the partons’ azimuthal
distribution. The sound velocity cs of the massless gas is used,
i.e., cs = 1/

√
3. The isotropic cross section is obtained through

Eq. (9). The transverse area S is calculated for partons at initial
time as done in Ref. [32]. The eccentricity is calculated for
partons at initial time as

ε = 〈y2〉 − 〈x2〉
〈y2〉 + 〈x2〉 , (10)

where the bracket denotes the average over partons and events.
In Ref. [32], dN/dy is in fact independent of time because only

TABLE I. Parameters for the parton. See text for details.

σ0(mb) ε S(fm2) dN

dy
(initial) dN

dy
(final)

3 0.2835 57.76 885.4 815.6
6 0.2861 57.77 886.5 797.9

10 0.2833 57.85 886.5 782.5
14 0.2831 57.83 887.4 773.1

2D gas is considered, but dN/dy varies with time slightly in
AMPT model. In plotting Fig. 1, dN/dy of partons at the final
time is used. The solid line is the best fit of Eq. (2) to the model
data, with fitted parameters v

hydro
2 /ε ≈ 0.314 ± 0.004 and

K0 ≈ 0.63 ± 0.04. Given the ‘hydrodynamic limit’ v
hydro
2 /ε,

we could give a quantitative description of the deviation of
v2/ε from its limiting value, which is 27% and 19% lower than
v

hydro
2 /ε for σ0 = 6 mb and 10 mb, respectively. This deviation

indicates that the local equilibration of the system is still not
achieved and the elliptic flow could be increased much more
for the conditions considered in this paper. The incomplete
equilibration of the system in AMPT model was studied in a
recent paper [52]. Both the cross section σ0 = 6 mb and 10 mb
in AMPT model could reproduce the elliptic flow data, but
σ0 = 10 mb could reproduce the high-order anisotropy flow
data [53].

In Ref. [32], Ry = 1.5 Rx corresponding to ε ≈ 0.38 and
v

hydro
2 ≈ 0.10 result in v

hydro
2 /ε ≈ 0.26. However, in Ref. [51],

v
hydro
2 /ε ≈ 0.36 is expected for the hydrodynamics model for

the 3D massless gas equation. Detailed calculations would be
needed in order to compare these ‘hydrodynamic limit’ values,
especially concerning the difference of the initial conditions,
which is not the scope of this paper. In the present paper we
just consider the fitted v

hydro
2 /ε as the limit of v2/ε when the

partonic cross section is enlarged. This is the reason we use
the quoted word ‘hydrodynamic limit.’ If we replace dN/dy in
Fig. 1 with its value for partons at initial time, we get the fitted
parameters v

hydro
2 /ε ≈ 0.309 ± 0.004 and K0 ≈ 0.60 ± 0.04,

which is little change relative to the value obtained above. In
the following, our calculations will be done with dN/dy for
partons at final time.

The parameter K0 obtained is 0.63 ± 0.04. Considering the
error of K0, it is consistent with the suggested value K0 ≈
0.70 ± 0.03 obtained in Ref. [32]. However, K0 is sensitive to
the conditions one set, for example, if we set the c.m.s. energy
as s ≈ 0.21 GeV2 instead of 0.35 GeV2, then: (1) K0 ≈ 0.65 ±
0.04 and v

hydro
2 /ε ≈ 0.307 ± 0.003, if dN/dy of the partons

at final time is used; (2) K0 ≈ 0.62 ± 0.03 and v
hydro
2 /ε ≈

0.304 ± 0.003, if dN/dy of the partons at initial time is used.
The error of K0 is sensitive to the error of the data from the
model. In plotting Fig. 1, we only take into account the errors
of dN

dy
and v2. The errors of other variables in Eqs. (2) and

(5) would enlarge the error of K0. In Ref. [32], the authors
found that K0 was sensitive to the diluteness of gas. From the
results of Ref. [32] one could find that the value of K0 would
be smaller than 0.7 if the gas is not dilute enough. Right now,
we do not know whether this is the whole reason that our value
K0 is a little smaller than 0.7, because the value 0.7 is only a
suggested value for 3D case gas but not proved in Ref. [32] and
K0 is sensitive to some conditions discussed above. However,
Eqs. (2) and (5) seem to be robust enough to be applied even
if the gas is not dilute enough as shown in Ref. [32].

