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Abstract

Dozens of hyperelastic models have been formulated and have been extremely

handy in understanding the complex mechanical behavior of materials that exhibit

hyperelastic behavior (characterized by large nonlinear elastic deformations that are

completely recoverable) such as elastomers, polymers, and even biological tissues.

These models are indispensable in the design of complex engineering components

such as engine mounts and structural bearings in the automotive and aerospace

industries and vibration isolators and shock absorbers in mechanical systems. Par-

ticularly, the problem of vibration control in mechanical system dynamics is ex-

tremely important and, therefore, knowledge of accurate hyperelastic models

facilitates optimum designs and the development of three‐dimensional finite ele-

ment system dynamics for studying the large and nonlinear deformation behavior.

This review work intends to enhance the knowledge of 15 of the most commonly

used hyperelastic models and consequently help design engineers and scientists

make informed decisions on the right ones to use. For each of the models, ex-

pressions for the strain‐energy function and the Cauchy stress for both arbitrary

loading assuming compressibility and each of the three loading modes (uniaxial

tension, equibiaxial tension, and pure shear) assuming incompressibility are provided.

Furthermore, the stress–strain or stress–stretch plots of the model's predictions in

each of the loading modes are compared with that of the classical experimental data

of Treloar and the coefficient of determination is utilized as a measure of the model's

predictive ability. Lastly, a ranking scheme is proposed based on the model's ability

to predict each of the loading modes with minimum deviations and the overall

coefficient of determination.
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1 | INTRODUCTION

Elastomers (derived from elastic polymers) are polymeric materials

that exhibit both viscous and elastic behavior. Characteristics of

these materials, which are also known as rubber‐like materials as they

exhibit rubber‐like properties, include high reversible deformations

(up to 500% strains) without fracture, high damping properties, low

thermal and electrical conductivity, durability, and hysteresis under

cyclic loading.1 The most important property is its large nonlinear

elastic deformation leading to their categorization as hyperelastic/

green elastic materials. These properties are highly desirable in a

myriad of engineering applications such as engine mountings, struc-

tural bearings, vibration absorbers, corrosion protection, tires, medi-

cal devices, shock isolators, and springs.1,2 Due to their extensive

applicability, rubber‐like materials have attracted huge research in-

terests over the years. The main objective is to understand their

stress–strain or stress–stretch behavior under different loading sce-

narios to aid in the design of complex devices and predict their me-

chanical behavior during service. The development of what is now

robust research in the mechanics of hyperelastic materials began in

the early 1940s when Mooney,3 through his uniaxial tension ex-

periments on soft rubber materials, noted that neither the force‐

elongation nor the stress–stretch response of the material agreed

with Hook's law. It was, therefore, concluded that Hook's law is in-

adequate in approximating the stress–strain behavior of elastomeric

materials. This led to the formulation of the nonlinear theory of

elasticity which stemmed out from the classical elasticity theory to

accommodate for the large strain nonlinear response of elastomeric

materials.

Both hyperelasticity and linear elasticity are reversible processes

(no internal energy dissipation) meaning that the work done during the

loading process is completely recovered when the load is removed.

The difference is that for hyperelastic materials, the deformation can

be extremely large and the relationship between the stress and strain

is nonlinear. Derivation of the stress–strain relationship for the hy-

perelastic materials is based on a function known as Helmholtz free

energy per unit reference volume (Ψ).4 It is also known as strain energy

density, strain energy function, or the elastic potential and is a scalar‐

valued function that relates the strain energy to the state of de-

formation. The unique trait of hyperelastic materials is that the strain

energy density is dependent only on the current strain and not on the

loading history.5 The formulation of hyperelastic material models be-

gins with the development of a suitable strain energy density function.

Several assumptions are adhered to in deducing the strain energy

function. These include that the material is isotropic, homogenous, free

of hysteresis, strain‐rate independent, and nearly or purely in-

compressible.6 Furthermore, various restrictions on the strain energy

density such as being nonnegative, having a zero value at undeformed

state, and being invariant under coordinate transformations have been

proposed by several texts.7 Over the years, dozens of constitutive

models for hyperelastic materials have been formulated by various

research groups. Based on the approach with which the models are

formulated, they can be categorized as either phenomenological or

micromechanical. As the name suggests, phenomenological‐based

models arise from the observation of rubber‐like materials under dif-

ferent conditions of homogenous deformation and thereafter fitting

mathematical equations to the experimental data.8 These equations

result in polynomial formulations which further classify the phenom-

enological models into subcategories based on strain invariants, prin-

cipal stretches, or a combination of both. On the other hand, the

micromechanical models exploit the techniques of statistical me-

chanics to describe the behavior of hyperelastic materials at the mi-

croscopic and macroscopic levels. Even though the phenomenological

models make up a larger percentage of the hyperelastic models in the

literature, micromechanical‐based models have got more attention

thanks to their governing parameters that can relate the mechanical

behavior with the physical or chemical structure of the material.9

Apart from the synthesis of new hyperelastic materials that re-

quire new constitutive relations to predict their mechanical behavior,

formulating models that accurately describe the complete behavior of

the material remains the main motivating factor to researchers. By

complete behavior, we mean the capability of the model to predict the

behavior under uniaxial extension, biaxial extension, and pure

shear.10 Treloar in his paper,11 provided the experimental data that

has been the main reference for researchers in testing new models

and their predictive abilities in all three modes of loading. The chal-

lenges involving the material models include their predictive ability

and the number of parameters required. Most models may predict

the behavior in one mode of loading such as the uniaxial extension to

good accuracy and fail in the other two modes. Again, some models

require many material parameters that may be difficult or time‐

consuming to achieve through experimental means. It is desirable to

have a model that can reproduce experimental data in all the loading

modes and has the least number of parameters that are easy to ob-

tain experimentally. Choosing a model for a specific application is

determined by several factors such as its accuracy, available or

achievable parameters, ease of implementation, material type, load-

ing type, and so on.

