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a b s t r a c t

Snap-through instability of viscoelastic materials is known to generate novel behavior, featured as
pseudo-bistability, i.e. the capability of a system in maintaining a deformed configuration for a
certain period of time after removal of an external load, followed by snapping back to its initial
configuration automatically, due to the combination of time-dependent mechanical property and
geometric nonlinearity of the system. This work numerically, experimentally, and analytically examines
spherical viscoelastic domes with predesigned geometric imperfections that can control the structural
stability and tune the snap time, which is defined as the time that a dome remains almost stationary
in the deformed configuration after the release of external forces. The results show that even an
imperfection with a small magnitude can play a significant role in pseudo-bistability. An imperfection
with a positive amplitude shifts a viscoelastic dome towards bistable behavior, corresponding to
a longer snap time, while an imperfection with a negative amplitude shifts the dome towards
monostable behavior, resulting in a shorter snap time. This work can open up new opportunities for
controlling spatiotemporal behavior of structures for multi-functionalities.

© 2021 Published by Elsevier Ltd.
1. Introduction

A snap-through instability refers to a mode of instability
hat can transform a structure from one metastable state to
nother non-adjacent stable state under certain loading [1–6].
orrespondingly, a large amount of stored elastic energy in the
etastable state is released and converted to kinetic energy,

esulting in a very rapid transition. Snap-through instabilities
idely exist in nature and daily life, such as in Venus flytraps [7],
nap hair clips, and jumping popper toys [8,9]. They also have var-
ous practical applications in engineering, such as energy absorp-
ion [10–14], actuation [15,16] and morphing devices [17–19], by
irtue of fast motion, energy storage and reversible deformation.
large amount of research has concentrated on snap-through

nstabilities in arches and domes [8,20–23] due to the ubiquity
f the instabilities in nature and engineering.
Viscoelasticity, which describes time-dependent and

ate-dependent behavior of materials [24,25], has profound in-
luence on snap-through instabilities [2,8,11,15,23,26–28]. In par-
icular, some viscoelastic systems show the capability of main-
aining a deformed configuration for a certain period of time
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E-mail addresses: lengjs@hit.edu.cn (J. Leng), lihuajin@seas.ucla.edu (L. Jin).
ttps://doi.org/10.1016/j.eml.2021.101477
352-4316/© 2021 Published by Elsevier Ltd.
after removal of the external load, followed by rapidly recov-
ering its initial configuration automatically. This phenomenon
is called pseudo-bistability or temporary bistability. The mech-
anism of pseudo-bistability is that the time evolution of the
material property of a viscoelastic system can trigger a transition
of the system from a monostable state to a bistable state [8,
15,26,27,29]. In particular, pseudo-bistability is widely studied
in viscoelastic arches and domes, and specifically, the decrease
of the ratio of bending energy to stretching energy during re-
laxation is attributed to be the cause of pseudo-bistability in
them.

It is well recognized that snap-through instabilities are highly
sensitive to geometric imperfections [30–36]. In shell buckling,
there was a long history in understanding the discrepancy be-
tween the theoretically predicted and experimentally observed
critical buckling loads, and large knockdown factors have been
introduced to account for the significant reduction of the buckling
loads due to imperfections [32]. Lee et al. studied the effect of a
dimple-like geometric imperfection on the critical buckling load
of spherical elastic domes under pressure loading and accurately
predicted the knockdown factors of imperfect spherical domes
by shell theory [32]. Ref. [35] identified local and global buckling
loads for cylindrical shells subjected to axial compression with

emphasis on the role of local geometric dimple imperfections.
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ore recently, elastic thin domes with a large axisymmetric im-
erfection were examined by employing a shell theory with exact
xpressions of the middle surface strains and curvature changes,
nd were found to have significantly different buckling conditions
nd buckling modes from the perfect ones [31]. By comparing
he buckling loads of shells with different types of geometric im-
erfections, Babcock concluded that the presence of a geometric
mperfection serves as the most important factor, while the type
f the imperfection plays a relatively minor role [33].
In view of the significant effect of geometric imperfections

n snap-through buckling of spherical domes, we ask how the
seudo-bistability of viscoelastic domes is affected by geometric
mperfections, which is, to our best knowledge, still absent. To
nswer this question, this paper uses a combined method of an-
lytical modeling, finite element analysis (FEA) and experiments.
nap-through buckling of perfect and imperfect domes with sys-
ematically varied geometric imperfections are investigated using
EA. Experimentally, imperfect domes are fabricated by casting
viscoelastic elastomer using molds with an engineered im-
erfection. To further understand the effect of imperfections on
seudo-bistability, we develop an analytical discrete model for
iscoelastic domes, and examine the instantaneous and dynamic
esponses of both perfect and imperfect domes. Understanding
he geometric role of imperfections will allow us to better har-
ess and program pseudo-bistability of viscoelastic domes for
pplications.

