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Abstract
In engineering component design, material models are increasingly used in finite element simulations for an expeditious and 
less costly analysis of the design prototypes. As such, researchers strive to formulate models that are less complex, robust, 
and accurate. In the realm of hyperelastic materials, phenomenological-based Carroll’s model is highly promising due to 
its simplicity and accuracy. This work proposes its further improvement by modifying the strain energy density function 
to comply with the restriction that it should vanish at reference configuration and adding a compressible term to capture 
the practical behavior of elastomeric materials and to avoid numerical problems during finite element implementation. The 
model constants for both the original and the modified versions were obtained by fitting their respective expressions to the 
classical Treloar’s experimental data using the Levenberg–Marquardt algorithm. The modified model was implemented 
using Abaqus CAE 2016 via a vectorized user material (VUMAT) subroutine. Comparisons of the model predictions with 
Treloar’s experimental data demonstrated the superiority of the modified version particularly in the equibiaxial loading mode. 
Moreover, the simulated and the experimentally observed behavior agreed to a great accuracy thus making the modified 
model suitable for simulating the loading response of components fabricated of elastomeric materials.
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1  Introduction

The extensive utilization of elastomeric materials particu-
larly in fabricating engineering components for aerospace 
and automotive industries has subjected them to huge 
research efforts in the last several decades. Understanding 
the mechanical behavior of these materials when subjected 
to various kinds of loads is crucial for the optimum design of 
components and predicting the response in practical appli-
cations. Unlike linear elastic materials where Hook’s law 
suffices in predicting mechanical response provided that 

the elastic constants are known, the nonlinear stress–strain 
relationship of the elastomeric materials makes the Hook’s 
law inadequate since definitive elastic constants especially at 
large deformations can’t be obtained. Consequently, the the-
ory of nonlinear elasticity was pioneered by Mooney [1] in 
the early 1940s. In this theory, also known as hyperelasticity 
theory, the stress–strain relationship is derived from a func-
tion known as strain energy density (Ψ) that is specific to 
the hyperelastic materials and is dependent on the deforma-
tion gradient [2, 3]. Formulation of the strain energy density 
function expression assumes that the hyperelastic material 
is isotropic, homogenous, strain-rate independent, free of 
hysteresis, and incompressible [4]. There are mathematical 
restrictions on strain energy density functions and have been 
listed in several texts [5, 6] some of which include; must be 
non-negative for all deformations, must vanish in the refer-
ence configuration, and must be invariant under a coordinate 
transformation.

Formulation of the strain energy density function and 
ultimately the constitutive relation takes either of the two 
approaches; micro-mechanical or phenomenological. The 
former involves the utilization of statistical mechanics 
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techniques to describe the behavior of long-chain polymeric 
networks at the microscopic level of the material. Examples 
of such models include the eight-chain [7], Flory-Erman [8], 
and the extended-tube model [9]. The latter involves fitting 
of mathematical equations to the experimental data of the 
material and generally results in polynomial formulations 
that are based on the strain invariants or principal stretches 
[5]. There are dozens of phenomenological models in the 
literature and some of the well-known examples include 
Neo-Hookean [10], Yeoh [11], Mooney-Rivlin [1, 12], 
and Horgan-Saccomandi [13]. Hybrid models (those that 
combine both the phenomenological and micro-mechanical 
approaches) also exist in Ref. [14]. Readers interested in a 
better understanding of these models may read some of the 
comprehensive reviews such as those of Boyce and Arruda 
[15], Carroll [16], Beda [17], and the dissertation work of 
Badienia [18].

