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Chiral‐lattice metamaterials with unique mechanical, optical, electrical and magnetic properties have been
widely used in many engineering applications, such as chiral recognition and separation, stealth materials
and devices, as well as biological sensors. Various design strategies have been developed to obtain chiral‐
lattice metamaterials with different mechanical properties. The fast grown design strategies that can provide
a variety of Poisson’s ratios and elastic moduli have brought new opportunities to emerging biomedical appli-
cations. In this study, hexagonal and tetragonal chiral‐lattice metamaterials with positive and negative
Poisson’s ratios were designed. The design strategy was based on a network structure with a periodic lattice
topology, which was formed by three outer rings connected to the central ring via ligaments. The wide appli-
cations of this type of metamaterial were investigated via experiments and finite‐element analysis.
Demonstrative examples and the shape‐memory effect (SME) suggest that the chiral‐lattice structure has great
potential in developing programmable metamaterials. The findings of this study provide essential guidance for
the design of chiral network structures with the desired mechanical properties.
1. Introduction

In recent years, mechanical metamaterials have emerged as an
exciting paradigm and been used for the development of structures
with abnormal mechanical properties [1–3]. These structures exhibit
advanced functions at the macroscale scale because of their
rationally‐designed nano/microstructures [3,4]. Their unique unusual
properties, such as negative Poisson’s ratio, elasticity, and compress-
ibility, can be used to develop advanced functional materials for appli-
cations in soft robotics, flexible electronics, acoustic stealth, and other
fields [5–11].

The term “metamaterials” originally refers to materials with unu-
sual mechanical properties used in electromagnetism. However, today,
all structures or materials designed to have new functions that are not
normally found in nature can be called metamaterials [12–14]. Recent
achievements in 3D printing technology have made it possible to fab-
ricate structures with complex nanoscale/microstructures and pro-
mote the design and manufacture of mechanical metamaterials
[15–17]. Consequently, it is very important to thoroughly investigate
the relationship between the microscopic topological structure and
the macroscopic mechanical properties of mechanical metamaterials
to obtain optimum functionality.

Chiral‐lattice structures are among the most widely studied
mechanical metamaterials. “Chirality” refers to the case where an
object does not coincide with its mirror image after operations such
as translation and rotation [18–20]. Many biological and manmade
materials have a chiral morphology or microstructure, even a multi-
level chiral microstructure [20–22]. Moreover, chirality is an impor-
tant issue in many subjects of natural science, including physics,
biology, chemistry, and optics. Chiral microstructures can not only
intelligently regulate the growth morphology and color of biomaterials
but also determine the physical and mechanical properties (even the
biological functions) of biomaterials to a large extent. The chiral
microstructure endows a material with chiral symmetry, resulting in
the coupling of physical fields such as force‐electric and optical‐
electric, as well as the coupling of mechanical deformations including
tension–torsion and bending‐shear.

A central circle encased in tangentially connected ligaments consti-
tutes a chiral unit, and it cannot be superimposed on its mirror image
[23–25]. Further, the basic unit may be constructed as of right‐ or left‐
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Fig. 1. Geometric configurations of hexagonal chiral-lattice structure. (a)
Representative unit-cell and the definition of the geometric parameters. (b)
Left-handed lattice metamaterials. (c) Right-handed lattice metamaterials.
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handed to form a chiral or backhanded metamaterial, respectively.
According to the geometric characteristics of the structures, chiral‐
lattice metamaterial with a negative or positive Poisson’s ratio can
be constructed. Under the action of a tension or compression mechan-
ical load, the ligaments rotate, bend, fold, or unfold separately
[26–28].

Because of the stretch‐torsion coupling effect of chiral‐lattice struc-
tures and the multiple degrees of freedom, such as translation, rota-
tion, and micro‐rotation, micropolar theories were proposed to
describe chiral‐lattice metamaterials. By introducing three chiral
parameters, Lakes et al. established the non‐centrosymmetric constitu-
tive relationship of the micro‐polarity and investigated the effects of
the chirality on the structure and mechanical properties of the material
[29]. Papanicolopulos et al. proposed a strain gradient theory to inves-
tigate the mechanical behavior of a chiral material, where only one
parameter was introduced [30]. Helfrich examined the bending force
of chiral molecular films and found that the chiral correlation term
in the expression of the bending energy of the film was related to
the direction of cylindrical curvature [31]. According to the micropo-
lar theory, Joumaa et al. investigated the stress invariance of chiral
microporous material models in the in‐plane and anti‐plane problems
[32]. Wang et al. proposed the Euler‐Bernoulli model with surface
effects and chirality, which was used to study the buckling of chiral
structures [33].