It is worth noting that most of the new model developments are

modified versions of the already established models to improve their

predictive abilities. For instance, Arruda‐Boyce's eight‐chain (EC)

model12 which is micromechanically inspired and one of the most

accurate models, is known to be relatively inaccurate in predicting

the behavior during biaxial extension loading. As such, several mod-

ified versions of the EC model have been reported in the literature

some of which were subjected to a comparative study by Hossain

et al.13 where they found that the bootstrapped EC model by

Miroshnychenko and Green14 performed better than the classical EC

model. Recently, Melly et al.15 modified the strain energy density

function expression of Carroll's model16 to comply with the restric-

tion that it should yield a zero value at the undeformed state and to

account for the volume changes during deformation. Their numerical

computations demonstrated the relative advantages of the modified

version which include superior predictive capabilities in the equi-

biaxial loading, a single fitting process for model constants (the ori-

ginal version requires three steps), and implementable in a finite
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element program. Anssari‐Benam and Bucchi17 proposed a general-

ized neo‐Hookean type model with only two parameters that have a

physical meaning. With a single set of parameters, the model was

demonstrated to accurately describe the deformation behavior of

several elastomeric materials in uniaxial, equibiaxial, and pure shear

loading modes. With the increasing number of models, a comparison

between their performances in reproducing different loading condi-

tions based on the classical experimental data by Treloar11 has been

the focus of some review works in literature. For instance, Martins

et al.18 undertook a comparative study on seven hyperelastic models

focusing on their ability to reproduce the behavior of silicone rubber

and soft tissues. They reported Martin's model19 to have a very good

fit for the materials tested. Other noteworthy review works are those

of Steinmann et al.9 and Sweeney20 who compared the performance

of 14 and 3 hyperelastic models, respectively.

Indeed, the ubiquity of rubber‐like materials and their vast appli-

cations especially for engineering purposes, for example, aerospace

components where their mechanical behavior plays a crucial role in

service has made the research on their mechanics one of the most

active research at the moment. Obtaining constitutive relations of hy-

perelastic materials that can predict the behavior in different loading

conditions can significantly expedite the design process and ensure

structure reliability during service. Numerical simulation has become an

indispensable part of the design process thanks to the advances in

computing capabilities of modern computers and finite element codes.

With dozens of models in the literature, it is imperative to the design

engineers to understand the type of models to utilize in their simulations

depending on the material type, accuracy, loading type, computational

cost, availability of parameters, and so on. A review of the models

provides the engineers and upcoming researchers the opportunity to

hasten their understanding of the same. There have been remarkable

reviews in the literature about constitutive models for rubber‐like ma-

terials. One of the most referenced reviews on rubber elasticity models

was authored by Boyce and Arruda21 more than two decades ago. They

reviewed a total of 11 rubber elasticity constitutive models that are

formulated based on both the statistical mechanics and invariant or

stretch‐based continuum mechanics theories. Importantly, they included

a discussion on two common approaches of modeling the compressi-

bility of elastomers. Another frequently cited review work on hyper-

elastic models was authored by Marckmann and Verron10 in the year

2006 in which they compared the performance of 20 hyperelastic

models based on their ability to reproduce experimental data in different

types of loading conditions for two sets of classical experimental data.

Moreover, they proposed a ranking scheme to list the models from the

best to the worst based on a number of indicators namely the capability

of the model to achieve complete behavior, the number of required

material parameters, the ability of the model to reproduce both sets of

experimental data with the same set of parameters, and whether the

parameters are physically motivated. Models which could reproduce

experimental behavior in different loading conditions, required few

parameters, reproduced both sets of data without changing parameters,

and whose parameters have physical meaning were highly ranked. In

2019, Dal et al.22 presented a comparative study of 40 hyperelastic

models while focusing on the parameter identification process. They

proposed a novel parameter identification toolbox based on a multi-

objective optimization technique that selects the best model and its

parameters from an input of uniaxial tension, equibiaxial extension, and

pure shear experimental data. The models were then ranked based on

the quality of fit for simultaneous fits for two sets of experimental data.

Most recently, Dal et al.23 extended the previously mentioned work into

a comprehensive state of the art involving 44 hyperelastic models. The

ranking of the models was not only based on the quality of fit for

simultaneous fits but also the number of material parameters and the

validity range.

Considering the growing interest in hyperelastic materials and

the role played by numerical simulation in product design, this

review work aims to bring about the knowledge of the most

commonly utilized material models for hyperelastic materials

concisely for the benefit of design engineers and researchers.

In this study, while presenting our discussions, we classify the

models into the two mentioned main categories namely phenom-

enological and micromechanical where the former is further sub-

divided into those based on invariants or principal stretches.

The discussion on each model mainly focuses on the strain energy

density expression, nominal stress–strain or stress–stretch ex-

pressions for arbitrary or specific loading conditions (uniaxial

tension, equibiaxial extension, or pure shear), material parameters,

and their predictive capabilities according to Treloar's data. Illus-

trations that compare the experimental and the predicted

stress–strain or stress–stretch curves are presented and the ac-

curacy is quantified using the coefficient of determination.