The classical experimental data by Treloar [19] has been 
the main reference in both the formulation and the determi-
nation of the accuracy of new models. It contains the stress-
stretch data for different modes of loading including uniaxial 
tension, equibiaxial tension, and pure shear. A model that 
can accurately reproduce the experimental data in all of the 
three loading modes and requires a single set of few material 
parameters is considered the best. However, the majority of 
the existing models can be accurate in one loading mode 
such as uniaxial tension but fail in the other modes. Addi-
tionally, they may require a different set of material param-
eters for each of the loading modes. These challenges moti-
vate researchers to formulate new models or improve the 
existing ones. Kaoye et al. [20] improved the Gent model to 
better predict the equibiaxial deformation. Miroshnychenko 
and Green [21] developed a model that was an improve-
ment of the eight-chain model [7]. The new model could 
outperform the latter and other well-known models such as 
the Ogden model in replicating Treloar’s experimental data. 
Noting that the majority of the hyperelastic models neglect 
the temperature-dependent behavior of elastomeric materi-
als, Fu et al. [22] modified the eight-chain model to achieve 
a constitutive relation that considers the temperature effects. 
In addition to the improvement of existing models, various 
research groups focus on the development of new models 
aimed at better prediction performance. Yaya and Bechir 
[23] followed the phenomenological approach to develop a 
four-parameter model that performed as good as the Ogden 
six-parameter model. Khajehsaeid et al. [24] developed a 
three-parameter model whose parameters are independent of 
the deformation mode. This is advantageous in that a single 
experimental test is required to calibrate the model. Whilst 
the majority of the strain energy density functions are based 
on the invariants of the Cauchy-Green deformation tensor, 

Zhao et al. [25] formulated a new model basing on the invar-
iants of the Seth strain tensor. The model performed better in 
comparison to the Yeoh model and could predict behavior in 
a wide range of deformations. Recently, Külcü [26] proposed 
a new strain energy density expression based on the strain 
invariants with only two material parameters that could 
work in different loading modes. Amongst the most inter-
esting and recent models is the one by Carroll [27]. Its strain 
energy density function was formulated based on a phenom-
enological approach and has three material parameters. It 
has remarkable accuracy especially in the uniaxial tension 
and pure shear loading in terms of Treloar’s experimental 
data. By comparing fourteen models, Steinmann et al. [28] 
found the accuracy of Carroll’s model particularly in pure 
shear loading to be unmatched by any models.

Recognizing the simplicity, accuracy, and potential of 
Carroll’s model to be utilized for predicting the mechanical 
response of elastomeric materials under various loading con-
ditions, this work aims to improve the said model for even 
better performance and applicability. The choice of Carroll’s 
model for improvement is not arbitrary but based on its rela-
tive advantages when compared to other hyperelastic models 
with good predictions in uniaxial tension and pure shear 
loading. It requires only three material constants yet its per-
formance in uniaxial tension matches that of the extended-
tube model [9] and Ogden [29] which require five and seven 
material constants respectively. Due to its phenomenological 
nature, the material constants have no physical meaning and, 
therefore, the knowledge on the material microstructure is 
not necessary to obtain the parameters but rather by fitting 
the experimental data to the model equation using nonlin-
ear least-squares methods. Importantly, it requires a single 
pair of model constants to predict the behavior in multi-
axial loading and the model equation can be implemented 
in a finite element program. However, a closer look at its 
strain energy density expression shows that it doesn’t sat-
isfy one of the mathematical restrictions (it should vanish 
in the reference configuration). This affects the accuracy of 
the parameters and ultimately that of the predictions of the 
model. Again, the formulation assumes that the material is 
incompressible (just like the majority of the models). Whilst 
this assumption simplifies the expressions and provides good 
approximations, numerical problems such as element lock-
ing arise during finite element implementation [30]. There-
fore, to enable complex problem analysis via finite element 
simulations, compressibility must be taken into considera-
tion. The objectives of this work include; modify the strain 
energy density expression according to the mathematical 
restriction mentioned, incorporate a compressibility term 
in the expression, and implement the model in a finite ele-
ment code.
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2 � Strain energy density

2.1 � Formulation

Since the strain energy density of a phenomenological model 
is a function of the invariants of the strain tensors or the 
principal stretches, knowledge of continuum mechanics is 
essential. A body undergoing finite deformation has � and 
� vectors represent the material points in the deformed and 
the undeformed configurations respectively. The deforma-
tion gradient relates these two configurations and is given 
by the partial derivative of each component of the deformed 
vector with respect to each component of the undeformed 
vector, � =

��

��
 . According to the polar decomposition theo-

rem, � can be multiplicatively decomposed into a proper 
orthogonal tensor (pure rotation tensor) and a symmetric 
positive-definite tensor (pure stretch tensor) [31]. The left 
and the right decompositions of � are given in Eq. (1)

where � and � are the left and right Cauchy stretch tensors 
respectively whereas � is the orthogonal rotation tensor. 
The left and the right Cauchy-Green deformation tensors 
are given by � = � ⋅ �T and � = �T

⋅ � respectively. The 
relationship between deformation and stretch tensors can 
be found by applying Eq. (1) to expressions for � and � as 
shown in Eq. (2)

From Eq. (2), it is worth noting that �T
⋅ � = � ⋅ �T = � . 