. Methods

.1. Finite element analysis

The stability of perfect and imperfect viscoelastic spherical
omes under a vertical indentation was investigated using FEA in
baqus (version 6.14). The domes have an initial angle α0, width

w0 and height H (Fig. 1a). The middle surface radius and thickness
are denoted by R and h, respectively. Their viscoelastic behavior
is modeled by the generalized Maxwell–Wiechert material, with
the material parameters experimentally fitted to those of Sylgard
184 with a base-to-crosslinker ratio 15:1; see Section 2.2 for more
details. An axisymmetric rigid indenter with a ball head of a
radius approximately 30% of the dome radius was used to apply a
displacement to the dome, the distributed load caused by which
shows advantages of eliminating the local stress concentration
over a concentrated load [27]. A sudden downward displacement
is applied to the apex region of the dome by the indenter from
the initial configuration at t = 0− (Fig. 1a I) to the deformed
configuration at t = 0+ (Fig. 1a II). The indenter is then held
at the same position, and the dome relaxes under this constraint
during the time period of 0–trel (Fig. 1a III). The base of the dome
is allowed to move in the horizontal plane but prohibited to
have any vertical displacement. Finally, the indenter was removed
by deactivating the surface to surface contact between the in-
denter and the dome at t = trel (Fig. 1a IV). The response of
the viscoelastic dome under this loading process was simulated
using the dynamic implicit step so that the time-dependent and
quick recovery processes can be captured; numerical damping
is applied with the default setting in the dynamic implicit step.
Continuum axisymmetric elements (CAX4) were chosen, and the
nonlinear geometry parameter NLGEOM was activated.

An axisymmetric dimple-like geometric imperfection with a
positive amplitude (marked in red in Fig. 2a) or a negative ampli-
tude (marked in blue in Fig. 2a) is introduced to the apex region
of the perfect dome. The Abaqus INPUT files were updated using a
MATLAB code for each specific profile of imperfection. The profile
of the imperfection is specified by a Gaussian dimple [30],

−(β/βI )2
wI = δe , (1)

2

where δ is the amplitude of the imperfection at the apex, β is the
polar angle (Fig. 2a), and βI is the exponential decay width of the
imperfection.

2.2. Material characterizations

Experimentally we fabricated viscoelastic domes using Sylgard
184 with a base-to-crosslinker ratio 15:1 - a silicone rubber
proved to possess viscoelastic properties with Poisson’s ratio
of 0.469 and density of 1030 kg/m3 [22,37]. To determine the
viscoelastic properties of the material, relaxation tests were per-
formed on five identical thin film specimens, each with a length of
125 mm, width of 25 mm and thickness of 3 mm, using an Instron
testing machine (5900 SERIES), according to the ASTM D412
standard method. In the relaxation tests, 10% strain was applied
in 1 s to avoid stress relaxation during the deformation process,
and maintained constant for 1200 s to allow the material to relax
fully; the reaction force as a function of time was measured.

Here the generalized Maxwell–Wiechert model (Fig. 1b), con-
sisting of a free spring with a modulus E∞, and n numbers of
Maxwell elements in parallel with the modulus Ei and viscosity
ηi for the ith element, is adopted to describe the viscoelastic
behavior. When a step strain ε = ε0H(t), with H (t) the Heaviside
step function, is applied to the model, the stress can be solved as
σ (t) = ε0E(t), where the modulus is a function of time,

E(t) = E∞ +

n∑
i=1

Eie
−

t
τi , τi =

ηi

Ei
, (2)

with the relaxation timescales τi for the ith element. We can
see that the modulus decreases with time from the initial value
E0 = E∞+

∑n
i=1 Ei to the long-term modulus E∞, which is usually

non-zero for crosslinked polymers, after full relaxation. Further
normalizing E(t) by the initial value E0, we express g (t) =

(t)/E0 by a Prony series

(t) = 1 −

n∑
i=1

gi(1 − e−
t
τi ), gi =

Ei
E0

. (3)

It can be seen that the initial value of g(t) is 1 and the long-term
value decreases to 1 −

∑n
i=1 gi, meaning the modulus relaxes by

a maximum factor of
∑n

i=1 gi. The parameters gi and τi were de-
termined by fitting to our experimental results of the relaxation
tests. The generalized Maxwell–Wiechert model reduces to the
standard linear solid (SLS) model under the condition that the
number of Maxwell element n = 1, which will be used in the
discrete model in Section 5.

The least squares approach was applied to fit the generalized
Maxwell–Wiechert model with n = 5 Maxwell elements to the
average relaxation data of five specimens (R-Square ≥ 99.6%),
resulting in 5 relaxation timescales ranging from 0.3 s to 500 s,
and the corresponding Prony series (Table 1), which were imple-
mented into the FEA. Fig. 1(b) shows that the experimental data
and fitting curve agree well with each other. A sharp decrease of
the modulus is observed at the beginning and the steady state is
reached in 1200 s. As a result, the initial modulus, which is the
sum of all moduli of the springs, is 0.96068 MPa, while the long-
term modulus is 0.81988 MPa. The relaxation has accomplished
by 99.40% at t = 1200 s. On the other hand, to determine the
true primary relaxation time, free fitting without any limitation
of timescales was also implemented using two terms of Prony
Series, resulting in τ ′

1 = 3.7079, τ ′

2 = 67.9024, g ′

1 = 0.0583, g ′

2 =

0.0322, E ′

0 = 0.91079, but with an error of 94.8%. The primary
relaxation time τ ′ will be used for normalization later.
1
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Fig. 1. (a) Schematics of the loading process of a viscoelastic spherical dome under indentation in the FEA and experiments. (I) In the initial configuration the dome
has an angle α0 and width w0 . (II) In the deformation step, a sudden displacement is applied. (III) Then the displacement is held in the relaxation step, (IV) and
inally released in the recovery step. (b) The relaxation test results for Sylgard 184 with a base-to-crosslinker ratio 15:1 fitted by the generalized Maxwell–Wiechert
odel. (c) The experimental silicone rubber dome and indentation testing apparatus: (I) the initial state and (II) indented state using an Instron machine with
ustom-mounted attachments.
Table 1
Fitting results of the viscoelastic parameters for Sylgard 184 with a base-to-crosslinker ratio 15:1.
Parameters E0/MPa n g1 (τ1 = 0.3/s) g2 (τ2 = 3/s) g3 (τ3 = 30/s) g4 (τ4 = 300/s) g5 (τ5 = 500/s)

