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A B S T R A C T   

4D printing adds time as the fourth dimension to 3D printing, which has been actively explored in the biomedical 
field to develop patient-specific implants due to the ease of manufacturing complex architectures and the 
capability of dynamic transformations. However, the 4D printing filament used for fused deposition modeling 
(FDM) is quite limited. Here, 4D printing shape memory polybutylene succinate/polylactic acid (PBS/PLA) 
composite filament is prepared. The mechanical properties, surface morphology, and shape memory perfor
mances of the printed specimens are investigated. Besides, graphene oxide functionalized PBS/PLA shows 
attractive photothermal properties under near-infrared (NIR) irradiation, and a dynamic, remote, and accurate 
controlled 4D transformation of a porous scaffold is exhibited. As the first demonstration of 4D printing filament 
of PBS/PLA for FDM, this work shows its promising application prospects in tissue engineering, photothermal 
therapy, etc. Additionally, NIR-triggered 4D transformation solves the problem that the conventional thermal- 
trigger transformation process is difficult to control.   

1. Introduction 

4D printing is a next-generation rapid prototyping method that in
tegrates 3D printing (also known as additive manufacturing) and active 
materials to enable printed architectures to transform over time [1–3]. 
Shape memory polymer (SMP) is a typical and commonly used 4D 
printing active material, which can be transformed into a temporary 
configuration and fixed, and then recovered to the original (permanent) 
configuration under external stimuli, such as magnetic field, solution, 
heat, and light [4–8]. Therefore, 4D printing not only provides the op
portunity to manufacture architectures with complexity and fineness, 
but also allows architectures to be programmed to change configura
tions, features, and functions [9]. Due to these unique advantages, 4D 
printing has been actively explored in the fields of soft robotics, wear
able electronics, biomedical devices, etc. [4,10,11]. For biomedical 
applications, this technology is more attractive because of the ability to 
manufacture patient-customized medical devices and the possibility of 
dynamic and controllable structural transformation to meet different 
needs [12–21]. Zarek et al. fabricated a personalized shape memory 4D 
airway stent using PCL-based resin, which was expected to reduce 
migration and ensure stable anchoring. In addition, the low profile of the 

compressed SMP structure allowed for less damaging deployment [22]. 
Besides, customized 4D printing occlusion devices were developed for 
congenital heart disease, whose temporary configuration was designed 
as a straight geometry to facilitate interventional therapy. After reaching 
the target location, the device automatically recovered to a double-disc 
configuration to seal the defect. The customized device allowed ideal 
matching with the defect, which was conducive to increasing the oc
clusion success rate [9]. 

Polylactic acid (PLA) is a hydrophobic aliphatic polyester derived 
from renewable resources, which can be obtained via direct condensa
tion of lactic acid and ring-opening polymerization of lactide [23]. 
Because of its high strength, high modulus, biodegradability, and 
biocompatibility, it has aroused widespread research interests and is 
considered to be one of the most promising biomaterials. It has been 
widely used in drug delivery systems, implantable scaffolds, wound 
treatment, sutures, embolization devices, etc. [9,24–29]. However, the 
inherent brittleness of PLA has greatly hindered its wide application in 
many fields. Studies have shown that blending with tough polymers can 
enhance the elasticity of PLA [30]. Polybutylene succinate (PBS) is an 
aliphatic polyester with excellent ductility at room temperature, and the 
elongation at break may exceed 300% [31,32]. It is completely bio- 
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based and bioabsorbable and can be synthesized by condensation 
polymerization of raw materials (1, 4-butanediol and succinic acid) from 
renewable resources. These characteristics enable PBS to be an 
appealing polymer for biomedical applications, and it has been used in 
tissue engineering and controlled drug release [33]. Therefore, the 
combination of PBS and PLA is a good choice for balancing strength and 
ductility. More importantly, due to thermoplasticity and processability, 
PBS/PLA blend may be a desirable candidate biomaterial for additive 
manufacturing with excellent biodegradability and biocompatibility. 