Both � and � have identical eigenvalues which are classi-
cally denoted as �1, �2 and �3 . These eigenvalues are the 
principal stretches of deformation.

The invariants of � , which are the same as those of � , are 
obtained as shown in Eq. (3)

The invariant-based phenomenological models have their 
strain energy density as a function of the invariants of � 
given in Eq. (3) and expressed as Ψ

(

I1, I2, I3
)

 . Simplification 
is achieved when the material is assumed to be incompress-
ible (no volume change during deformation). The ratio of 
the volume in the deformed to the undeformed configuration 
(

V
/

V0

)

 is given by the Jacobian determinant of the deforma-
tion gradient,J = det � = �1�2�3 =

√

I3 . Incompressibility 
assumption means that J = I3 = 1 , thus, making the strain 

(1)� = � ⋅ � = � ⋅ �,

(2)

� = � ⋅ �
T = (� ⋅ �) ⋅ (� ⋅ �)T = � ⋅ � ⋅ �

T
⋅ �

T = �
2,

� = �
T
⋅ � = (� ⋅ �)T ⋅ (� ⋅ �) = �

T
⋅ �

T
⋅ � ⋅ � = �

2.

(3)

I1 = tr� = �2
1
+ �2

2
+ �2

3
,

I2 =
1

2

[

(tr�)2 − tr
(

�
2
)]

= �2
1
�2
2
+ �2

2
�2
3
+ �2

3
�2
1
,

I3 = det � = �2
1
�2
2
�2
3
.

energy density a function of the first and second invariants 
Ψ
(

I1, I2
)

 . Generally, the inclusion of the second invariant 
improves the accuracy of the model especially on the biaxial 
loading and capturing the strain-stiffening with an increase 
in stretch values [32].

The expression for the Cauchy stress is derived from the 
strain energy density expression and an elaborate deriva-
tion process is presented by Bergström [33]. For an arbitrary 
loading and assuming incompressibility, the Cauchy stress 
is obtained as shown in Eq. (4)

where p is a pressure term due to incompressibility and is 
determined from the boundary conditions and � is the iden-
tity tensor. On the other hand, the Cauchy stress expression 
for an arbitrary loading that considers compressibility is 
given in Eq. (5)

The main features of Carroll’s model are; has three 
parameters, depends on both the first and second invari-
ants, and assumes the incompressibility of the material. 
Full details on its derivation are found in Carroll’s original 
work [27]. Using Treloar’s data, the strain energy density 
function for Carroll’s model was developed in three steps as 
demonstrated in Table 1.

The overall strain energy density function for Carroll’s 
model is finally obtained by summing the individual strain 
energies of each step resulting in the expression shown in 
Eq. (6)

where �1, �2 and �3 are the material parameters to be deter-
mined by fitting Treloar’s data.

As already mentioned, some mathematical restrictions 
were postulated by influential researchers Ogden [6] and 
Treloar [10]. One of these restrictions is that the strain 
energy density must vanish at the reference configuration 
Ψ
(

I1, I2, I3
)

= 0 . The physical meaning of this particular 
restriction is that the material has zero stress at the unde-
formed state. The principal stretches at the undeformed state 
are given by �1 = �2 = �3 = 1 . The corresponding values of 
the invariants are given in Eq. (7)

(4)� = 2

(

�Ψ

�I1
+

�Ψ

�I2
I1

)

� − 2
�Ψ

�I2
�
2 + p�,

(5)

� =
2

J

(

�Ψ

�I1
+

�Ψ

�I2
I1

)

� −
2

J

�Ψ

�I2
�
2 +

(

�Ψ

�J
−

2I1

3J

�Ψ

�I1
−

4I2

3J

�Ψ

�I2

)