Importantly, this study proposes a novel ranking scheme that

considers the behavior of the model in each loading mode, the

overall behavior, and the deviation of the fitness coefficient for

each loading mode in the experimental data set.

2 | PHENOMENOLOGICAL MODELS

Constitutive models emanating from the phenomenological approach

are formulated by fitting mathematical equations to the experimen-

tally observed behavior of the material.24 The formulation considers

the macroscopic nature of the material hence treating the problem

from the continuum mechanics viewpoint.25 There are two categories

of phenomenological constitutive models; those that are based on

the invariants of the Cauchy–Green deformation tensors as in-

troduced by Rivlin26 and those based on the principle stretches as

introduced by Valanis and Landel27 and Ogden.28 In this section, we

present the mentioned categories of phenomenological models while

giving the most common examples of each. Readers interested in

comprehensive coverage of phenomenological models may refer to

the work of Vahapoğlu and Karadeniz24 and Beda.29 It is worth noting

that most of the models were originally formulated with an as-

sumption of incompressibility. As put by Boyce and Arruda,21 the

mentioned assumption has the advantage of simplifying the model

equations and achieves acceptable accuracy but does not represent
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the real behavior of elastomeric materials. Practically, these materials

undergo volume changes, especially when subjected to hydrostatic

deformations. Consequently, the most accurate constitutive models

must account for compressibility. Not only is it important for accu-

racy but also for avoiding numerical problems during finite element

implementation of the model. To include a compressibility term, the

Ψ expression is additively decomposed into volumetric and deviatoric

parts which are responsible for volume and shape changes respec-

tively as shown in Equation (1).

I I JΨ = Ψ ( *, *) + Ψ ( ),d v1 2 (1)

where the subscripts d and v represent the deviatoric and volumetric

parts respectively. J is the volume ratio and is obtained by the

determinant of the deformation gradient J F= det whereas I*1 and I*2

are the distortional parts of the first and the second invariants of

Cauchy–Green deformation tensors and are obtained as shown in

Equation (2).

I J I I J I* = , * =1
−2/3

1 2
−4/3

2 (2)

This study utilizes the most commonly used expression for the

volumetric part according to30 and is given by K JΨ = 0.5 ( − 1)v
2 where

K is the bulk modulus of the material.

2.1 | Invariants based

2.1.1 | Neo‐Hookean (NH)

It was firstly formulated by the renowned rubber expert, Ronald Rivlin, in

1948. It is an extension of Hook's law for linear elasticity to include large

deformations where the stress–strain relationship is nonlinear. It is the

most commonly used and well‐known hyperelastic model due to its

simplicity as it requires only two material parameters that can be easily

determined; the shear modulus μ( ) and the bulk modulus κ( ). Of the two

material parameters, the former controls the deviatoric response whereas

the latter controls the volumetric response.31 If incompressibility is as-

sumed, that is, no volume change during deformation (as is frequently

done in theoretical calculations), the expression becomes even simpler as

only the shear modulus parameter is required. As with all the hyperelastic

constitutive equations, the NH model is derived from its corresponding

expression for strain energy density function (Ψ) as shown in Equation (3).

It is worth noting that several authors have slightly varying expressions

forΨ. This study is based on the expressions by Bergström.32

I J
μ
I

k
JΨ( *, ) =

2
( * − 3) +

2
( − 1) ,1 1

2 (3)

The terms in Equation (3) are as follows; μ = shear modulus,

J F= det[ ], where F is the deformation gradient, I*1 = tr C( *),

where JC C* = (−2/3) (distortional part of the right Cauchy–Green de-

formation tensor), k = bulk modulus. By assuming an incompressible

deformation, J = 1, thus reducing the energy expression to

I μ IΨ( *) = /2( * − 3)1 1 . From the energy expression, the NH model's

Cauchy stress for an arbitrary loading mode is obtained as shown in

Equation (4).

σ
μ

J
dev k JB I= [ *] + ( − 1) , (4)

where JB B* = (−2/3) (distortional part of the left Cauchy–Green

deformation tensor). When incompressibility of the material is

assumed, the Cauchy stress for the three loading modes; uniaxial,

planar, and biaxial are given in Equation (5).



 


 


 


 


 


σ μ λ

λ
σ μ λ

λ
σ μ λ

λ
= −

1
, = −

1
, = −

1
,u p b

2 2
2

2
4 (5)

The subscripts u p, , and b represent uniaxial, planar, and biaxial

loading respectively whereas λ represent the stretch applied.

The accuracy of the NH model, as with any other hyperelastic

model, can be approximated by comparing its stress–strain pre-

dictions to that of the classical experimental data by Treloar11 as

shown in Figure 1A. The coefficient of determination R( )2 as

shown in Equation (6) is utilized to rate the level of accuracy of

the predicted data. While the R2 is used to indicate the closeness

of the predicted data to the experimental data in an individual

loading mode, R̄2 indicates the complete behavior of the model

and is obtained by a simple average of R2 in the three loading

modes. From Figure 1A, it can be observed that the NH model is

suitable for predicting uniaxial tension behavior for up to about

40% strain and planar loading up to about 90% strain. The reason

for the low accuracy in high uniaxial strains is because of its linear

dependence on I*1 . Similarly, biaxial loading predictions may be

underestimated because the model expression lacks the depen-

dence on the second invariant I*2 of the deviatoric Cauchy–Green

deformation tensor. As put by Bergström,32 the main advantages

of this model include its simplicity and computationally efficient

implementation whereas the drawback is its stringent conditions

for accuracy.