Fused deposition modeling (FDM) is a filament-based 3D printing 
technology, the schematic of FDM is illustrated in Fig. 1a. The thermo
plastic filament is melted by a heating head and extruded through a 
nozzle with a certain diameter, and then the material is deposited layer 
by layer on the platform according to the computer model to obtain 
various architectures. FDM is considered to be the most widely used 3D 

printing technology, with advantages of low cost, space saving, and ease 
of operation [34]. The commercialized 3D printing filaments for FDM 
include polylactic acid (PLA), polyamide (PA, nylon), acrylonitrile 
butadiene styrene (ABS), polyvinyl alcohol (PVA), polyethylene tere
phthalate (PET), polycaprolactone (PCL), etc. In addition, there are 
some works on the fabrication of FDM 3D printing composite filaments, 
such as PCL/PLA [35], MWCNTs (multiwall carbon nanotubes)/ABS 
[36], short glass fiber/PP [37]. Although the FDM 3D printing filaments 
are diverse, 4D printing filaments are quite limited and their functions 
are less involved. The lack of advanced printable and functional intel
ligent filament materials has significantly limited the development of 
FDM-based 4D printing technology. 

The aim here was to develop a 4D printing composite filament for 
FDM to enrich the diversity of materials, to dynamically, remotely, and 
accurately control the 4D transformation process, and to demonstrate its 

Fig. 1. (a) Preparation of PBS/PLA composite filaments and the schematic of FDM 3D printing. (b) DSC patterns. (c) Shape memory performances. (d) Uniaxial 
tensile tests. (e) Three-point bending tests. Surface morphology of printed (f, g) PLA and (h, i) PBS/PLA specimens. Scale bars: 500 µm (f, h); 200 µm (g, i). 
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potential in biomedical applications. First, PLA and PBS/PLA 4D print
ing filaments were prepared by melt extrusion. Then the tensile/flexural 
properties, surface morphology, thermal behaviors, and shape memory 
performances were systematically examined. Various complex 3D ar
chitectures were constructed and printed with high quality using the 
PBS/PLA filaments through a commercial FDM 3D printer, showing 
good printability of PBS/PLA filaments. In addition, a coil used for 
embolization was designed and its 4D transformation process was 
investigated in a printed aneurysm model. Finally, graphene oxide (GO) 
was employed to functionalize PBS/PLA to achieve near-infrared (NIR) 
light-responsive 4D transformation. GO is a 2D carbon atom sheet with a 
honeycomb structure, which has excellent photothermal performance, 
high thermal conductivity, and favorable biocompatibility. GO has 
shown tremendous potential applications in biotechnology, such as 
photothermal anticancer therapy [38], drug delivery [39], bioassay, etc. 
[40–42]. Under the irradiation of NIR laser, GO can absorb photons and 
convert them into heat. The photothermal effects of GO functionalized 
PBS/PLA specimens irradiated by NIR laser with different power den
sities were studied. Besides, a GO functionalized PBS/PLA porous scaf
fold was prepared and its NIR-triggered 4D transformation was 
examined. 

2. Experimental section 

2.1. Preparation of PLA and PBS/PLA filaments 

PLA pellets [9] and PBS powder (Xinjiang Blue Ridge Tunhe Chem
ical Industry Joint Stock Co., Ltd) were dried at 45 ◦C for 24 h and then 
physically mixed at a mass fraction ratio of 9:1. The mixture was melt- 
blended and extruded by an extruder and PBS/PLA composite fila
ments with a diameter of 1.75 ± 0.05 mm were obtained. Fig. 1a shows 
the melt extrusion process and the optical image of the PBS/PLA com
posite filaments. The PLA filaments were prepared by a similar method. 