�,

(6)Ψ
�

I1, I2
�

= �1I1 + �2I
4
1
+ �3

√

I2,

(7)

I1 = �2
1
+ �2

2
+ �2

3
= 3,

I2 = �2
1
�2
2
+ �2

2
�2
3
+ �2

3
�2
1
= 3,

I3 = �2
1
�2
2
�2
3
= 1.
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Applying this to Carroll’s strain energy density function 
given in Eq. (6) yields the strain energy of the model at the 
reference configuration as shown in Eq. (8)

Since �1 = �2 = �3 ≠ 0 , the strain energy of Carroll’s 
model will have a nonzero value at the reference configu-
ration which violates one of the main restrictions. This 
influences the material parameters and consequently the 
predictions of the model. For this reason, we propose the 
modification of Eq. (6) to Eq. (9)

It is easy to find that the modified Carroll’s strain energy 
density expression given in Eq. (9) satisfies the postulate that 
strain energy must be zero at the reference configuration as 
shown in Eq. (10)

2.2 � Compressibility

Whilst incompressibility is a common assumption in the 
modeling of elastomeric materials, it is merely an approxi-
mation of the material behavior. The realistic behavior 
involves volume changes and, therefore, compressibility 
is necessary for more accurate predictions of the model. 

(8)Ψ(3, 3) = 3�1 + 81�2 + �3

√

3,

(9)
Ψ
�

I1, I2
�

= �1
�

I1 − 3
�

+ �2
�

I4
1
− 81

�

+ �3

�

√

I2 −
√

3
�

.

(10)Ψ(3, 3) = 0.

For instance, elastomeric materials subjected to hydrostatic 
compression undergo substantial volume changes which are 
up to 20% of the initial volume, thus, making incompress-
ible models inaccurate [34]. The incompressibility assump-
tion is advantageous in that it leads to simplified mathe-
matical equations that describe the mechanical behavior of 
elastomers and give a good approximation [35]. However, 
numerical problems that lead to non-convergence of the 
solution arise during the finite element implementation of 
the incompressible models to simulate complex material 
deformations [15, 36]. With the increased usage of finite 
element simulations to understand the behavior of product 
prototypes, there is a need to develop constitutive models 
that consider volume changes during deformation.

The first step in accounting for volume changes is to 
remove the restriction that I3 = 1 and taking the volume 
ratio J =

√

I3 . The strain energy density is then taken to 
be composed of two parts (see Eq. (11)); the deviatoric/
distortional and the hydrostatic/volumetric parts which are 
responsible for shape and volume changes respectively

where the subscripts D and H stand for deviatoric and hydro-
static respectively whereas I∗

1
 and I∗

2
 are the invariants of 

the deviatoric left or right Cauchy-Green deformation ten-
sor. From the deviatoric part of the deformation gradient, 
�∗ = J−(1∕3)� , the deviatoric left and right Cauchy-Green 
deformation tensors are given by �∗ = �∗(�∗)T = J−(2∕3)� 
and �∗ = (�∗)T�∗ = J−(2∕3)� respectively. The deviatoric 
invariants are then given by the expressions in Eq. (12)

(11)Ψ = ΨD

(

I∗
1
, I∗

2

)

+ ΨH(J),

Table 1   Development of Carroll’s strain energy density function

Step Notes Strain energy 
density 
expression

1 Treloar’s uniaxial tension stress-stretch data in the range 1 < 𝜆 < 4.5 has its strain energy linearly dependent on I1 and 
can be approximated by the Neo-Hookean strain energy density function Ψ = �1I1 . The stress equation for uniaxial ten-

sion loading is found to be 
�UT

1
= 2�1

(

� −
1

�2

)

.

Ψ = �1I1

2 Taking Treloar’s uniaxial tension stress-stretch data as 
(

�u, �u
)

 , the residual stress (stress that is not accounted for by the 
stress equation in step 1) can be found by

�UT
res

= �u − 2�1

(

�u −
1

�2
u

)

The strain energy density for the residual stress is approximated by the expression Ψ = �2I
4

1
 and its corresponding stress 

equation is

�UT

2
= 8�2

(

� −
1

�2

)(

�2 +
2

�

)3.