Values 0.96068 5 0.05069 0.04782 0.02967 0.01227 0.00671
d

7
o

2.3. Fabrication of imperfect viscoelastic domes

To experimentally validate the geometric role of imperfections
n the pseudo-bistability of viscoelastic domes and compare with
he FEA results, we fabricated viscoelastic domes by mold casting
sing Sylgard 184. The molds made of polylactic acid (PLA) were
anufactured by fused deposition modeling (FDM) 3D printing

Ultimaker S5 Printer). Each mold was assembled by four parts:
wo universal frames and two replaceable imperfection parts
Fig. 2b); therefore, to vary the imperfection for a dome with
iven geometry, only the imperfection parts need to be fabricated
nd replaced. A Sylgard 184 prepolymer solution with a base-to-
rosslinker ratio 15:1, was vacuumed until no trapped bubbles,
ollowed by being poured into the printed PLA mold. Degassing
as run for a second time to eliminate air bubbles that may be

ntroduced during the infusion process. Then the mixture was
ured for 24 h at room temperature. Finally, the viscoelastic dome
ample with a predesigned geometric imperfection was obtained
fter demolding.

.4. Indentation tests

Indentation tests were performed on a viscoelastic dome using
n Instron testing machine with a custom-mounted indenter
Fig. 1c). The indenter was manufactured by FDM 3D printing
sing PLA with a 90% infill density, which is expected to mini-
ize deformation of the indenter during loading due to its high
tiffness compared to that of the dome. An acrylic platform with
hole in the center served as the base to support the dome and
3

was lubricated by oil applied on the contact surface to minimize
friction. Note that even with the lubrication, the friction could
not be eliminated completely. Moreover, the platform could only
provide restriction to downward vertical displacement. Therefore,
the boundary conditions in the experiments and FEA are slightly
different. The loading procedure is the same as that in FEA: a
displacement was applied to the dome by the indenter with
a loading rate of 20 mm/min; the indenter was kept at the
deformed position to allow the material to relax after loading;
then the indenter was removed, followed by recovery of the dome
to its original shape after a certain amount of time. The load–
displacement relations and recovery time were recorded during
the testing.

3. Stability of perfect viscoelastic domes

The stability of perfect viscoelastic domes was characterized
by both FEA and experiments. Depending on its geometric and
material properties, a viscoelastic dome could show monotonic-
ity, monostability, bistability or pseudo-bistability when it is in-
dented to an inverted position and held for certain amount of
time. Particularly, the geometry is crucial in determining whether
the instantaneous response of the dome is monostable or bistable,
while the evolution of the material properties during the relax-
ation (0–trel) and recovery (t > trel) is the dominant factor in
etermining whether pseudo-bistable behavior occurs.
Here by varying the initial angle of a viscoelastic dome from

5◦, 80.2◦ to 85◦, but fixing the inner radius r1 = 24.9 mm and
uter radius r = 30.1 mm, we show that the dome can be
2
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Fig. 2. (a) A spherical dome with a Gaussian dimple imperfection including a positive amplitude marked in red or a negative amplitude marked in blue. (b) Fabrication
process of a viscoelastic spherical dome with a predesigned imperfection. First, 3D printing was employed to manufacture the PLA molds including two universal
frames and two replaceable imperfection parts, which made it effective to vary the imperfection by only fabricating the replaceable parts. Then Sylgard 184 was
infused into the mold, followed by being cured for 24 h. Finally, the viscoelastic dome with a geometric imperfection was demolded. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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tuned from monostable, pseudo-bistable to bistable, as demon-
strated by its instantaneous indentation force–displacement re-
lation (Fig. 3a, b), and the displacement–time relation in the
relaxation and recovery processes (Fig. 3c). The monotonic case,
which is too far away from the region we are interested in, is
shown in Supplementary information S1. The reaction force f
is normalized by the initial modulus E1 + E∞ and the square
of the width w0

2, f /(E0 + E∞)w0
2, while the displacement v is

normalized by w0, v/w0. In all the three cases, both FEA and
experimental results show that the normalized reaction force
f /(E0 + E∞)w0

2 first increases until reaching a limit point, then
decreases until reaching a second limit point, and increases again
with the normalized displacement v/w0 (Fig. 3a, b). When α0 =

75◦ or 80.2◦, the second limit point, i.e. the minimum reaction
force, is positive (the blue or red curves in Fig. 3a, b), correspond-
ing to instantaneously monostable behavior. However, the dome
with α0 = 80.2◦ has a minimum reaction force very close to zero,
indicating its geometric parameters are close to the boundary
between the monostable and bistable behavior. When α0 = 85◦,
the minimum reaction force is negative (the black curve in Fig. 3a,
b), corresponding to instantaneously bistable behavior. The FEA
(Fig. 3a) and experimental results (Fig. 3b) show good agree-
ment. The slight discrepancy of both the limit points between
4

the FEA and experiments is attributed to the difference between
the boundary conditions, and the friction between the base of the
domes and the acrylic platform leads to higher reaction forces in
the experiments.