In conclusion, Eqs. (2) and (5) fit the AMPT model data
of partons for Au + Au collisions at

√
sNN = 200 GeV with

an impact parameter b = 8 fm and different partonic cross
sections well. The obtained parameters are v

hydro
2 /ε ≈ 0.314 ±

0.004 and K0 ≈ 0.63 ± 0.04. The deviation of the eccentricity
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TABLE II. Parameters for the hadron. See text for details.

σ0(mb) ε(h.h.) S(h.h.)(fm2) dN

dy
(h.h.) dN

dy
(c) dN

dy
(f )

3 0.2855 57.54 424.3 427.4 587.6
6 0.2880 57.55 425.0 424.9 575.0

10 0.2851 57.63 424.8 420.3 565.7
14 0.2847 57.63 425.2 416.8 560.6

scaled elliptic flow v2/ε for the cross section σ = 6 and 10 mb
is 27% and 19% below its ‘hydrodynamic limit.’ Given the
parameters v

hydro
2 /ε and K0, Eqs. (2) and (5) could be used

to predict the eccentricity scaled elliptic flow with other cross
section values.

IV. HADRONIC ELLIPTIC FLOW

As we mentioned in the above section, Eqs. (2) and (5)
is obtained for a system in which the sound velocity cs is
constant and the number of the particle is conserved [30] and
is tested only for a 2D massless gas [32]. For the system of
3D hadrons, these requirements are not guaranteed generally.
Interestingly, Eqs. (2) and (5) could give a good description
to the experimental data [31]. In this section we assume the
validity of Eqs. (2) and (5) as Ref. [31] and fit Eq. (2) to the
elliptic flow data of the hadron from AMPT model.

We analyze the elliptic flow of the hadron at two different
stages: the hadron at the final time, for which the relevant
variables will be marked by ‘f’ and the hadron just after partons
are coalesced (see Sec. II), for which the relevant variables will
be marked by ‘c.’ For consistency, the initial condition (S, ε)
is determined from the hadrons after HIJING is finished (see
Sec. II). Table II gathers relevant parameters for the hadron,
“h.h.” denotes hadrons from HIJING. Using the initial con-
dition of partons at initial time would almost not change the
results, the difference is <2%.

In Fig. 2 we plot the eccentricity scaled elliptic flow of
hadron(c) v2(c)/ε as a function of σ

S

dN(c)
dy

cs for the same
conditions as in Sec. II. So far, we do not know how to give
a good description of the cross section and sound velocity cs

for a dynamic model including the hadron. However, since
the elliptic flow is mainly produced at the partonic stage [54],
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 / ndf 2χ  0.174 / 2
 ε/hydro.

2v  0.003± 0.317  
 0   K      0.2± 2.4   

FIG. 2. Elliptic flow of the hadron(c). The solid line is the fitting
result of Eqs. (2) and (5) to data from AMPT model (see text).

we use the value of cs and σ in parton stage for σ
S

dN(c)
dy

cs in

Fig. 2. The fitted parameters v
hydro
2 (c)/ε ≈ 0.317 ± 0.003 and

K0(c) ≈ 2.4 ± 0.2. For the simple quark coalescence model,
the differential elliptic flow of the hadron at intermediate
transverse momentum is 2 or 3 times the elliptic flow of
the parton. However, for the realistic condition and dynamic
model [23,55,56], the simple quark number scaling could not
be expected generally. The case may become even worse if one
considers the integral elliptic flow, because the binding energy
and unitary problems would be important [56,57]. Thus, we
could not expect any simple scale for the elliptic flow of the
hadron relative to that of the parton. The larger value of K0(c)
in Fig. 2 than that in Fig. 1 is partially due to the difference of
dN/dy for the parton and hadron. If we convert the hadrons
produced through coalescence to their constituent quark, the
ratio of the number of the parton to that of the hadron is
approximately 2.2.

The deviation of the eccentricity scaled elliptic flow of
hadron(c) v2(c)/ε from its ‘hydrodynamic limit’ for the cross
section σ = 6 and 10 mb is 15% and 11%, respectively. These
values are smaller than the values obtained for partons. We find
that the ratio of elliptic flow of hadron(c) to that of the parton
varies from 1.27 ∼ 1.1 for the cross section 3 ∼ 14 mb. This
result leads to two effects on the elliptic flow of hadron(c): (1)
the elliptic flow of hadron(c) is larger than that of the parton,
which would increase v2(c)/ε and v

hydro
2 (c)/ε relative to that

of the parton; (2) the ratio of elliptic flow of hadron(c) to that
of the parton is larger for smaller cross sections than larger
ones, which would make the increasing of the elliptic flow of
hadron(c) with the cross section less and reduce v

hydro
2 (c)/ε.