Ψ = �2I
4

1

3 Lastly, the residual stress in equibiaxial tension (stress that is not accounted for by both of the stress equations in steps 1 
and 2) is modeled. Taking 

(

�eb, �eb
)

 as Treloar’s stress-stretch data in equibiaxial loading, the residual stress is found as

�EB
res

= �eb − 2

(

�eb −
1

�5
eb

)

[

�1 + 4�2

(

2�2
eb
+

1

�4
eb

)3
].

The strain energy density function for the residual stress is approximated by the expression Ψ = �3

√

I2.

Ψ = �3

√

I2
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On the other hand, the hydrostatic term is related to 
the volume ratio and the bulk modulus of the material as 
shown in Eq. (13)

where K is the bulk modulus. Using Eqs. (9), (11)–(13), the 
modified Carroll’s strain energy density function is given 
by Eq. (14)

2.3 � Material parameters

The material parameters in a phenomenological model have 
no physical meaning and must be determined by fitting the 
model to experimental data. Treloar [19] presented nominal 
stress-stretch data for 8% Sulfur vulcanized rubber under 
three deformation modes; uniaxial tension, equibiaxial ten-
sion, and pure shear. Treloar’s data has been extremely use-
ful for developing hyperelastic models since it involves large 
stretch values. The unit of stress in Treloar’s data is kg/cm2 
and was converted to Nm/m2 in this work for convenience. 
The stretch � was also converted to engineering strain using 
the relation � = � − 1 . Consequently, Treloar’s engineer-
ing stress–strain data plot for the three modes of loading is 
shown in Fig. 1a. Since the material parameters are obtained 
by fitting the strain energy density expression to the strain 

(12)
I∗
1
= tr�∗ = J−2∕3I1,

I∗
2
=

1

2

[

(tr�∗)
2 − tr

(

�
∗2
)

]

= J−4∕3I2.

(13)ΨH =
K

2
(J − 1)2,

(14)
Ψ
�

I
∗
1
, I

∗
2
, J
�

= �1
�

I
∗
1
− 3

�

+ �2
�

I
∗4
1

− 81
�

+ �3

��

I
∗
2
−
√

3

�

+
K

2
(J − 1)2.

energy in the material due to loading, the strain energy/unit 
volume data must be calculated from the stress–strain data 
(given area under the stress–strain curve). Since the material 
parameters for Carroll’s model in one loading mode work 
for all loading modes, only the uniaxial tension data was 
considered in this work for obtaining the parameters. The 
Trapezoidal rule was utilized to calculate the area under the 
stress–strain curve of uniaxial tension loading and the strain 
energy/unit volume against strain was plotted as shown in 
Fig. 1b.

Since the relationship between the strain energy and the 
strain is nonlinear as shown in Fig. 1b, fitting the strain 
energy density function to the data to get the parameters is 
a nonlinear least-squares problem. Several numerical algo-
rithms are available for solving nonlinear least-squares prob-
lems [37]. The Levenberg–Marquardt algorithm (LMA) [38, 
39] is a robust, efficient, and popular method for solving non-
linear least-squares problems. It has been utilized in deter-
mining the material parameters for hyperelastic models [40]. 
In this work, the LMA was implemented in a Python code 
(see Fig. 2) to find the material parameters for both the origi-
nal and the modified Carroll’s model strain energy density 
function given in Eqs. (6) and (14) respectively. The coef-
ficient of determination, denoted as R2 , as shown in Eq. (15) 
is utilized to determine how well the model with the material 
parameters predicts the observed experimental behavior

where n is number of data points, ei is experimental data at 
a point i,pi is prediction data at a point i , and em is the mean 
of the experimental data.

(15)R2 = 1 −

n
∑

i=1

�

ei − pi
�2

n
∑

i=1

�

ei − em
�2

,

Fig. 1   a Stress–strain plots of the Treloar’s experimental data for uniaxial tension, equibiaxial tension, and pure shear loading and b the calcu-
lated strain energy density against engineering strain for uniaxial loading mode
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The material parameters obtained for both the original 
and modified Carroll’s models are given in Table 2. The bulk 
modulus was obtained from the literature. With the param-
eters, corresponding model predictions according to Eqs. (6) 
and (14) were obtained and compared with the calculated 
strain energy density from the experimental uniaxial loading 
data. As shown in Fig. 3, the predictions were exceptionally 
accurate ( R2 values very close to unity) such that it can be 
difficult to differentiate the curves. It can be observed that 
the original Carroll’s model predictions deviate from the 
experimental data at zero strains since it records some strain 
energy (approximately 95,374.20 J).