∑

∑
R

e p

e e

= 1 −

( − )

( − )

,
i

n

i i

i

n

i m

2 =1

2

=1

2

(6)

where n = number of data points, ei = experimental data at a point i,

p =i prediction data at a point i, and em = the mean of the experi-

mental data.

2.1.2 | Yeoh

While experimenting on the behavior of carbon black reinforced rubber,

Yeoh33,34 observed that the shear modulus significantly dropped at low

strains. The available hyperelastic models at that time could not predict
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this behavior accurately. He proposed the addition of exponentially de-

caying terms to the strain energy function resulting in an expression that

is a polynomial of I*1 without the dependence of the second invariant as

shown in Equation (7). The work of Kawabata et al.35 found that the

Helmholtz free energy for most rubber‐like materials is less dependent on

I*2 than on I*1 . Furthermore, it is more strenuous to determine by experi-

mental means how I*2 influences the energy function. This motivated

Yeoh to drop the dependence of I*2 in his expression.

∑ ∑C I k JΨ = ( * − 3) + ( − 1) .
i

N

i
i

m

N

m
m

=1
0 1

=1

2 (7)

The terms Ci0 and km in Equation (7) above are the material

parameters to be determined whereas N is an input integer re-

presenting the order of the polynomial.

If three orders are considered in the strain energy function (hence

N = 3), the Cauchy stress considering compressibility in arbitrary loading

mode as given by Bergström32 is shown in Equation (8).

σ
J
C C I C I dev k JB I=

2
{ + 2 ( − 3) + 3 ( * − 3) } [ *] + ( − 1) .10 20 1 30 1

2 (8)

On the other hand, Cauchy stress expression when incompressibility

is assumed for each of the three loading modes is given in Equation (9).

( )
( )
( )

σ C C I C I λ

σ C C I C I λ

σ C C I C I λ

= 2[ + 2 ( * − 3) + 3 ( − 3) ] − ,

= 2[ + 2 ( * − 3) + 3 ( − 3) ] − ,

= 2[ + 2 ( * − 3) + 3 ( − 3) ] − .

u λ

p λ

b λ

10 20 1 30 1
2 2 1

10 20 1 30 1
2 2 1

10 20 1 30 1
2 2 1

2

4

(9)

It is worth noting that if only the first order is considered, that is,

N = 1, the expression then becomes equivalent to the NH model. By

comparing the Yeoh model predictions to the classical Treloar data as

shown in Figure 1B, it is evident that the Yeoh model prediction is to a

higher accuracy relative to the NH model in different loading modes. The

model has the advantage of being simple (no dependence on the second

invariant), few parameters required, and having improved predictive

ability.

F IGURE 1 Comparisons of the model predictions and the experimental engineering stress‐strain curves showing the model parameters and
the coefficient of determination for uniaxial, equibiaxial, and planar shear loading modes for models (A) Neo‐Hookean, (B) Yeoh, (C) Mooney‐
Rivlin, and (D) Gent. The predicted and the experimental data were obtained from Bergström32 and Treloar,11 respectively
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2.1.3 | Mooney–Rivlin

This model was formulated by Mooney3 and Rivlin36 and has a re-

putation for predicting the response of hyperelastic materials to a

high level of accuracy, therefore, it is well known and most commonly

preferred model. Such improved accuracy is a result of the inclusion

of linear dependence on I*2 in the strain energy function. This means

that the deviatoric response is defined by both the first and the

second invariant. One way of expressing the strain energy function is

shown in Equation (10).

C C k C I C I
k
JΨ( , , ) = ( * − 3) + ( * − 3) +

2
( − 1) ,10 01 10 1 01 2

2 (10)

where C10, C01, and k are the material parameters required for this

model whereas I tr trC C* = [( ( )) − ( ) ]2
1

2
2 2 . Considering compressibility

during deformation, the Cauchy stress expression for arbitrary

loading is obtained as shown in Equation (11).







σ

J
C C I

C

J
k J

I C

J

I C

J
B B I=

2
( + *) * −

2
( *) + ( − 1) −

2 *

3
−
4 *

3
.10 01 1

01 2 1 10 2 01
(11)

The incompressible forms of Cauchy stress for uniaxial, planar,

and biaxial loading are given in Equation (12).



 













 













 


 


 




σ λ
λ

C
C

λ

σ λ
λ

C C

σ C λ
λ

C λ
λ

= 2 −
1

+ ,

= 2 −
1

+ ,

= 2 −
1

+ 2 −
1

.

u

P

b

2
10

01

2
2 10 01

10
2

4 01
4

2

(12)

The Mooney–Rivlin model works well from small to medium

strains. The plots which are shown in Figure 1C compare the model's

stress–strain predictions with the experimental results of Treloar. The

model has improved accuracy relative to that of the NH model.

2.1.4 | Gent

The Gent model37 was formulated based on the NH model with the

aim of better characterization of rubberlike materials when subjected

to large deformations. The strain energy density function expression

for this model is a logarithmic function of I*1 with three material

parameters. In addition to the shear modulus and the bulk modulus as

in the NH model, it also has another dimensional parameter denoted

as Jm which controls the chain extensibility at large strains. This en-

sures that the energy density function has a singularity when I*1 = Jm.

The original work by Gent assumed incompressibility in formulating

the strain energy density expression. The expression shown in

Equation (13) has been modified by Bergström32 to include a com-

pressibility term.