2.2. 4D printing of architectures 

Various architectures were built via Siemens PLM software UG NX 
10.0 and then exported as. STL files. Next, slicing software was 
employed to get the final. Gcode files. All architectures were printed 
using a commercial dual head 3D printer (Allcct, Wuhan, China). The 
printing temperature of PLA was set to 190 ◦C, and that of PBS/PLA was 
set to 210 ◦C. The filling density of tensile/flexural test specimens was 
100% and that of other specimens was 20%. The nozzle diameter, 
printing speed, shell thickness, and layer height were 0.4 mm, 10 mm/s, 
0.8 mm, and 0.1 mm, respectively. 

2.3. Tensile/flexural properties 

Tensile and flexural properties of specimens at room temperature 
(25 ◦C) were examined using Zwick-010 (Zwick Roell Group, Germany) 
according to ASTM D638 and ASTM D790. Three specimens of each type 
were tested at an operating speed of 2 mm/min until failure. 

2.4. Morphology 

The (fracture) surface morphology of the mechanical test specimens 
was investigated through scanning electron microscopy (SEM, VEGA3 
TESCAN). Before the examination, the specimens were sputter-coated 
with a thin layer of gold and then observed at a voltage of 10 kV. 

2.5. Differential scanning calorimeter (DSC) 

A METTLER TOLEDO DSC was applied to examine the thermal 
properties of PLA and PBS/PLA. Specimens of approximately 7.0 mg 
were cut from the filaments, sealed in an Al pan, and then loaded into 
the chamber. Two rounds of tests were conducted at temperatures 

ranging from 0 ◦C to 200 ◦C under nitrogen, with heating and cooling 
rates of 10 ◦C/min. The second heating data was exported to draw the 
curves in Fig. 1b. 

2.6. Examination of shape memory performances 

The architecture (e.g., starfish, endoluminal stent, embolization coil, 
porous scaffold) was first placed in a hot water bath (glass transition 
temperature (Tg) + 20 ◦C) for 5 min, then programmed into a temporary 
configuration, and kept at room temperature (25 ◦C) for another 5 min. 
After the above process, the temporary configuration was fixed. Finally, 
the architecture in the temporary configuration was reheated and 
recovered to its original configuration automatically. 

2.7. Preparation of GO-functionalized PBS/PLA specimens 

GO (Shanghai SIMbatt Energy Technology Co., Ltd. GO) was mixed 
with distilled water and placed in an ultrasonic water bath for 200 min 
to obtain a uniform GO suspension (1 mg/ml). The printed PBS/PLA 
specimens were immersed in the prepared GO suspension for 15 min and 
then dried at 45 ◦C for 20 min. The process was repeated three times and 
the GO functionalized PBS/PLA specimens were obtained. 

2.8. Photothermal effects of GO-functionalized PBS/PLA 

GO functionalized PBS/PLA rectangular specimens were prepared to 
test photothermal effects (Fig. 6a) and irradiated with 808 nm NIR laser 
at different laser power densities (1, 2, 3, 5 W/cm2) for 5 min. In 
addition, the compressed GO functionalized PBS/PLA porous scaffold 
was irradiated with the 808 nm NIR laser at a power density of 5 W/cm2, 
and the NIR-triggered 4D transformation process was recorded. The 
temperature of the specimen was monitored in real time by the infrared 
thermal imaging system. 

3. Results and discussion 

3.1. Characterizations of PLA and PBS/PLA 

The thermal behaviors of PLA and PBS/PLA were characterized by 
DSC (Fig. 1b). The Tg of PLA in the PBS/PLA blend was lower than that of 
PLA, which might be attributed to the good dispersion of PBS in the PLA 
matrix and the plasticizing effect of PBS on the PLA matrix. The cold 
crystallization peak (crystallization temperature, Tc) of PLA in the blend 
exhibited a significant shift to lower temperature because PBS acted as 
the nucleation site of PLA and contributed to the crystallization of PLA 
[43]. The melting point of PLA had no significant difference between 
PLA and PBS/PLA blend. 