For chiral‐lattice structures, most of the previous studies were the-
oretical studies; few experimental studies have been performed to
reveal their mechanical properties, such as Poisson’s ratio and elastic
modulus. Furthermore, theoretical research on micropolar behavior
is generally based on the assumption of rigid rings, which is difficult
to achieve under real conditions. Thus, in the present study, through
the analysis of the mechanical behavior of chiral structures, two types
of chiral‐lattice structures (hexagonal and tetragonal, with positive
and negative Poisson’s ratios, respectively) were designed. Subse-
quently, utilizing the shape memory polymer (SMP) based filament,
the chiral‐lattice metamaterials are fabricated via 3D printing. Both
lattices had the characteristics of internal rotating elements, which
are connected by tangential ligaments of joints in a circular form.

The mechanical properties of chiral‐lattice metamaterials associ-
ated with different topological parameters were thoroughly investi-
gated. The Poisson’s ratio (ν) and elastic modulus were determined
via experiments and finite‐element analysis (FEA). Finally, three‐
dimensional (3D) assembly cylinder shells were proposed according
to the developed two‐dimensional (2D) chiral lattice networks. By uti-
lizing the shape memory effect, chiral‐lattice metamaterials can be
programmed with different shapes [34–43]. Interestingly, the
reshaped metamaterials can show mechanical behaviors that differ
from the original structures. To our knowledge, this is the first thor-
ough characterization of the mechanical properties of the chiral‐
lattice metamaterials changing with respect to the topological param-
eters via detailed experiments and FEA.

2. Design, experiments, and finite element analysis

2.1. Design

2.1.1. Hexagonal chiral lattice
The structure of the hexagonal chiral lattice is shown in Fig. 1. The

representative triangular volume element consists of four circles (as
joints): three outer rings, and one central ring. Each outer ring is con-
nected with the central ring by ligaments, which is tangential to the
two rings. The angles between the ligament and connecting lines (be-
tween the two rings’ center) are denoted as θa. The side length of the
imaginary equilateral (Fig. 1(a)) is a, the radius of the central ring
(with a wall thickness of tR) is R, the radius of the other three outer
rings (with a wall thickness of t r) is r, and the length of the ligament
2

is L (with a width of tL). According to the geometric characteristics,

the following relation can be drawn: sin θα ¼
ffiffi

3
p ðrþRÞ

3a and cos θα ¼
ffiffi

3
p

L
a .

The lattice structure illustrated in Fig. 1(b) can be obtained by arrang-
ing the representative unit‐cell along the symmetric vectors α1 and α2.
The vector is one of the possible sets to realize the symmetrical hexa-
gon, which can be expressed as follows:

α2 ¼ �1
2
ai1 þ

ffiffiffi

3
p

2
ai2 ð1Þ

From the previously mentioned geometric relationship, we can

obtain Rþ r ¼
ffiffi

3
p
3 asinθα and L ¼

ffiffi

3
p
3 acosθα. Here, a topological param-

eter q is defined, which satisfies the following relations:
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3
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3
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By changing the value of q, the diameters of the outer rings and
central ring can be adjusted. Meanwhile, the value of q is directly
related to the chirality of the chiral‐lattice metamaterials. Further-
more, the topology angles θα ∈ �90�; 90�½ � can also significantly affect
the mechanical behavior and geometric configuration of chiral‐lattice
metamaterials. When θα ! 0, the ring degenerates to a point, and the
conventional square lattice structures are obtained. When θa ! � 90

�
,

the ligament completely vanishes, and the whole lattice is only com-
posed of rings. In either case, the chirality will disappear, because it
is caused by the bending and the winding of the ligament.