I J

μ
J

I

J

k
JΨ( *, ) =

−

2
ln 1 −

* − 3
+

2
[ − 1] .m

m
1

1 2 (13)

The Cauchy stress expression obtained for arbitrary loading and

considering compressibility is given in Equation (14)

σ
μ

J I

J

dev k JB I=
1

1 −
* − 3

[ *] + [ − 1] .

m

1 (14)

From Equation (14), it is worth noting that as Jm tends

towards positive infinity, the Gent model's Cauchy stress ex-

pression becomes equivalent to that of NH. The incompressible

forms of Cauchy stresses for the Gent model are given in Equa-

tion (15).



 






 






 




σ μ λ
λ

J

J λ λ

σ μ λ
λ

J

J λ λ

σ μ λ
λ

J

J λ λ

= −
1

− ( + 2/ − 3)
,

= −
1

− ( + 2/ − 3)
,

= −
1

− ( + 2/ − 3)
.

u
m

m

p
m

m

b
m

m

2
2

2
2 2

2
4 2

(15)

The Gent model has the advantage of being able to predict large

strain loadings (up to 300%), higher accuracy, and also requires only

three parameters. As shown in Figure 1D, the Gent model does re-

latively well in predicting the material behavior and its accuracy is

close to that of the Yeoh model.

2.1.5 | Isihara

The model was formulated by Isihara et al.38 and it is considered as a

specialized form of the Mooney–Rivlin model since its strain energy

density function (see Equation 16) includes the dependence on the

second invariant.

C C C C I C I C IΨ( , , ) = ( * − 3) + ( * − 3) + ( * − 3).10 20 01 10 1 20 1
2

01 2
(16)

The material parameters required by the incompressible

version are C C,10 20, and C01. As per the original work, the uniaxial

tension Cauchy stress expression for an incompressible de-

formation is shown in Equation (17).



 




















σ C λ
λ

C λ
C

C

C

C λ
= −

1
+ + − 1 +

1
.u 10 2 01

3 20

01

20

01
3 (17)

The predictive capability of the Isihara model is shown in

Figure 2A where it is compared with the classical experimental

data. It can be observed that uniaxial tension loading predictions

are accurate to moderate stretch values. The model poorly esti-

mates the behavior in biaxial loading mode.
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2.1.6 | Horgan and Saccomandi

The researchers Horgan and Saccomandi40 aimed to improve the pre-

dictive ability of the Gent model by introducing the dependence on I*2 in

the strain energy density function. Their work resulted in a hyperelastic

model in their names, Horgan and Saccomandi which we shall shorten to

HS for convenience. The difference between the limiting chain stretches

in Gent and HS models is that the former depends on the maximum value

of the first invariant whereas the latter on the maximum allowable stretch

thus more physical significance.32 Strain energy expression that assumes

compressibility for the HS model is given in Equation (18).












I I J

μ
λ

λ λ I λ I

λ

k
JΨ( *, *, ) = −

2
ln

− * + * − 1

( − 1)
+

2
[ − 1] .1 2 max

2 max
6

max
4

1 max
2

2

max
2 3

2

(18)

The parameter λmax represents the limiting chain stretch.

HS's model Cauchy stress expression derived from the strain

energy density function is given in Equation (19).

















σ
μλ

J

λ I λ I I

λ λ I λ I
k J

B B I
I=

− * * + ( *) − * − 2 *

− * + * − 1
+ [ − 1] .

max
4 max

2
1

1

3 max
2

1 2

max
6

max
4

1 max
2

2

(19)

As in Gent's model, the HS equates to the NH as the limiting

chain stretch approaches infinity. Considering incompressibility, the

Cauchy stress for uniaxial tension, planar shear, and equibiaxial ten-

sion loading modes are given in Equation (20).

( )( )

( )( )

( )( )

σ μλ
λ

λλ λ λ

σ μλ
λ

λ λ λ λ

σ μλ
λ

λ λ λ λ

=
− 1

− 1 −
,

=
− 1

− 1 −
,

=
− 1

− 1 −
.

u

p

b

max
4

3

max
2

max
2 2

max
4

3

2
max
2

max
2 2

max
4

3

4
max
2

max
2 2

(20)

One main advantage of the HS is its stability provided that the shear

modulus and limiting chain stretch are greater than zero and one,

F IGURE 2 Model predictions compared to the experimental data for models (A) Isihara, (B) Horgan‐Saccomandi, (C) Carroll, and
(D) Valanis‐Landel. The stress–stretch prediction data were obtained from Badienia39
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respectively. The model's ability to reproduce the experimental material

behavior is shown in Figure 2B.

2.1.7 | Carroll model

Carroll16 undertook a systematic approach considering Treloar's uniaxial

and equibiaxial extension data to develop a three‐parameter strain energy

function. The function is made up of three parts; the first part represents

the response of the material in simple extension that is represented ac-

curately by NH strain energy function (according to Treloar's data, up to

λ ≈ 4.5), the second and the third parts are the strain energy expressions

that model the residual stresses in uniaxial and equibiaxial tension, re-

spectively. The resulting strain energy expression for the Carroll model is

shown in Equation (21).

AI BI CIΨ = + + ,1 1
4

2
0.5 (21)

where A, B, and C are material parameters found by Carroll to be

0.15, 3.1 × 107, and 0.095, respectively (units =MPa).

According to Steinmann 9, the expressions for the stress–stretch

relationship for the three loading modes considering incompressibility are

given in Equation (22).
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(22)

Despite its simplicity, the Carroll model approximates the material

response excellently according to Treloar's experimental data as

shown in Figure 2C.