In addition, the shape memory performances of PLA and PBS/PLA 
were studied (Fig. 1c). A typical shape memory mechanism is as follows. 
The shape memory effect of SMP is attributed to the coexistence of hard 
segments (fixed phases) and soft segments (reversible phases). The 
movable and reversible soft segments determine the shape fixation 
performance of SMP, while the hard segments are responsible for the 
shape recovery performance of SMP due to their physical or chemical 
crosslinks. At room temperature, SMP is usually in a glassy state. When 
heated above the shape memory transition temperature (Ttrans), the soft 
segments of SMP will enter a rubbery state and the mobility of the 
molecular chain will increase. In the rubbery state, SMP can easily be 
programmed into any desired temporary configuration. Ttrans can be Tg 
or melting temperature (Tm), and for PLA, Tg acts as Ttrans. When the 
applied load is maintained and the temperature of SMP is cooled below 
Ttrans, the molecular chains of the soft segments will be frozen, the 
conformations of deformed chains will be fixed, and the entropy will be 
stored in the temporary configuration. When SMP is reheated, the en
tropy will be released and returned to the initial maximum entropy state. 
The fixed phases rely on physical or chemical cross-linking to enable 
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SMP to recover to its original configuration. The shape recovery rates of 
PLA and PBS/PLA were 99.04% and 92.19% (Fig. 1c), demonstrating 
their excellent shape memory performance, which was of great signifi
cance for SMP-based implantable scaffolds. Compared with PLA, the 
shape recovery rate of PBS/PLA decreased slightly, which might be 
attributed to the fact that the introduction of PBS hindered the formation 
of the physical crosslinking network formed by PLA chains entangle
ment, thus affecting the shape recovery performance. 

Fig. 1d shows the stress–strain curves of PLA and PBS/PLA specimens 
under uniaxial tensile loading. Compared with PLA, the tensile strength 
of PBS/PLA decreased slightly, while the fracture strain increased 
visibly. The tensile strength and fracture strain of PLA and PBS/PLA 
were 56.963 MPa/50.934 MPa and 3.925%/6.316%. In addition, three- 
point bending tests were conducted to evaluate the flexural performance 
of the 4D printed PBS/PLA blend, as shown in Fig. 1e. Similar to the 
tensile tests, the flexural strength was slightly reduced, while the 
toughening effect of PBS/PLA specimens was significantly improved due 
to the presence of PBS. The surface morphology of the printed PBS/PLA 
and PLA specimens was examined (Fig. 1f-i) and the slight surface 
structure was partly due to the deposition of layers during FDM printing. 

In addition, the fracture surface morphology of the tensile specimens 
and the three-point bending test specimens at different magnifications 
were studied, as displayed in Fig. 2. The PBS/PLA material can be 
stretched for a long distance along the loading direction (indicated by 
the yellow arrow in Fig. 2a-c), resulting in fibrous protrusions and large 
fracture strain. The fibrous protrusions connected two fracture surfaces 
that were not completely separated (Fig. 2a, c), that was, PBS/PLA was 
still partially continuous. The plastic fracture mode of PBS/PLA was 
attributed to the fact that partially continuous PBS/PLA can absorb more 
energy. In contrast, the fracture surface of PLA (Fig. 2d-f) was smoother 
with fewer features, corresponding to the brittle fracture mode and 
smaller fracture strain. The results of the fracture surface morphology 
were consistent with the mechanical test results in Fig. 1d, e. 

3.2. 4D printed PBS/PLA architectures and potential applications 

To verify the printability of the prepared PBS/PLA filaments, the 
starfish and endoluminal stent were developed (Fig. 3a1, b1). The 
structure of the endoluminal stent can be used for a vascular stent, 
tracheal stent, or intestinal stent, as long as it is printed according to the 