The geometric configurations of the unit‐cell changing with the
topological angles are shown in Fig. 2

2.1.2. Tetragonal chiral lattice
The layout of the tetragonal chiral lattice is shown in Fig. 3. In each

equilateral quadrilateral element with a side length of a, an inner ring
with radius R is connected with each one of four outer rings with radii
r by a tangential ligament with length L, as shown in Fig. 3(a). The
wall thicknesses of the ligament, the outer rings, and the inner rings
of the imaginary tetrahedron are denoted as tL, tr, and tR, respectively.

The ratio of length L to thickness tL of the ligaments is defined as
xL ¼ tL=L, and the ratio of the thickness tR to the radius R of the rings
is defined as xR ¼ tR=R. The geometric parameters have the following
Fig. 2. The unit element of the hexagonal chiral lattice with different θa.



Fig. 3. Geometric configurations of the tetragonal chiral lattice. (a) The basic
element and definition of the topological parameters. (b) Left-handed lattice
structures. (c) Right-handed lattice structures.

W. Zhao et al. Composite Structures 262 (2021) 113569
relations:sin θα ¼
ffiffi

2
p ðrþRÞ

a and cos θα ¼
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2
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a . The vectors α1 and α2 are

one of the possible sets of the unit‐cell for obtaining the symmetrical
tetragonal chiral lattice, which can be expressed as follows:
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The radii of the rings in Fig. 3 satisfy the relation Rþ r ¼
ffiffi

2
p
2 a sinθα

and L ¼
ffiffi

2
p
2 acosθα. According to the geometric relation, R and r can be

expressed as follows:
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The geometric configurations of the chiral lattices changing with
the topological parameters θα are shown in Fig. 4.

2.1.3. Fabrication
The samples of chiral‐lattice metamaterials with 74 in total (hexag-

onal and tetragonal chiral lattices) were fabricated by 3D printing to
investigate the mechanical properties with different topological
parameters θα, xR, xL, and q. Details regarding the design parameters
of the samples are presented in the Supporting Information S1.

The chiral‐lattice metamaterials samples are made of shape mem-
ory polylactic acid (SMP‐PLA) by 3D printing. The SMP‐PLA filament
is provided by the National Key Laboratory of Science and Technology
on Advanced Composites in Special Environments (Harbin Institute of
Technology). An ANYCUBIC commercial 3D printer (i3 MEGA) with a
nozzle size of 0.4 mm was employed to fabricate the samples. The
printing speed was set as 50 mm/min, the printing temperature was
210℃, the bed temperature was 60 ℃, and the filling density is
20%. The mechanical properties of the SMP‐PLA are presented in
Fig. S8, Supporting Information S6.

2.2. Experiments

2.2.1. The measurement of mechanical properties
The mechanical properties of the chiral‐lattice metamaterials were

tested using a Zwick/Rolle‐010 universal testing machine, and the
Fig. 4. Geometric configurations of the tetragonal chiral lattice with different
topological angles θα.

3

stress–strain curves with a loading rate of 2 mm/min were recorded.
During this process, the Poisson’s ratio was determined via the
template‐matching method, which was a visual target tracking tech-
nology [44]. By using this method, the changes in the transversal
and longitudinal displacements can be captured. It involved identify-
ing the region in the original image with the highest matching degree
with the template image. During the loading process, the movements
of the points A, B, A', and B' marked in Fig. 5 were recorded by a cam-
era. Given the original image I and the template image T, the motion
rules could be captured when the template matching operation was
performed for each video frame. Additionally, the normalized correla-
tion coefficient matching method was adopted for image matching to
improve the tracking accuracy. Using this method, the region with the
highest matching degree was calculated directly. Additional details
regarding the calculations of the Poisson’s ratio are presented in Sup-
porting Information S3.

2.2.2. The measurement of shape memory behavior
A typical shape‐memory process consists of two stages: shape pro-

gramming and shape recovery. First, the chiral lattices were heated to
70 ℃ and stabilized for 2 min. 18% deformation was applied with a
loading rate of 2 mm/min (Step 1). Subsequently, the deformation
was kept constant, and the temperature was decreased to 20 ℃ at a
cooling rate of 2 ℃/min. The programmed shape was memorized after
the cooling process, and the mechanical load was removed (Steps 2
and 3). Finally, the chiral‐lattice metamaterials were reheated to
recover to their initial shape (Step 4). Exemplified by the hexagonal
and tetragonal chiral‐lattice metamaterials with θα ¼ 20

�
, the shape

memory behavior was measured using a Zwick/Rolle‐010.