2.2 | Stretch based

2.2.1 | Valanis–Landel

To circumvent notable challenges in invariant‐based hyperelastic models

such as sensitivities to experimental errors at low invariant values (less

than five) and difficulties in designing experiments in which the first in-

variant can be varied while keeping the second constant, Valanis and

Landel27 proposed a strain energy density function while assuming in-

compressibility that is of the form shown in Equation (23).

λ λ λ ψ λ ψ λ ψ λΨ( , , ) = ( ) + ( ) + ( ),1 2 3 1 2 3 (23)

where λ λ,1 2, and λ3 are the principal extension ratios. As in the

other hyperelastic materials, the expressions for stress can be

obtained by taking the partial derivative of Ψ with respect to

λ i( = 1, 2, 3)i . Consequently, the components of Cauchy stress in

arbitrary loading are given as shown in Equation (24).41

σ I λ
λ

=
∂Ψ

∂
,i i

i
3
(−1/2)

(24)

where i = 1, 2, 3.

The Valanis–Landel model requires only one material parameter for

the incompressible form which is the shear modulus. This makes the

model simple but reduced accuracy in predicting the material behavior as

shown in Figure 2D.

2.2.2 | Ogden

Formulated by Ogden28 in 1972, it is a versatile hyperelastic model

that can describe the mechanical behavior of a wide variety of

materials with hyperelastic behavior including polymers and biological

matter when subjected to high strains. The energy density function is

expressed in principal stretches and there are numerous ways

of writing it one of which was done by Bergström32 as shown in

Equation (25).

∑ ∑λ λ λ
μk

α
λ λ λ

D
JΨ( *, *, *) =

2
(( *) + ( *) + ( *) − 3) +

1
( − 1) .

k

N

k

α α α

k

N

k

k
1 2 3

=1
2 1 2 3

=1

2k k k

(25)

The parameters are as follows: N = the order of the model (nor-

mally taken as 3), μk and αk
2 are material constants, and Dk is a para-

meter that indicates volume change. The expression for the principal

stresses (σ i, = 1, 2, 3i ) is shown in Equation (26).
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α α α α
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=1

2 −1

k k k k

(26)

An interesting observation in Equation (26) is that when both N

and αk are equal to 1, then the Ogden model equates to the NH

model. Considering incompressibility, the stress expressions for the

three loading modes (subscripts μ p, , and b representing uniaxial,

planar, and biaxial loading, respectively) are given in Equation (27).
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(27)

The predicted stress–stretch response of the Ogden model has been

found to agree very well with the classical experimental results of Treloar

as shown in Figure 4A. The model is highly suitable for predicting large

deformation behavior and can describe well the sharp increase in stiffness

at large strains. The main drawback of this model is that material para-

meters are specific to every deformation mode and, therefore, require

different sets of parameters.
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2.2.3 | Shariff

In his work, Shariff42 aimed to overcome the challenge posed by

hyperelastic models such as the Ogden model whereby obtaining the

material parameters requires the solution of a system of nonlinear

equations. He developed an energy function that obeys the

Valanis–Landel hypothesis λ λ λ ψ λ ψ λ ψ λ(Ψ( , , ) = ( ) + ( ) + ( ))1 2 3 1 2 3 and

most importantly being linear in its material parameters as shown in

Equation (28).

∑λ E α φ λΨ( ) = ( ),i
i

n

i i i
=0

(28)

where i = 0, 1, 2, 3, …, n, αi =material parameters, α = 10 , φi = smooth

function that takes up to four expansion points as shown in Equation

(29) according to Badienia.39

φ
λ

φ λ λ

φ λ λ φ
λ

λ

(0) =
2 ln( )

3
, (1) = exp(1 − ) + − 2,

(2) = exp( − 1) − , (3) =
( − 1)3

3.6

(29)

To obtain the expressions for the Cauchy stress, the first deri-

vative of Equation (28) with respect to the principle stretch was

obtained. The stress expressions for the three loading modes as-

suming incompressibility according to Hossain and Steinmann43 are

given as shown in Equation (30).
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(30)

The Shariff model requires five material parameters which are

E α α α, , ,1 2 3, and α4. As shown in Figure 4B, the model accurately

captures the observed experimental behavior, particularly, the

S‐shaped curve behavior at high strains. While extra effort is

needed for parameter fitting due to the complexity of the con-

straint equations, less time is required compared to that of the

Ogden model since its energy function is a function of linear

parameters.43

3 | MICROMECHANICAL MODELS

Micromechanical models arise from analyzing the deformation

behavior of rubber‐like materials from the microstructural point

of view. As it is well known, the microstructure of rubber‐like

materials consists of randomly oriented long polymeric chains

that are joined together into a network structure.44 Furthermore,

the polymeric chains are comprised of N rigid beams which are

commonly known as Kuhn segments each of equal length l.39 The

ideal maximum length of the chain rmax at full elongation is given

by r Nl=max .9 Statistical mechanics theory (the random walk the-

ory45) is utilized to describe the average end‐to‐end distance of

stress‐free undeformed chain which is found as r N l= . The

distribution of the end‐to‐end distance r of a polymeric chain is

given by the Gaussian probability distribution function shown in

Equation (31).21















P r π

πNl
r

r

Nl
( ) = 4

3

2
exp −

3

2
.