Fig. 2. SEM micrographs of 4D printed PBS/PLA and PLA specimens. (a, d) Longitudinal fracture surfaces of tensile specimens. (b, e) Transverse fracture surfaces of 
tensile specimens. (c, f) Fracture surfaces of three-point bending specimens. Scale bars: 500 µm (a1, b1, c1, d1, e1, f1); 200 µm (a2, b2, c2, d2, e2, f2). 
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corresponding size. Fig. 3a1 and b1 show the permanent configurations 
of the starfish and endoluminal stent, and Fig. 3a2 and b2 are the tem
porary configurations after programming. The shape memory behaviors 
were investigated by placing temporarily shaped configurations in a hot 
water bath, and smooth and complete shape recovery processes can be 
observed (Fig. 3a2-a6, Fig. 3b2-b6). The difference in recovery time 
between the starfish and the endoluminal stent was attributed to their 
different configurations. The wall thickness of the starfish was much 
thicker than that of the endoluminal stent, thus it took more time for 
heat conduction and shape recovery. 

In addition, the process of aneurysm embolization was demonstrated 
to further illustrate the potential application of PBS/PLA. An aneurysm 
is a localized dilation of the artery caused by a weakened or damaged 
blood vessel wall. Once rupture occurs, it will lead to catastrophic and 
fatal bleeding. Because of the high risk of open surgery such as crani
otomy, endovascular interventional embolization has become the 
preferred treatment for aneurysms due to its safety and less trauma. The 
goal of embolization is to isolate the aneurysm sac from the blood cir
culation by delivering the embolic agent to the target sac, thus reducing 
the risk of rupture [44–46]. As shown in Fig. 4a, a coil was designed to 
be used as an embolic agent and printed using the prepared PBS/PLA 
filaments. The coil can be programmed to achieve a pronounced 
contraction into a straight strip, which was a temporary shape that 
facilitated interventional delivery (Fig. 4b). To evaluate the feasibility of 
coil deployment in the aneurysm, an aneurysm model was established 
and manufactured with PBS/PLA filaments. It can be observed that the 
aneurysm model was printed with high quality (Fig. 4c), further veri
fying the good printability of PBS/PLA filaments and the ability to 
manufacture complex configurations. To demonstrate the embolization 
process more clearly, the printed aneurysm model was colored to 
distinguish it from the coil (Fig. 4d). 

Fig. 5 shows the embolization process of the PBS/PLA coil in the 
aneurysm model, and a hot water bath was used as the external stimulus. 
A 13Fr. interventional catheter was employed to deliver the stretched 
coil (temporary shape, strip). After positioning, the strip was gradually 
pushed out from the catheter through the guidewire, and the gradual 
shape recovery process can be observed. As shown in Fig. 5h, the coil 

Fig. 3. Shape memory behaviors of 4D printed PBS/PLA architectures. (a) Starfish. (b) Endoluminal stent. (a1, b1) Permanent configurations. (a2, b2) Temporary 
configurations. (a2-a6, b2-b6) Shape recovery processes. Scale bars: 10 mm. 

Fig. 4. (a) 3D model of the embolization coil. (b) Printed coils (right) and their 
temporary shapes (strips on the left). (c) Aneurysm model printed with PBS/ 
PLA filaments. (d) Colored aneurysm model. Scale bar: 10 mm. 

Fig. 5. Embolization process of the PBS/PLA coil in aneurysm model. Scale bar: 
10 mm. 
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was completely filled into the sac and the embolization was accom
plished. This process showed that the excellent shape memory effect of 
the coil ensured accurate deployment, which can solve the problem of 
poorly controlled embolization of gelatin sponge, the most common 
embolic agent. 