3 � Numerical and finite element (FE) 
implementation

The ultimate goal of model development is to implement 
it in FE software to simulate the material response when 
subjected to various loading conditions. Finite element 

Fig. 2   Flowchart for implementing the Levenberg–Marquardt algorithm

Table 2   Material parameters Model Iterations Parameters

�1(Pa) �2(Pa) �3(Pa) K(Pa)

Carroll’s 4 166,333.95 0.2710  − 233,047.21 –
Modified 11 151,093.87 0.3028 68,330.70 5 × 108

Fig. 3   Comparison of the predicted and the calculated strain energy 
density for uniaxial tension loading
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simulation is nowadays an indispensable part of a product 
design process as it provides, depending on the accuracy 
of the model, an accurate approximation of the material 
response whilst saving on cost and time.

The requirement for both the numerical and FE imple-
mentation is the Cauchy stress equation for an arbitrary load-
ing. Given the strain energy density function expressions for 
the original and modified Carroll’s models in Eqs. (6) and 
(14) respectively, their corresponding Cauchy stress expres-
sions for arbitrary loading are found by applying Eqs. (4) 
and (5) respectively. The resulting Cauchy stress equations 
are given in Eqs. (16) and (17) respectively

where the subscript * denotes the deviatoric components.
The Cauchy stress expressions given in Eqs. (16) and (17) 

are for arbitrary loading response. What differentiates each 
loading mode is the deformation gradient. The schematic 
differences between the loading modes and their respective 
deformation gradients is shown in Fig. 4.

For each of the loading modes, numerical codes that 
calculate for Cauchy stress (according to Eqs. (16) and 
(17)) from given vectors of material parameters and the 
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3
1
+
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2
√

I2
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� −
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�
2 +
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−
2

3
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√

2

�

−
8

3
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3
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�

�,

(17)� =
2

J

�

�1 + 4�2I
∗3
1

+
�3I

∗
1

2
√

I∗
2

�

�
∗ −

�3

J
√

I∗
2

(�∗)
2 +

�

K(J − 1) −
2I∗

1

3J

�

�1 + 4�2I
∗3
1

�

−
2I∗

2

3J

�

�3
√

I∗
2

��

�,

engineering strains were written and implemented in Python 
programming language. On the other hand, FE simulation 
was realized using the commercial FE code Abaqus CAE 
2016 as it provides researchers with an opportunity to imple-
ment their material models via a user material subroutine. In 
this case, a vectorized user material (VUMAT) was coded 
in FORTRAN language and implemented according to the 
algorithm shown in Fig. 5. It is worth noting that for hyper-
elastic materials in Abaqus, the stress should be returned in 
a co-rotational coordinate system in which the basis system 
rotates with the material. For this reason, the stress must be 
rotated back before updating the new stresses as shown in 

the second last step of the algorithm.
To compare the simulation and the experimental results 

for uniaxial loading, the workpiece geometry was mod-
eled according to the dimensions of the specimen used by 
Treloar [19] in his experiments (see Fig. 6a, i). The simu-
lation set-up was simplified by modeling only one-quarter 
of the workpiece as shown in Fig. 6a, ii and utilizing sym-
metry boundary conditions. The model was meshed with a 
total of 6000 full integration 8-node linear brick elements 

Fig. 4   Schematic illustration of the uniaxial tension, equibiaxial tension, and pure shear loading modes with their respective deformation gradients
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(C3D8) as shown in Fig. 6b. As for the equibiaxial load-
ing, a notched workpiece proposed by Fujikawa et al. [41] in 
their experiments with geometrical details given in Fig. 6c 
was used. According to the authors, the notched workpiece 
helps mitigate the non-uniform deformation between the 
clamps. The model parameters for the equibiaxial loading 
(

�1 = 801198.03, �2 = 98.58, �3 = −527655.25, K = 5 × 108
)

 
were obtained by fitting the modified strain energy equation 
to the strain energy density data calculated from the experi-
mental uniaxial tension data by the authors. For each simula-
tion set-up, a reference point was set to capture both the dis-
placement and force in the direction of the deformation. Since 
the hyperelastic model is rate-independent, the time taken to 
complete the simulation doesn’t affect the simulation results.