2.3. Finite element analysis

According to the micropolar theory, the ring elements are assumed
to be rigid, which neglects the strain energy related to ring deforma-
tion. However, the hypothesis of the rigid ring is difficult to realize
with practical fabrication techniques. Generally, the deformation of
chiral‐lattice metamaterials with deformable rings is difficult to
describe. Even a reasonable ring model is constructed based on too
many approximate representations of the linear component, or nonlin-
ear coupling equations of curved beams. It is still challenging to obtain
an analytic solution.

For this reason, finite element analysis (FEA) is carried out to reveal
the mechanical behavior of chiral‐lattice metamaterials in this
research. The overall deformation of the chiral lattice comprises both
ligament bending and ring stretching. Any change in a topological
Fig. 5. Schematic of the method for determining the Poisson’s ratio.
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parameter will break the balance among those parameters and affect
the mechanical behavior of the structures. When the ring stiffness
increases under a constant deformation condition, the ligament bend-
ing deformation increases proportionally; otherwise, it will decrease.

Simulations of the large deformation and thermal–mechanical
cycle of the chiral‐lattice metamaterials were performed using the
commercial finite‐element software Abaqus (version 6.14, 3DS Das-
sault Systèmes, France). The chiral‐lattice metamaterials models were
built and meshed with linear hexahedral elements of type C3D8R. The
shift function was defined by user subroutine UTRS, and the time‐
domain viscoelasticity was defined by the expansion of the Prony ser-
ies (Notes S5, Supporting Information). The related model parameters
were determined via a series of experiments and presented in Table S8.
The deformation sequences of chiral‐lattice metamaterials and the
unit‐cell are shown in Fig. 6.

3. Results and discussions

3.1. Shape-memory behavior

The recorded thermal–mechanical cycle curves are shown in Fig. 7
(a), and the programmed and recovered states of chiral‐lattice meta-
materials composed of units with θα ¼ 20

�
are shown in Fig. 7(b)

and (c). The hexagonal and tetragonal chiral‐lattice metamaterials
are applied 18% stretched and 18% compressed deformation, respec-
tively. By utilizing this process, metamaterials can be programmed
to a specific configuration through controlling the strain ɛ, and the
programmed and recovered states can switch each other under certain
stimuli. Based on the shape memory effect, the Poisson’s ratio and elas-
tic modulus can be adjusted.

3.2. Mechanical deformation and Poisson’s ratio

Hexagonal lattice metamaterials are characterized by hexagonal
symmetry because each node has six tangentially connected ligaments.
The rings enhance the resistance to out‐of‐plane bucking and compres-
sive strength of the structure. The deformation mechanism of the chi-
ral lattice is closely related to the topological parameters. As the
topological angle θα decreases, the deformation mechanism of the
chiral‐lattice structure changes from the stretching‐dominant to
bending‐dominant behavior.
Fig. 6. Deformation sequences of the network: (a) Hexagonal chiral lattice;
(b) Tetragonal chiral lattice.
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In this study, a series of chiral‐lattice metamaterials with different
topological angles θα were designed (Table S1, Supporting Information
S1) to investigate the effects of the topological parameters on the Pois-
son’s ratio, as shown in Fig. 8. For the chiral‐lattice metamaterials with
xL ¼ 0:05, with the increase of the topological angle θα, the Poisson’s
ratio increased gradually (Table 1). According to the recorded video,
the chirality behavior was relatively obvious for topological angles
ranging from θα ¼ 20

�
to θα ¼ 40

�
. When the rings were too small

or too large, no chirality was observed. However, it is worth mention-
ing that the rings and ligaments are almost jointed together when
θα ¼ 60

�
and no chirality behavior can be observed.