2

3/2
2

2

2 (31)

The Gaussian assumption is only valid for small deformations

where the r << Nl. The stress–stretch response predicted by

Gaussian distribution deviates significantly from the observed

experimental behavior. As such, non‐Gaussian theory is taken

into consideration when modeling large deformations where the

chain length approaches the full extension length r Nl/ 0.4. The

Langevin function is utilized to account for the finite chain ex-

tensibility and the resulting force‐extension expression is given in

Equation (32).21




 


f

kθ

l

r

nl

kθ

l

λ

N
= =−1 −1

(32)

The parameters are as follows; k = Boltzmann's constant,

θ= absolute temperature, −1 = inverse Langevin function given

by x x
x

( ) = coth ( ) −
1

−1 . There are numerous ways of numerically

approximating the inverse Langevin function with the most

common one being the Padé approximant46 as shown in Equation

(33).

x x
x

x
( ) ≈

3 −

1 − 2

2
−1 (33)
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To formulate a micromechanical‐based constitutive model, a

representative network structure is necessary to relate the chain

stretch of the individual polymeric chains to the applied deformation.

Various micromechanical‐inspired hyperelastic models with their

corresponding network structures are presented in this section.

3.1 | Three‐chain model

The representative network structure of the 3‐chain model47,48 has

three chains (3‐chain) with each located along the axes of the un-

deformed cubic cell as shown in Figure 3A. When the deformation is

applied, the chains will deform in an affine manner with the cubic

structure with the stretch on each chain corresponding to the prin-

cipal stretch value.21 The non‐Gaussian distribution is utilized in de-

riving the strain energy function expression for the 3‐chain model as

shown in Equation (34).39














∑

μ N
λ β N

β

β
Ψ =

3
+ ln

sinh
,

i
i i

i

i
3‐chain

=1

3

(34)

where λi = principle stretch in the ith axis, βi = ( )λ

N
−1 , and N = the

total number of chains in the three principal directions.

The stress–stretch expressions for the three loading modes when

incompressibility is considered according to Steinmann et al.9 are

given in Equation (35).
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(35)

The subscripts UT ET, , and PS represents the uniaxial tension,

equibiaxial tension, and pure shear, respectively.

The 3‐chain model requires two material parameters (μ and N)

for each of the loading modes. The model's predictions compared

to Treloar's data are plotted in Figure 4C. It can be observed

that the model fits excellently to the uniaxial tension data

but fails to capture accurately the biaxial and planar shear

behavior.

3.2 | Eight‐chain model

The model was developed by Arruda and Boyce,12 thus, some-

times referred to as the Arruda‐Boyce model. Its representative

network structure has EC (hence the name 8‐chain model) that

are positioned on the diagonals of a unit cubic cell from the

center of the cell to the corners.13 As shown in Figure 3B, the side

lengths of the undeformed cell and the length of the undeformed

chain are taken as a0 and r0, respectively. A simple geometric

analysis of the undeformed cube shows that r a= 30 0 . When the

deformation is applied and the cell assumes a deformed shape,

the chains deform with the cell and the resulting principle dis-

tortional stretches are denoted as λ λ*, *,1 2 and λ*3. Again from basic

geometric analysis, the effective distortional chain length is ob-

tained as r a λ λ λ= ( *) + ( *) + ( *)0 1
2

2
2

3
2 . The effective distortional

chain stretch is obtained as r r/ 0 and has the expression given in

Equation (36).

λ
λ λ λ tr IB

* =
( *) + ( *) + ( *)

3
=

*

3
=

*

3
.

1
2

2
2

3
2

1 (36)

The stored energy function for the 8‐chain model is dependent

on the effective distortional stretch and is expressed as shown in

Equation (37).


















μ N βλ N
β

β
Ψ = * + ln

sinh
8‐chain (37)

where






β =

λ

N
−1 * .

The arbitrary loading Cauchy stress expression for the 8‐chain

model considering compressibility according to Bergström32 is shown

in Equation (38).

















σ
μ

Jλ
k Jdev B I=

*
[ *] + [ − 1] .

*λ

λ

λ

−1

−1 1

lock

lock

(38)

The parameter λlock = the fully extended stretch of the chain

(limiting chain stretch). Three material parameters are required which

are μ λ, lock and k. Assuming that the material is incompressible, only

two material properties will be required (bulk modulus not needed)

F IGURE 3 Schematic of the representative network structures
for (A) three‐chain and (B) eight‐chain models showing both the
undeformed and deformed states
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and the Cauchy stress expressions for the three loading modes are

given in Equation (39).
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The prediction of the 8‐chain model is plotted against the experi-

mental results of Treloar in Figure 4D. Since it is independent of the

second invariant, the accuracy of the biaxial loading prediction is low.

Nonetheless, the model is observed to be more accurate than some of

the phenomenological models such as Mooney–Rivlin.

3.3 | Tube model

Based on the notion that the microstructure of a rubber‐like

material comprises highly entangled polymer chains, Heinrich and

Kaliske49 formulated a hyperelastic model in which the polymeric

chains are assumed to be constrained in a tube formed by the

surrounding chains.10 When the deformation is applied, the

chains in the tube are assumed to deform proportionately to the

macroscopic network. Derivation of the strain energy density

function, as with any other macromechanical model, is based on

the statistical mechanics of polymer chains and is composed of

two parts as shown in Equation (40). The first and the second

parts represent the contribution from the chain cross‐linking and

the chain entanglement respectively.