4 � Results and discussion

This section presents the numerical predictions of the two 
models, the original Carroll’s and the modified version, 
compared with Treloar’s experimental data for each of the 
three loading modes namely uniaxial tension, equibiaxial 
tension, and pure shear. Furthermore, the FE simulation uni-
axial tension and equibiaxial tension loading results of the 
modified Carroll’s model are compared with the Treloar’s 
[19] and Fujikawa et al. [41] data of the same loading mode 

respectively. The comparison of the models’ predictions 
with the experimental data serves to inform on the predic-
tive abilities of the models. The coefficient of determina-
tion, whose expression is given in Eq. (15), is utilized as a 
measure to indicate how close the model predictions are to 
the experimental data and hence the accuracy of the model. 
It is worth noting that to plot engineering stress against the 
engineering strain, the Cauchy stress from the Python code 
numerical implementation was converted to engineering 
stress using the relation �eng = �true∕

(

�eng + 1
)

.

4.1 � Uniaxial tension

Both the original and the modified versions of Carroll’s 
model posted excellent predictions in the uniaxial tension 
loading with R2 values of 0.9966 and 0.9986 respectively. 
That means more than 99% of the predicted data equals the 
experimental data. As shown in Fig. 7, the classic S-shaped 
stress–strain curve of this loading mode was reproduced 
by both models. A closer look at the figure shows that the 
original Carroll’s model is more linear at the beginning of 
the loading, unlike the modified version which captures the 
curve hence the small difference between their accuracies. 
Nevertheless, the difference is negligible and both models 
can be utilized to accurately predict the behavior of elasto-
meric materials subjected to uniaxial loading.

Fig. 5   Algorithm for vectorized user material (VUMAT) implementation in Abaqus CAE
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4.2 � Equibiaxial tension

This loading mode is crucial for modeling the behavior of 
elastomeric materials. The challenge with the majority of 
the hyperelastic models in the literature that require a sin-
gle pair of model constants for multi-axial loading is that 
they post accurate predictions in uniaxial and pure shear 
loading modes but less accurate predictions in equibiaxial 
loading mode. In this work, the original Carroll’s model 
performs poorly in predicting the equibiaxial tension with 
R2 value of -0.4629 as shown in Fig. 8. The negative value 
simply means that the predictions are below the average 
horizontal line of the experimental data. On the other 
hand, the modified Carroll’s model posted excellent pre-
dictions as indicated by the R2 value of 0.9843. The second 
invariant is important for accurate model predictions in 
equibiaxial tension. From Table 2, it is observed that the 
third material parameter which is linked with the second 
invariant in the strain energy density function changes 
substantially in the modified version as opposed to the 

Fig. 6   a, i Geometrical dimensions of the workpiece used by Treloar [19] for uniaxial tension experiments, a,ii details of the one quarter 3D 
model used in FE simulation, b the meshed 3D model, and c the geometrical details of the workpiece used by Fujikawa et al. [41] for equibiaxial 
loading and its meshed one quarter 3D model

Fig. 7   Comparison of the models’ predictions and Treloar’s experi-
mental data for uniaxial tension loading
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other two parameters which are relatively comparable. 
This explains the huge difference in predictions between 
the two models and also confirms the role of the second 
invariant in equibiaxial loading.