For tetragonal chiral‐lattice metamaterials (Table S2, Supporting
Information S1), the Poisson’s ratios were negative in the small‐
deformation case (Table 1). However, with the increase of θα, no obvi-
ous regularity can be observed for either small or large deformation, as
shown in Fig. 9. Additionally, the absolute value of ν for the chiral
structure with xL ¼ 0:1 was significantly smaller than that of the
structures with xL ¼ 0:05. As mentioned above, the negative Pois-
son’s ratio was caused by the bending and winding of the ligament.
However, the increasing ligament stiffness limited the deformation
of ligaments and further resulted in the decrease of the Poisson’s ratio.
According to the recorded video, the chirality behavior was evident
when the topological angle ranged from θα ¼ 20

�
to θα ¼ 40

�
, and

it had lost the chirality behavior when θα ¼ 60
�
.

The Poisson’s ratios of hexagonal chiral lattices with q ¼ 0 (Sup-
porting Information S1, Table S3) were also investigated, as shown
in Fig. 10. Similar to the chiral‐lattice metamaterials with q ¼ 0:5,
the Poisson’s ratio decreased with the increase of the topological angle
θα (Table 2). The chiral behavior was obvious to be observed when the
topological angle θα ranges from θα ¼ 10� to θα ¼ 20�. However, for
the chiral lattice with θα ¼ 25�, the Poisson’s ratio changed abnor-
mally. Proved by the experiments and finite element analyses, the
hexagonal chiral lattices have lost the chirality behavior when
θα ¼ 30�.

The topological parameter xR has a direct impact on the ring stiff-
ness and further affects the overall deformation of the structure. A ser-
ies of chiral‐lattice metamaterials with different topological
parameters xR were designed to investigate the effect on the mechan-
ical properties (Supporting Information S1, Tables S4, and S5).

For tetragonal chiral lattice, with the increase of the rings’ stiffness,
the deformation contributed by it decreased gradually, and the liga-
ment bending played a leading role in the deformation. Therefore,
the absolute value of ν increased with the increasing xR. As shown
in Fig. 11, the Poisson’s ratio of the tetragonal chiral lattice was
ν ¼ - 0:68 with xR ¼ 0:02 and ν ¼ - 0:94 with xR ¼ 0:10. How-
ever, for the hexagonal chiral lattice, no obvious change rule was
observed about the Poisson’s ratio except for xR ¼ 0:08,
xR ¼ 0:09, and xR ¼ 0:10. The changes of the Poisson’s ratio were
irregular, potentially owning to the complex structural changes of
the six ligaments.

Chiral‐lattice metamaterials with different topological parameters
xL were also designed to investigate the effect of xL on the mechanical
properties (Supporting Information S1, Table S6 and S7). The absolute
value of Poisson’s ratios (xL ¼ 0:05, xL ¼ 0:06, xL ¼ 0:08, and
xL ¼ 0:10) decreased gradually with the increase of xL, as shown
in Fig. 12 (b). However, when xL ¼ 0:025, xL ¼ 0:03, xL ¼ 0:04,
xL ¼ 0:15 and xL ¼ 0:20, the Poisson’s ratio changed irregularly.
This could be because, with the increase of the rings’ stiffness, the
structural deformation gradually changed from ligament bending‐
dominated to ring stretching‐dominated deformation.

3.3. Determination of elastic moduli

The topological parameters not only significantly affected the Pois-
son’s ratios of the chiral‐lattice metamaterials but also had a signifi-



Fig. 7. Shape memory cycles for chiral-lattice metamaterials: (a) Thermo-mechanical cycle curves; (b) Hexagonal chiral-lattice metamaterials with θα ¼ 20
�
; (c)

Tetragonal chiral-lattice metamaterials with θα ¼ 20
�
.

Fig. 8. Comparisons between the simulated results and experimental results for the hexagonal chiral lattice with different topological angles θα and q ¼ 0:5. (a)
Transverse strain vs. longitudinal strain with xL ¼ 0:05. (b) Poisson’s ratio ν with xL ¼ 0:05. (c) Transverse strain vs. longitudinal strain with xL ¼ 0:1. (d)
Poisson’s ratio ν with xL ¼ 0:1.
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Table 1
The Poisson’s ratio of the chiral-lattice metamaterials with q ¼ 0:5 in the small-deformation case.