After an indentation displacement of 2H is held for t = 10
s (t/τ ′

1 = 2.70, τ ′

1 = 3.7079 the primary relaxation time scale),
it is released, and the displacement–time relations of the domes
are recorded in Fig. 3c. The dome with an initial angle α0 =

75◦ recovers the original shape without much delay once the
indentation is released (blue curves in Fig. 3c), indicating monos-
tability. The dome with α0 = 80.2◦ remains almost stationary
for the normalized snap time tsnap/τ ′

1 = 16.18 in the FEA and
for tsnap/τ ′

1 = 10.79 in the experiment before sudden recovery
red curves in Fig. 3c). This behavior indicates pseudo-bistablity
f the dome, with the feature that the minimum reaction force
s greater than 0 in the instantaneous deformed state, but the
ome becomes bistable after viscoelastic relaxation under the in-
entation, while eventually becomes monostable again due to the
iscoelastic relaxation after the indenter is released. The bistable
ase is demonstrated by the dome with an initial angle 85◦ (black
curves), which possesses a negative minimum force (Fig. 3a, b),
and keeps stable in the inverted configuration (Fig. 3c). The FEA
and experimental results agree reasonably well with each other

(Fig. 3c).
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Fig. 3. (a)–(b) Normalized force and displacement relations of perfect viscoelastic domes with the initial angle α0 = 75◦, 80.2◦, 85◦ in the deformation step from (a)
EA and (b) experiments show monostability, pseudo-bistability bistability, respectively. (c) Displacements and time relations in the relaxation and recovery processes
rom FEA (solid lines) and experiments (dashed lines). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
f this article.)
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. The effect of geometric imperfections on pseudo-bistability

In this section, we conduct FEA and experiments to demon-
trate the effect of imperfections on pseudo-bistability of vis-
oelastic domes. Using the dome with an initial angle α0 = 80.2◦

iscussed in Section 3 as a typical example of pseudo-bistable be-
avior, we introduce Gaussian dimple imperfections with various
mplitudes and widths into the dome. Specifically, the amplitude
is varied from −0.6h to 0.2h such that both negative and pos-

tive imperfections are considered, while the decay width of the
olar angle, βI , changes from 2.68◦ to 8.04◦ (Fig. 4). The normal-
zed force–displacement relations of the imperfect viscoelastic
omes in the instantaneous deformation step are compared with
hose of the perfect domes (FEA in Fig. 4a, and experiments in
ig. 4b). Both the FEA and experiments show that for the given
eometry of the dome and indenter, both the limit points increase
ith the amplitude of the imperfection. We find that although
he effect of imperfections on the maximum reactive force can
e sensitive to both the geometry of the dome and indenter, the
esults of the effect of imperfections on the minimum reactive
orce are representative. Since the main focus of this work is the
nfluence of imperfections on pseudo-bistability, we will mainly
ocus on the changes of the minimum reactive force due to
mperfections. A negative imperfection increases the minimum
eactive force, indicating that the imperfect dome moves towards
onostable behavior, while a positive imperfection brings the
inimum reactive force closer to zero, and therefore, closer to

he boundary between the monostable and bistable behavior. On
he other hand, under a constant imperfection amplitude (δ =
0.5h), the minimum reactive force increases with the decay d

5

idth of polar angle, βI . Consequently, the normalized snap time
snap/τ

′

1 of the imperfect domes also deviates from that of the
erfect one (Fig. 4c). Consistent results obtained from FEA and
xperiments show that a positive imperfect increases the snap
ime, while a negative imperfection decreases the snap time. The
hange of the normalized snap time, ∆tsnap/τ ′

1, increases with
oth the amplitude and decay width of the imperfection. How-
ver, the positive imperfections are more efficient in increasing
snap/τ

′

1 than the negative imperfections in decreasing tsnap/τ ′

1.

. A discrete model for pseudo-bistability

In the literature, the phenomena of snap-through instability
nd pseudo-bistability of domes have been investigated by using
iscrete models to reveal the underlying mechanisms [8,26,27].
ere, a discrete model with an introduced geometric imperfec-
ion is developed to understand the effects of imperfections on
seudo-bistability observed in the FEA and experiments, and to
redict the imperfection sensitivity of viscoelastic domes. In this
ection, perfect viscoelastic systems are first studied to show their
nstantaneous responses and dynamic behaviors. Then the roles
hat geometric imperfections play in stability, snapping time and
ritical relaxation time are illuminated.
Following the literature [8], we simplify a viscoelastic dome by

discrete model consisting of a point mass, a vertical SLS material
nit, and two tilted springs (Fig. 5a). It is worth mentioning that
he model in the literature [8] was used for an arch structure,
hose difference from a dome is lack of a geometric constraint

n the hoop direction. Since here we only consider axisymmetric

eformation of domes, the deformation in both the radial and
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e
w

Fig. 4. (a)–(b) Normalized force and displacement relations of viscoelastic domes with imperfections of various amplitudes and decay widths from (a) FEA and (b)
xperiments. The four solid lines show the effect of different amplitudes for a fixed width, while the two dashed lines and the red line show the effect of different
idths for a fixed amplitude. (c) The corresponding changes of the normalized snap time with respect to that of the perfect dome, ∆tsnap/τ ′