3.3. GO-functionalized PBS/PLA and its photothermal effects 

The photothermal effects of GO functionalized PBS/PLA specimens 
were investigated, and the NIR laser with a wavelength of 808 nm was 
employed as the light source, which can effectively penetrate the tissue 
without causing harm. Fig. 6a displays the printed PBS/PLA specimens 
before and after GO functionalization. The GO functionalized PBS/PLA 
specimens showed excellent photothermal performance under the irra
diation of the NIR laser (Fig. 6b). The temperature of the GO function
alized PBS/PLA specimens increased with the increase of NIR laser 
power density. When the NIR laser power density was 1 W/cm2, the 
maximum temperature of the GO functionalized PBS/PLA specimen 
after 300 s irradiation was approximately 39 ◦C. When the power den
sity increased to 2 W/cm2 and 3 W/cm2, the maximum temperature rose 
to approximately 52 ◦C and 69 ◦C, respectively. Under the irradiation of 
NIR with a power density of 5 W/cm2, the GO functionalized PBS/PLA 
specimen rapidly rose to about 60 ◦C within 60 s and reached 76 ◦C after 
300 s. However, the PBS/PLA specimens without GO functionalization 
did not exhibit photothermal effects (Fig. 6c). The temperature 
increased slightly with power density, but the maximum temperature 
was only 38.5 ◦C (5 W/cm2, 300 s). To display the temperature evolution 
of the specimens more intuitively, the corresponding infrared radiation 
thermal images are shown in Fig. 7. The central temperature of each 
thermal image in Fig. 7 is the temperature of the points with corre
sponding labels on the curves in Fig. 6b, c. For example, the central 
temperature of Fig. 7g4 corresponds to the temperature of point g4 on 
the curve (5 W/cm2, GO-PBS/PLA) in Fig. 6b. 

3.4. NIR-triggered 4D transformation of GO-functionalized PBS/PLA 
porous scaffold 

To explore the feasibility of NIR triggering GO-functionalized PBS/ 
PLA for 4D transformation, a porous scaffold with dimensions of 9 mm 
× 9 mm × 13 mm was designed and developed to facilitate bone 
regeneration. The porous scaffold was compressed, and its NIR-triggered 
4D transformation behavior was evaluated by multiple position illumi
nation (Fig. 8a, Movie S1). The results showed that the transformation of 
the porous scaffold can be controlled dynamically, remotely, and 
accurately by NIR laser irradiation. The temperature of the porous 

scaffold during the 4D transformation process was monitored by the 
infrared thermal imaging system (Fig. 8b). In the initial stage of irra
diation, the temperature of the porous scaffold increased rapidly, then 
gradually balanced and fluctuated in the temperature range of approx
imately 50◦C to 56◦C. Compared with the GO functionalized PBS/PLA 
rectangular specimens (Fig. 6b), the porous scaffold exhibited a much 
lower temperature under the same power density of NIR laser irradia
tion. This phenomenon might be due to the fact that the temperature of 
the outer surface was monitored by the infrared thermal imaging sys
tem, while the internal temperature of the porous scaffold was higher 
than that of the outer surface due to the slower temperature dissipation 
rate. 

Therefore, the advantages of the NIR-triggered 4D printed GO 
functionalized PBS/PLA can be summarized as follows. First, the com
pressed temporary configuration of the porous scaffold can reduce the 
scar area. Secondly, the self-adaptive ability can match the defects 
during the shape recovery process. Thirdly, a dynamic, accurate, and 
remotely controllable transformation process is accessible. 

4. Conclusion 

In summary, the 4D printing PBS/PLA filament was developed for 
the first time, and its outstanding printability was demonstrated by 
printing various configurations (e.g., starfish, endoluminal stent, aneu
rysm model) through a commercial 3D printer. The introduction of PBS 
improved the toughness of PBS/PLA compared to PLA without signifi
cant loss of modulus and strength. In addition, the embolization coil was 
printed and delivered by an interventional catheter. Its 4D trans
formation was performed in the printed aneurysm model, which indi
cated that the 4D printing PBS/PLA filament with excellent shape 
memory performance had a promising prospect in the biological field, 
especially in interventional surgery. GO functionalized PBS/PLA porous 
scaffold can be triggered by NIR laser, which enabled a dynamic, ac
curate, and remotely controllable 4D transformation in time and space. 
Besides, GO functionalized PBS/PLA showed excellent photothermal 
effects, indicating its potential for application in photodynamic therapy. 
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GO functionalized PBS/PLA specimens under NIR irradiation with different laser power densities. (c) Enlarged view of the temperature evolution of PBS/PLA 
specimens in (b). 
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