Hexagonal chiral lattice Tetragonal chiral lattice

xL ¼ 0:05 xL ¼ 0:1 xL ¼ 0:05 xL ¼ 0:1

θα ¼ 10� 0.94 0.90 −0.86 −0.38
θα ¼ 20� 0.56 0.61 −0.68 −0.41,
θα ¼ 30� 0.33 0.43 −0.55 −0.11
θα ¼ 40� 0.14 0.23 −0.36 −0.16
θα ¼ 50� −0.06 0.29 −0.30 −0.20
θα ¼ 60� −0.31 0.78

Fig. 9. Comparisons between the simulated and experimental results for the tetragonal chiral-lattice with different topological angles θα and q ¼ 0:5. (a)
Transverse strain vs. longitudinal strain with xL ¼ 0:05, (b) Poisson’s ratio ν with xL ¼ 0:05, (c) transverse strain vs. longitudinal strain with xL ¼ 0:1, and (d)
Poisson’s ratio ν with xL ¼ 0:1.

W. Zhao et al. Composite Structures 262 (2021) 113569
cant influence on the stiffness of the structures. By using the obtained
nominal stress‐nominal strain curves (Supporting Information S2), the
equivalent elastic moduli of the structures were calculated and com-
pared with the simulated results (Fig. 13).

From the results, it can be observed that when θα < 40
�
, the

deformation mode was still bending‐dominated. Consequently, the
increase of the equivalent elastic modulus is not significant about
the chiral lattice with θα ¼ 10

�
, θα ¼ 20

�
, and θα ¼ 30

�
. However,

when θα ⩾ 40
�
, the stretching deformation of the rings gradually paly

a leading role, and the elastic moduli increase dramatically.
The equivalent elastic moduli of the chiral‐lattice metamaterials

(θα ¼ 30
�
) with different topological parameters xR are presented

in Fig. 14. According to the simulated and experimental results, the
6

equivalent elastic moduli did not change significantly with the
increase of xR. As mentioned above, the deformation mode was bend-
ing dominated when θα ¼ 30

�
. Consequently, it can be concluded

that in the bending‐dominated deformation mode, the change in the
ring stiffness was not decisive to the equivalent elastic moduli.

The equivalent elastic moduli of metamaterials (θα ¼ 30
�
) with

different topological parameters xL are presented in Fig. 15. According
to the experimental and simulated results, the equivalent elastic mod-
uli of the hexagonal chiral lattice changed slightly at xL ⩽ 0:08. How-
ever, when xL > 0:08, the deformation mechanism changed from
bending‐dominated to tensile‐dominated. Consequently, the equiva-
lent elastic moduli increased dramatically. For the tetragonal chiral
lattice, the equivalent elastic moduli started to change dramatically
at xL ¼ 0:05.



Fig. 10. Comparisons between the simulated and experimental results for the hexagonal chiral lattice with different topological angles θα and q ¼ 0 (a)
Transverse strain vs. longitudinal strain with xL ¼ 0:05; (b) Poisson’s ratio ν with xL ¼ 0:05; (c) transverse strain vs. longitudinal strain with xL ¼ 0:1; (d)
Poisson’s ratio ν with xL ¼ 0:1.

Table 2
The Poisson’s ratio of the chiral-lattice metamaterials with q ¼ 0 in the small-
deformation case.

Hexagonal chiral lattice

xL ¼ 0:05 xL ¼ 0:1

θα ¼ 0� 1.38 1.33
θα ¼ 5� 1.25 1.06
θα ¼ 10� 0.70 0.59
θα ¼ 15� 0.51 0.37
θα ¼ 20� 0.35 0.06
θα ¼ 25� −0.07 0.23

Fig. 11. Effect of the topological parameter xR on the Poisson’s ratio for

W. Zhao et al. Composite Structures 262 (2021) 113569
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For the chiral‐lattice structures with q ¼ 0, the simulated and
experimental results for the equivalent elastic moduli are shown in
Fig. 16.

3.4. Deformation of the assembly cylinder shell

A series of cylinder metamaterials were designed and fabricated
according to the proposed 2D chiral lattices. The metamaterials cylin-
der structures were composed of the hexagonal, tetragonal chiral lat-
tices, and their combinations, as shown in Fig. 17 (a)–(c). The unit
(a) the hexagonal chiral lattice and (b) the tetragonal chiral lattice.