1 , from FEA (solid lines)
and experiments (stars). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
hoop directions, and therefore the corresponding energy terms,
can be completely determined by the one-dimensional distribu-
tions of deflection and rotation of a dome, similar to that of an
arch. Consequently, the effect of adding the energy caused by
hoop deformation is equivalent to changing the effective stiffness
of the vertical and tilted springs in the discrete model. Therefore,
here we can still use it to study domes. Recall that the SLS
model is degenerated from the generalized Maxwell–Wiechert
model when n = 1, and it can describe both relaxation and
creep with the minimum number of Maxwell elements. It is
assumed that the mass is jointed to one end of the viscoelastic
unit and one end of the tilted spring, while the other end of the
tilted spring is connected with the base by a pin joint. When a
vertical downward displacement v is applied to the mass, the
base would rotate around the pin joint. As the displacement
increases, the energy of the vertical springs in the viscoelastic
unit increases monotonically, representing the bending effect of
a dome. In contrast, the energy of the tilted springs increases to
the maximum value when they are horizontal, and then starts to
decrease, which corresponds to the stretching effect of the dome.
It is commonly recognized that it is the relative change between
the bending and stretching energy caused by viscoelasticity that
can trigger the transition between different stability states and
drive the pseudo-bistable phenomenon. Therefore, introducing
viscoelasticity only to the bending part here is enough to capture
this behavior.

The geometric imperfections are described as deviations of
the mass from its perfect location by amplitude δ and width
w1 (Fig. 5a). Consequently, each tilted spring is divided into two
parts including the imperfect part with the defect and the perfect
part. The stiffness of the tilted springs, the free linear spring in
the viscoelastic unit, and the spring in the Maxwell element are
6

denoted by k1s, k2s, k∞ and k1, respectively, and the viscosity of
the dashpot is denoted by η. Therefore, the initial stiffness of the
viscoelastic unit without relaxation is k1 + k∞, while the long-
term stiffness after full relaxation decays to k∞. For the perfect
system, the stiffness of the tilted spring is denoted by ks, and
the width and inclination angle of the tilted spring are w0 and
α0, respectively. The inclination angle of the imperfect spring is
denoted as α.

5.1. Pseudo-bistability of a perfect system

5.1.1. Instantaneous force–displacement responses
In this section, the instantaneous force–displacement responses

of perfect viscoelastic systems are first explored. The dome is
suddenly loaded by a downward displacement v at the mass
point m, and the corresponding reaction force f is calculated.
Consequently, the change in the length of each tilted elastic
spring ∆l can be approximately written as [8]

∆l ≈
v

2w0
(v − 2α0w0), (4)

under the assumption that α0 is small. The exact expression of
∆l and the corresponding results are presented in Supplementary
information S2. As we will see later that the approximate formula
gives us a similar trend in predicting the force–displacement
responses of the discrete viscoelastic system (Figs. 5b and S2).
Therefore, to provide more straightforward understanding, the
approximate formula under the assumption of small α0 is shown
in the main text. It should be noted that the exact expression of
∆l should be used for very deep domes. Since the instantaneous
modulus of the SLS unit is k∞+k1, the total energy of the SLS unit
completely stored in its springs is 1 (k +k )v2, and the potential
2 ∞ 1
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Fig. 5. Schematics of the discrete model and the results for perfect systems. (a) Discrete model of a viscoelastic dome with a predesigned geometric imperfection,
including a point mass, a viscoelastic unit, and two tilted springs with each divided into an imperfect and a perfect part. (b) Representative force–displacement
responses showing bistable (α0 = 0.8, Kr = 0.1), monostable (α0 = 0.8, Kr = 0.3), monotonic (α0 = 0.8, Kr = 0.7) and critical behavior on the boundary between
bistable and monostable states (α0 = 0.8, Kr = 0.16). (c) Phase diagram of monotonic, monostable, and bistable behaviors with respect to α0 and Kr , where the
stars represent the parameters used for the force–displacement curves in b. (d) Trajectories of the mass as functions of time for a monostable system (Kr = 0.3840),
bistable system (Kr = 0.2560) and pseudo-bistable system (Kr = 0.3206) under an instantaneous normalized displacement loading V1 = 1.5, relaxation for Trel = 10,
and recovery, with the other parameters fixed as K̃ = 0.5, α0 = 0.8 and Tr = 0.01.
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energy of the system can be expressed as:

Π (v) =
1
2
(k1 + k∞)v2

+ ks∆l2 − f v. (5)

he equilibrium states can be obtained by minimizing the poten-
ial energy with respect to v
∂Π

∂v
= (k1 + k∞)v +

ks
w2

0
v(v − 2α0w0)(v − α0w0) − f = 0, (6)

which leads to

f = (k1 + k∞)v +
ks
w2

0
v(v − 2α0w0)(v − α0w0). (7)

We can normalize the equation as

F = KrV + α2
0V (V − 2)(V − 1), (8)

with

F =
f

ksw0α0
, V =

v

w0α0
, Kr =

k1 + k∞

ks
, (9)

where Kr is the relative stiffness of the vertical SLS unit com-
pared to the tilted elastic springs, representing the stiffness ratio
of bending to stretching. The normalized instantaneous force–
displacement behavior only depends on α0 and Kr .