4.3 � Pure shear

Also known as constrained or planar tension test, the 
specimen is subjected to biaxial tension while being con-
strained in one direction. As shown in Fig. 9, the modi-
fied Carroll’s model was able to capture the nonlinear 
stress–strain behavior observed in experiments with R2 
value of 0.9772. The original Carroll’s model is equally 
good but presents an almost linear stress–strain relation-
ship with R2 value of 0.9262. In this case, both models can 
be employed to predict pure shear deformation of elasto-
mers but the modified version is more accurate. It is worth 
noting that the numerical prediction results for the pure 
shear and equibiaxial loading as plotted in Figs. 8 and 9 
are slightly lower than the experimental data. The differ-
ence could be attributed to the material parameters or the 
strain energy density expression. Simultaneous fitting of 
the model to the experimental data in all the three modes 
of loading to obtain model constants could reduce this 
error. For this work, simultaneous fitting did not yield bet-
ter results than single fitting using uniaxial tension data.

4.4 � FE simulation results

Of interest in the simulation results were the force–displace-
ment data obtained via the reference point in the 3D model 

and the stress contour plots at various levels of deformation. 
Since symmetry boundary conditions were used, the dis-
placement data has to be multiplied by two to get the total 
displacement. The engineering stress data was obtained by 
the ratio of the force and the initial cross-sectional area of 
the 3D model. Similarly, the ratio of the displacement to the 
original length of the workpiece gave the engineering strain 
data. A comparison of the simulation and the experimental 
stress–strain for uniaxial loading is shown by the plots in 
Fig. 10a, i. The predicted stress distribution at various stages 
of strain during loading is shown in Fig. 10a, ii. The experi-
mental and simulation stress–strain plots for equibiaxial 
loading are given in Fig. 10b, i whereas the stress contours 
at � = 0.6 is shown in Fig. 10b, ii. It can be observed that the 
simulation predicted the experimentally observed behavior 
accurately with R2 value of 0.9465 and 0.9857 for uniaxial 
tension and equibiaxial tension respectively. This indicates 
that the VUMAT implementation of the modified Carroll’s 
model was a success and can be reliably used to predict the 
material’s behavior.

5 � Conclusions

Carroll’s model possesses the desired characteristics of a 
hyperelastic model such as having few material parameters 
and that only one set of parameters are required for predict-
ing material response under various types of loading modes. 
However, its strain energy density function violates one of 
the most important mathematical restrictions whose physi-
cal meaning is that the material should be stress-free at the 
undeformed state. Moreover, the original version assumed 

Fig. 8   Comparison of the models’ predictions and Treloar’s experi-
mental data for equibiaxial tension loading

Fig. 9   Comparison of the models’ predictions and Treloar’s experi-
mental data for pure shear loading
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incompressibility whilst the practical behavior of elasto-
meric materials includes compressibility and it is impor-
tant for avoiding numerical problems during finite element 
implementation.

This work aimed at improving Carroll’s model by modi-
fying the strain energy density function according to the 
mathematical restriction that it should vanish at the unde-
formed state and by including a compressible term in its 
expression. According to Treloar’s classical experimental 
data for uniaxial tension loading, the strain energy density 
was calculated and the Levenberg–Marquardt Algorithm was 
utilized to fit both the original and the modified strain energy 
density function to get the material parameters of the model. 
Cauchy stress equations for arbitrary loading were derived 
from the strain energy density function and numerical codes 

were implemented in Python language to get the model 
predictions. Furthermore, finite element implementation 
in Abaqus CAE 2016 via a VUMAT subroutine coded in 
FORTRAN language was undertaken to demonstrate the 
capabilities of the modified version in simulating the defor-
mation behavior in uniaxial tension loading.

Comparisons of the model predictions to the classi-
cal Treloar’s data were presented for each of the loading 
modes. While the predictions of the original and modified 
versions were relatively comparable in uniaxial and pure 
shear loading, the latter outperformed the former in equib-
iaxial tension loading. The finite element implementation 
was a great success as the simulation stress–strain results 
had a good agreement with the corresponding experimen-
tal data. This work has demonstrated the superiority of the 

Fig. 10   a,i Comparisons of the modified Carroll’s model simulation and the Treloar’s [19] experimental stress–strain data for uniaxial tension 
loading, a,ii stress contours at various stages of loading. b,i Simulation and Fujikawa et al. [41] experimental data for equibiaxial loading, and 
b,ii the stress contours at � = 0.6 for equibiaxial tension simulation
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modified Carroll’s model compared to the original ver-
sion and its capability to accurately simulate the material 
response in a finite element implementation.
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