Fig. 12. Effect of xL on the Poisson’s ratio for the (a) hexagonal chiral lattice and (b) tetragonal chiral lattice.

Fig. 13. Equivalent elastic moduli of metamaterials with different topological angles (θα) for the (a) hexagonal chiral lattice and (b) tetragonal chiral lattice. (The
equivalent elastic moduli of the chiral structures were denoted as E, and the elastic modulus of the SMP-PLA was E0 ¼ 1850 MPa).

Fig. 14. Equivalent elastic moduli of metamaterials with different topological parameter (xR) for the (a) hexagonal chiral lattice and (b) tetragonal chiral lattice.

Fig. 15. Equivalent elastic moduli of metamaterials with different topological parameters (xL) for the (a) hexagonal chiral lattice and (b) tetragonal chiral lattice.

W. Zhao et al. Composite Structures 262 (2021) 113569
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Fig. 16. Equivalent elastic moduli of metamaterials with different topological
parameters (xL) and q = 0 for the (a) hexagonal chiral lattice and (b)
tetragonal chiral lattice.

Fig. 17. Characterization of the shape memory behavior of the assembly
cylinder shell; (a) hexagonal chiral lattice; (b) tetragonal chiral lattice; (c)
combination of the hexagonal and tetragonal chiral lattices; simulation and
experiment for the (d) hexagonal chiral lattice after 10% stretching, (e)
tetragonal chiral lattice after stretching for 7%, and (f) the combination of the
two structures after stretching for 10%; The recovered state and programmed
state of (g) the tetragonal chiral lattice under bending load, and (h) the
hexagonal chiral lattice under bending load.

W. Zhao et al. Composite Structures 262 (2021) 113569
elements with a topological angle of θα ¼ 30
�
were used. For the

structures shown in Fig. 17(a) and (b), there were four complete
unit‐cells in the circumferential and axial directions of the cylinder.
9

For the combination type cylinder, there were three complete elements
in the circumferential and axial directions.

One end of the cylinder was fixed, and a certain load was applied
on the free end. The programming and recovery process used in the
simulation and experiments are shown in Fig. 17(d)–(f). According
to the previous result, during the stretching process, the cross‐
section of the cylinder comprising the hexagonal chiral lattice should
shrink gradually, while the cross‐section of the cylinder comprising
the tetragonal chiral lattice should expand. However, the auxetic
behavior for the cylinder comprising the hexagonal chiral lattice is
not obvious since the limited number of the unit element.

Under a bending load, the programmed state and the recovered
state of the tetragonal chiral lattice and the hexagonal chiral lattice
are shown in Fig. 17 (g) and (h). After the programming process, the
3D metamaterials cylinder is fixed to a temporary shape based. Due
to the shape memory effect and the programming process, the new
configuration is endowed with different mechanical properties. Mean-
while, the programmed shape can be erased during the recovery pro-
cess. This ensures the metamaterial can be adjusted purposely to any
state as required.

4. Conclusions

By controlling topological parameters, a series of new configura-
tions of hexagonal and tetragonal chiral‐lattice metamaterials with
adjustable Poisson’s ratio of (0, 2.3) and (−0.85, 0.2) were designed
and fabricated via 3D printing. The effects of the topological parame-
ters θα, xR, xL, and q on the Poisson’s ratio and elastic modulus were
thoroughly investigated via FEA and experiments. The results indi-
cated that the mechanical properties, including the Poisson’s ratio
and elastic modulus, are very sensitive to changes in these topological
parameters. Utilizing the 2D chiral lattice networks, metamaterial
cylindrical shells were developed, and the shape memory behavior
was investigated via FEA and experiments. Being incorporated into
shape memory effect, the metamaterials can be programmed into
any configuration and endowed with different mechanical properties
as required. This can significantly accelerate the design and develop-
ment period. Furthermore, the programmability provides an opportu-
nity to adjust the mechanical properties of the metamaterials after
fabrication. Integrating active functionality into the network and
extending the design into three‐dimensional structures may facilitate
and broaden the applications of metamaterials in active deformation
structures.
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