Under different material and geometric parameters, the sys-
tem shows different stability, which has also been observed in
the literature [8]. Given a fixed inclination angle α = 0.8, the
0 t

7

force–displacement curves for various Kr are shown in Fig. 5b.
When Kr = 0.7, the force–displacement relation is monotonically
increasing. When Kr = 0.3, the force–displacement relation
ecomes non-monotonic, although the second limit point is still
igher than zero, indicating monostable behavior. When Kr is
educed to 0.16, the second limit point reaches zero, representing
he transition from the monostable to bistable state. Bistable
ehavior is observed when Kr = 0.1 with the second limit point
ower than zero, yielding two additional intersection points with
he x axis besides the origin.

To construct a phase diagram for the different stability behav-
iors with respect to α0 and Kr , we determine the number of limit
points and the value of the second limit point by finding the roots
of the equation ∂F/∂V = 0. The condition that there exist two
limit points yields

Kr − α2
0 < 0. (10)

hether the system is monostable or bistable is further deter-
ined by the force value at the second limit point V2,

min = F (V = V2) = Kr (1+

√
1
3

−
Kr

3α2
0
)−α2

0(
2
3

+
Kr

3α2
0
)

√
1
3

−
Kr

3α2
0
.

(11)

hen Fmin > 0, the system is monostable, and the dome recovers
he initial state whenever it is unloaded. When F < 0, the
min
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ystem is bistable. In particular, the equilibrium is stable when
< V < V1 or V > V2, and unstable under the condition

of V1 < V < V2, with V1 the first limit point. Based on the
above criteria, a phase diagram composed of the monotonic,
monostable and bistable regions with respect to α0 and Kr is
plotted in Fig. 5c. As a result, when α0 is large and Kr is small
he system is bistable. Decreasing α0 or increasing Kr brings the
ystem to the monostable region, until eventually the two limit
oints disappear, when the system becomes monotonic.

.1.2. Dynamic pseudo-bistability behaviors
Next, the dynamics of the perfect system in the different

tability regions is investigated to especially unravel the pseudo-
istability behavior. Recall that a sudden downward displacement
s applied to the mass m at t = 0, which is kept constant during
he time period of 0–trel. At t = trel, the external force f is
removed to release the mass. The relation between the total force
fb applied to the viscoelastic unit and the displacement v can be
expressed as
k1 + k∞

k1

dv
dt

+
k∞

η
v =

1
k1

dfb
dt

+
1
η
fb. (12)

ccounting for the downward indentation force f, and the forces
rom the vertical viscoelastic unit and tilted springs, the conser-
ation of momentum of the mass is described as
d2v
dt2

=
ksv
w2

0
(v − 2α0w0)(α0w0 − v) − fb + f , (13)

here the first term on the right hand side of Eq. (13) represents
he force from the tilted springs obtained in Eq. (7). Eqs. (12) and
13) can be normalized as the following

r
dV
dT

+ (1 − K̃ )KrV =
dFb
dT

+ Fb, (14)

r
d2V
dT 2 = α2

0V (V − 2)(1 − V ) − Fb + F , (15)

here

=
k1t
η

, Fb =
fb

ksw0α0
, Tr =

mk21
ksη2 , K̃ =

k1
k1 + k∞

, (16)

esides the dimensionless variables and parameters defined in
q. (8). The dimensionless parameter K̃ represents the degree of
elaxation of the viscoelastic unit. Time t is normalized by the
iscoelastic time scale η/k1, and the dimensionless parameter
r indicates the square of the time scale ratio of the period of
esonance

√
m/ks to viscoelasticity η/k1.

In the relaxation step, the external force evolves as a result
f the stress relaxation in the viscoelastic part, while the dis-
lacement V0 applied suddenly in the deformation step remains
constant. The external force F as a function of time is entirely
etermined by V0 and the effective stiffness of the viscoelastic
nit, which evolves with time K eff

r (T ), F (T ) = F (V0, K
eff
r (T )).

olving the effective stiffness K eff
r (T ) using Eq. (14) by prescribing

he step displacement V0H(t), and plugging Fb back to Eq. (15)
ield

F (T ) = V0K
eff
r (T ) + α2

0V0(V0 − 2)(V0 − 1),
K eff
r (T ) = Kr (1 − K̃ + K̃ e−T ).

(17)

Then we can get the expression of the external force for the
entire process by describing it with the Heaviside step function as
F = F [1−H (T − Trel)]. In the release step, the external force is 0,
and we can determine the evolution of V by solving the coupled
Eqs. (14) and (15) using the command ode45 in MATLAB with the
following initial conditions of V , V̇ and Fb at T = Trel

V = V , V̇ = 0, F = K eff (T )V . (18)
0 b r rel 0

8

By prescribing the parameters K̃ = 0.5, α0 = 0.8, Tr =

.01, V0 = 1.5, and varying Kr , we show the typical dynamic
ehaviors of the system in Fig. 5d, including the monostable,
istable and pseudo-bistable behaviors. After being applied an
nstantaneous displacement V0, the mass is held for a certain
mount of time Trel = trelk1/η = 10 before being released. When
r = 0.3840, the system is monostable, rapidly recovers its initial
tate, and vibrates around it once the load is released. As the
elative stiffness Kr decreases, the system becomes bistable. Once
he indenter is released, the bistable system with Kr = 0.2560
naps to the inverted state, instead of the initial state. However,
hen Kr = 0.3206, the response of the system after the indenter

s released is considerably slowed down. The mass remains at
n almost constant position for a few times of the viscoelastic
elaxation time, until it rapidly accelerates, snaps back to the
nitial state, which is the pseudo-bistable behavior, and vibrates
round the initial state. Note that no vibration is observed in the
EA, since numerical damping is applied. We will next use the
iscrete mode to investigate the effect of geometric imperfections
n the pseudo-bistability.