The second effect reduces the deviation of the elliptic flow
of hadron(c) from its ‘hydrodynamic limit.’ The combination
of the above effects leads to the almost negligible effect of
hadronization on v

hydro
2 /ε. We have checked that if we replace

the value of elliptic flow of the hadron in Fig. 2 with the
corresponding value of the parton, all the results are almost
the same as the parton case in Sec. III, except for K0(c). If
we consider the factor 2.2 (ratio of number of partons to that
of hadrons) mentioned above, the fitted K0 is almost the same
for both cases. This result indicates that when Eqs. (2) and
(5) are used to fit experimental data, one should take care of

2 3 4 5 6

0.16

0.18

0.20

0.22

0.24

ε/
2

V

sc
dy
dN

S
σ

Hadron(f)

 / ndf 2χ  1.947 / 2
 ε/hydro.

2v   0.003± 0.250  
 0   K     0.09± 1.32   

FIG. 3. Elliptic flow of the final hadron for different partonic
cross sections. The solid line is the fitting result of Eqs. (2) and (5) to
data from AMPT model (see text).
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the interpretation of the variables in Eq. (5). For example, if
one would interpret the cross section in Eq. (5) as a partonic
cross section one may have to divide the fitted cross section
by 2 ∼ 3.

In Fig. 3 we plot the eccentricity scaled elliptic flow of
hadron(f) v2(f )/ε as a function of σ

S

dN(f )
dy

cs with the same

conditions as in Sec. III. The fitted parameters v
hydro
2 (f )/ε ≈

0.250 ± 0.003 and K0(f ) ≈ 1.32 ± 0.09. The smaller value
of the elliptic flow of hadron(f) than that of hadron(c)
may be due to the resonance decay process which would
randomize the direction of the hadron. The deviation of
v2(f )/ε from its ‘hydrodynamic limit’ for cross sections σ = 6
and 10 mb is 20% and 14%, respectively. Hadronic dynamics
(decay, collisions) could modify both dN (f )/dy and v2(f )/ε
relative their value for hadron(c). If we replace v2(f ) with
v2(c) but keep dN (f )/dy unchanged, the deviation from the
‘hydrodynamic limit’ is almost the same as for the case of
hadron(c); if we replace dN (f )/dy with dN (c)/dy but keep the
elliptic flow unchanged, the deviation from the ‘hydrodynamic
limit’ is almost unchanged. K0(f ) is sensitive to both the v2(f )
and dN (f )/dy.

In conclusion, Eqs. (2) and (5) fits the AMPT model data of
the hadron in Au + Au collisions at

√
sNN = 200 GeV with

an impact parameter b = 8 fm and different partonic cross
sections well. The deviation of the eccentricity scaled elliptic
flow v2/ε from its ‘hydrodynamic limit’ for cross sections
σ = 6 and 10 mb is influenced by the coalescence process and
hadronic dynamics. The hadronic final state interactions and
hadronization reduce the extracted ‘hydrodynamic limit’ by

20% and also reduce the deviation from the ‘hydrodynamic
limit’ by 26%. One could expect that the influence of the
coalescence process and hadronic dynamics would also appear
when Eqs. (2) and (5) are used to describe the experimental
data.

V. SUMMARY

We analyze the dependence of eccentricity scaled elliptic
flow on the partonic cross section in Au + Au collisions at
RHIC energy

√
sNN = 200 GeV with an impact parameter

b = 8 fm using AMPT model. It is shown that the dependence
of eccentricity scaled elliptic flow on the partonic cross section
could be described well by a formula suggested by Bhalerao
et al. The eccentricity scaled elliptic flow of partons is 19%
and 27% lower than its ‘hydrodynamic limit’ for cross sections
σ = 10 and 6 mb, respectively. The deviation of eccentricity
scaled elliptic flow of the hadrons from their ‘hydrodynamic
limit’ could be influenced by both the hadronization of partons
through coalescence and hadronic dynamics. The hadronic
final state interactions and hadronization reduce the extracted
‘hydrodynamic limit’ by 20% and also reduce the deviation
from the ‘hydrodynamic limit’ by 26%.
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