.2. Imperfection-sensitivity of pseudo-bistability

We present here the role of geometric imperfections in chang-
ng the pseudo-bistable behavior and the imperfection-sensitivity
f dynamic behavior and critical relaxation time, which refers to
he minimum relaxation time required for a structure to show
seudo-bistability. The results from the discrete model will be
sed to qualitatively compared with and explain the observations
rom the FEA and experiments.

A deviation of the mass from its perfect position by a small
mplitude δ and width w1 is introduced, consequently altering
he inclination angle of imperfect part from α0 to α

δ

w1
= tanα − tanα0 ≈ α − α0. (19)

he tilted spring is divided into two parts by the imperfection,
hich are imperfect part with stiffness k1s and width w1, and
erfect part with stiffness k2s and width w2. The displacements
f the connected point in vertical and horizontal direction are
enoted as v2 and u2. When the dome is loaded by a downward
isplacement v1 at the mass point, the changes in the lengths of
he two tilted parts can be approximately written as

∆l1 ≈
1

2w1
(u2

2 + (v1 − v2)2 + 2u2w1 − 2αw1(v1 − v2)),

∆l2 ≈
1

2w2
(u2

2 + v2
2
− 2u2w2 − 2α0w2v2).

(20)

o, the potential energy of the system can be expressed as:

(v) =
1
2
(k1 + k∞)v1

2
+ k1s∆l12 + k2s∆l22 − f v1. (21)

he equilibrium states can be obtained by minimizing the poten-
ial energy with respect to the displacements
∂Π

∂v1
= (k1 + k∞)v1 + 2k1s∆l1

∂∆l1
∂v1

− f = 0,

∂Π

∂u2
= 2k2s∆l2

∂∆l2
∂u2

+ 2k1s∆l1
∂∆l1
∂u2

= 0,

∂Π

∂v2
= 2k2s∆l2

∂∆l2
∂v2

+ 2k1s∆l1
∂∆l1
∂v2

= 0.

(22)

It is assumed that the stiffness of imperfect and perfect parts
satisfies
k2s

=
w1

,
1

+
1

=
1

. (23)

k1s w2 k1s k2s ks
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hen the equilibrium Eqs. (22) can be derived as

f = (k1 + k∞)v1 + ks
w1 + w2

w1

v1 − v2 − αw1

w1
2 (u2

2 + (v1 − v2)2

+ 2u2w1 − 2αw1(v1 − v2)),
u2 − w2

w2
3 (u2

2 + v2
2
− 2u2w2 − 2α0w2v2)

+
u2 + w1

w1
3 (u2

2 + (v1 − v2)2 + 2u2w1 − 2αw1(v1 − v2)) = 0,

v2 − α0w2

w2
3 (u2

2 + v2
2
− 2u2w2 − 2α0w2v2)

−
v1 − v2 − αw1

w1
3 (u2

2 + (v1 − v2)2 + 2u2w1 − 2αw1(v1 − v2))

= 0.

(24)

We can normalize the equations as

F = KrV1 +
α0

2

W1
3 (V1 − V2 −

α

α0
W1)(U2

2 + (V1 − V2)2

+ 2U2
W1

α0
− 2

αW1

α0
(V1 − V2)),

U2 −
W2
α0

W2
3 (U2

2 + V2
2
− 2U2

W2

α0
− 2W2V2)

+

U2 +
W1
α0

W1
3 (U2

2 + (V1 − V2)2

+ 2U2
W1

α0
− 2

α

α0
W1(V1 − V2)) = 0,

V2 − W2

W2
3 (U2

2 + V2
2
− 2U2

W2

α0
− 2W2V2)

−

V1 − V2 −
αW1
α0

W1
3 (U2

2 + (V1 − V2)2 + 2U2
W1

α0

− 2
α

α0
W1(V1 − V2)) = 0,

(25)

with

(V1, V2,U2) =
1

w0α0
(v1, v2, u2),W1 =

w1

w0
,W2 =

w2

w0
, (26)

esides the dimensionless variables and parameters defined in
q. (8).
We plot the instantaneous force–displacement relations for

he system with a small imperfection of various amplitudes δ =

0.06w0, −0.02w0, 0.02w0 and 0.06w0 and width w1 = w0 to
ompare with that of the perfect system (Fig. 6a). Please note
hat here the imperfection amplitude is scaled by the width of
he dome, w0, instead of the thickness, since w0 is the only
ength scale in the discrete model. If we convert δ/h in the
xperiments and FEA to δ/w0 using the prescribed h/w0, and

compare the results with those of the discrete model, we can
see that the amplitudes are on the same order of magnitude,
which means we are using similar defect sizes. The perfect system
with the parameters K̃ = 0.5, α0 = 0.8 and Kr = 0.1626 is
monostable, but is near the boundary between the monostable
and bistable behavior. A negative imperfection decreases the
maximum force, while increases the minimum force (Fig. 6b). On
the other hand, a positive imperfection increases the maximum
force, while decreases the minimum force. This means a negative
imperfection pushes the system further deeper into the monos-
table region, while a positive imperfection pulls the system closer
to the boundary, or even to transit to the bistable region when the
minimum force is less than zero. The deviation from the perfect
system increases as the amplitude of the imperfection increases.
9

The results agree with the FEA and experiments. Therefore, a
geometric imperfection with a relatively small amplitude could
result in significant variations of the mechanical responses of
domes, and can even be harnessed to program stability. When
the width of the imperfection w1 is smaller, the deviation of the
force–displacement curve from the perfect one is smaller (Figs.
S3 and S4); see Supplementary information S3 for more details.

The dynamic trajectories of the system same as the pseudo-
bistable case in Fig. 5d (Kr = 0.3206) but with both positive
and negative imperfections (δ = −0.02w0 ∼ 0.04w0, w1 =

w0) are plotted in Fig. 6c. For a negative imperfection, the snap
time is observed to decrease as the amplitude of the imper-
fection increases, until reaching around zero, which approaches
the monostable behavior. The snap time drops sharply at small
imperfection amplitudes, and reaches a plateau at large imper-
fection amplitudes (Fig. 6d). When a small positive imperfection
is introduced, the snap time increases with the amplitude of the
imperfection (δ/w0 = 5 ∗ 10−4, the cyan curve in Fig. 6c). How-
ever, when the amplitude of the imperfection is large enough,
the system becomes bistable with an infinite snap time (Fig. 6d).
The dynamic results match well with the trend observed in the
FEA and experiments that a negative defect shifts the system
towards the monostable behavior while a positive defect shifts
the system towards the bistable behavior in the instantaneous
response. It is worth mentioning that the dependence of the
variation of the snap time on the amplitude of the imperfection
is not linear (Fig. 6d). Specifically, the snap time and stability can
change significantly with the amplitude of the imperfection near
the threshold of a pseudo-bistable state, while they only change
slightly far away from the threshold. We see a small variation of
geometry (α0 = 0.795) from the system (α0 = 0.8), which is close
to the boundary between monostability and bistability, leads to
visible difference of snap time in Fig. 6d.

We now explore how an imperfection affects the critical re-
laxation time under various geometric and material parameters.
Pseudo-bistable behavior would occur if the force at the second
limit point Fmin is instantaneously greater than 0 and less than 0
after a long-term relaxation, yielding

Fmin(K
eff
r (0), α0) > 0,

Fmin(K
eff
r (∞), α0) < 0.

(27)

To determine the critical relaxation time T c
rel, we replace Kr in

q. (11) by K eff
r (T c

rel) and use the condition

min(K eff
r (T c

rel), α0) = 0. (28)

e then expect the system will become pseudo-bistable when
he relaxation time is larger than the critical value Trel > T c

rel.
ig. 6e shows the critical relaxation time changes with the relative
tiffness Kr for different imperfection amplitudes and inclina-
ion angles. The region of negative relaxation time T c

rel < 0
means the system is instantaneously bistable. It is reasonable that
T c
rel increases with the relative stiffness, and decreases with the

inclination angle, because larger relative stiffness or a smaller
inclination angle shifts the system towards the monostable region
(Fig. 5b), corresponding to a longer relaxation time. Similarly, a
negative imperfection increases T c

rel, while a positive imperfection
decreases T c

rel, because a negative imperfection also shifts the
system towards the monostable region.

6. Conclusions

In conclusion, this paper investigates the effect of geomet-
ric imperfections on pseudo-bistability of spherical viscoelastic
domes by combining FEA, experiments, and analytical modeling.
The amplitude and profile of imperfections are systematically
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Fig. 6. Results of the discrete model for imperfect systems. (a) Instantaneous force–displacement curves of the system with a predesigned geometric imperfection
of a width w1 = w0 and an amplitude varied from −0.06w0 to 0.06w0 . (b) Dependence of the minimum force on the amplitude of the imperfection. (c) Dynamic
esponses of imperfect systems show a decrease of the snap time when the imperfection is negative, and an increase of the snap time when the imperfection is
ositive. (d) Snap time as a function of imperfection amplitude under different inclination angle α0 . (e) The imperfection sensitivity of the critical relaxation time
nder various geometric and material parameters. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
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aried and accurately controlled in both the FEA and exper-
ments. Experimentally, perfect and imperfect silicone rubber
omes are fabricated through 3D printed molds, and character-
zed for pseudo-bistable behavior with a loading procedure of
eforming, holding and releasing by a custom-mounted indenter.
he similar loading process is applied in FEA to examine the
ynamic responses of both perfect and imperfect domes made
f a generalized Maxwell–Wiechert material fitted to the re-
axation test data. A discrete dynamic model of a viscoelastic
ome is further developed to understand the geometric role of
10
mperfections in the pseudo-bistable behavior. The results from
he experiments, FEA, and discrete model agree well with each
ther, and show that a positive imperfection shifts a viscoelastic
ome towards bistable behavior, corresponding to a longer snap
ime, while a negative imperfection shifts the dome towards
onostable behavior, resulting in a shorter snap time. The dis-
rete model unravels that the effect of an imperfection on snap
ime and stability is particularly strong when the system is near
he threshold of a pseudo-bistable state. This work can moti-
ate future exploration of the effect of imperfection shape and
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aterial properties on pseudo-bistability, and provide more op-
ortunities for multi-functional designs [38–41]. It can also open
p potential novel applications of viscoelastic domes by com-
ining structural instability, geometric imperfections, especially
ith stimuli-responsive materials, whose material properties and
eometry can change in response to external stimuli.
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