∑
G

λ
G

β
λΨ =

2
( − 1) +

2
( − 1).

i

c
i

e
i
β

=1

3
2

2
−

(40)

F IGURE 4 Plots of model predictions and the experimental data in three loading modes for models (A) Ogden, (B) Shariff, (C) three‐chain,
and (D) eight‐chain
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The terms G G,c e and β in Equation (40) above are the material

parameters required for the tube model where β0 < ≤ 1. The

subscripts c and e represent the chain cross‐linking and en-

tanglement, respectively. It is worth noting that if μ G= c1 ,

μ α= , = 2
G

β2
−2

1
e

2 , and α β=2 , then the tube model becomes

equivalent to the second term Ogden model discussed in

Section 2.2.2.

According to Hossain and Steinmann,43 the stress expres-

sions for uniaxial tension, equibiaxial tension, and planar shear

loading modes considering incompressibility are given in Equa-

tion (41).
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A comparison of the tube's model predictions to the

experimental results by Treloar is plotted in Figure 5A. The model cannot

satisfactorily predict the material's behavior. It is mentioned43 that the

reason is that the energy contribution from the chain cross‐linking is of

NH type and, therefore, the S‐shaped curve which is synonymous with

rubber‐like materials from moderate to high stretch values cannot be

realized by the model.

3.4 | Extended tube model

The same authors of the tube model, Kaliske and Heinrich,50 sought to

improve the predictive ability of the tube model especially at moderate to

high deformations by replacing the Gaussian distribution with the non‐

Gaussian one on the strain energy density contribution of the chain cross‐

linking. They added an extra inextensibility parameter δ to the chain

cross‐link part of the strain energy expression while maintaining the en-

tanglement part as in the tube model. Considering that the material is

compressible, a third part is added to the strain energy function which is

F IGURE 5 Comparisons of model predictions and the experimental data for models (A) tube, (B) extended tube, and (C) Flory–Erman
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the energy from the volumetric deformations.32 The new strain energy

function has three parts as shown in Equation (42).
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There are five material parameters required for the compressible

version of the extended tube model as observed in

its strain energy function namely μ μ δ k, , , ,c e and β( β0 < ≤ 1). As the

chains fully stretch at large deformations, the energy

contribution from the entanglement part becomes insignificant. The

Cauchy stress expression for the compression version of the extended

tube model as given by Bergström32 is shown in Equation (43).
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where λ J λ* =i i
−1/3 and the other terms remain as previously defined.

According to Hossain and Steinmann,43 the stress expressions de-

rived from the strain energy density function for the three loading modes

considering incompressibility are given in Equation (44).
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(44)

The extended tube model's predictions fit the experimental Treloar

data to a very high level of accuracy as shown in Figure 5B. The extended

tube model is one of the most accurate hyperelastic material models. The

material parameters for uniaxial loading mode can be used to predict the

behavior of other loading modes.

3.5 | Flory–Erman

The Flory and Erman model51 begins by assuming that the

strain energy density of a polymer network exhibiting high elasticity is

expressed as a sum of two contributions. The first contribution is from

the phantom network (defined as a network whereby the physical effects

of the chains between junctions are confined entirely to the forces they

exert on the pairs of the junctions to which each is attached) whereas the

second contribution is from the constraints emerging from the material

properties of chains that are densely distributed in a random network (see

Equation 45).

Ψ = Ψ + Ψ .ph ct (45)

The subscripts ph and ct represent phantom and constraint, re-

spectively. Furthermore, the phantom network energy is derived from the

Gaussian chain statistics hence equivalent to the neo‐Hookean strain

energy density as shown in Equation (46) according to Hossain and

Steinmann.43
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The parameterφ in Equation (46) represents the number of chains at

a junction whereas μ is the shear modulus. On the other hand, the ex-

pression for the constraint contribution of the strain energy is derived

from the micromechanics of the chain molecules as is given in Equation

(47).

∑
μ
B D B DΨ =

2
[ + − ln( + 1) − ln( + 1)],ct

i
i i i i
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3

(47)

where B k λ λ k D λ k B= [ − 1][ + ] , =i i i i i i
2 2 2 −2 2 −1 . The parameter k

represents the strengths of the constraints. Considering

incompressibility, the stress‐stretch relationship expressions for the three

deformation modes are given in Equation (48).
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where the subscript ct represents the stress contribution from the con-

straints and is obtained by differentiating the constraints part of the strain

energy density function expression given in Equation (47). The material

behavior predictions of the Flory–Erman model compared to the ex-

perimental data of Treloar are plotted in Figure 5C. The model makes

reasonable predictions up to moderate stretches but significant deviations

from the experimental S‐shaped curved at high stretches are en-

countered. This is because of the assumptions of the Gaussian statistics

on the Phantom part of the strain energy density function.

4 | PREDICTIVE PERFORMANCE
OF THE MODELS

As numerical simulations are increasingly becoming an integral part

of engineering components design, design engineers are constantly

faced with the challenge of choosing the right hyperelastic
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constitutive model since it is a crucial prerequisite for good nu-

merical predictions. It is, therefore, imperative to present how each

of the models reviewed in this study performs in their predictions.

There is no clearly defined method of ranking the models and,

therefore, researchers have employed varying methods. Marckmann

and Verron10 ranked 20 hyperelastic models based on their abilities

to reproduce two sets of experimental data by Treloar11 and

Kawabata et al.52 The models that could predict accurately the

three modes of loading in the two sets of data were considered as

the best whereas those that required a higher number of material

parameters were ranked lowly. Badienia,39 utilized the quality of fit

measure whereby the models that reproduced the S‐shaped curve

of the Treloar's experimental data stress‐stretch plot to a higher

level of fit were ranked highly. Using Treloar's data, Bergström32

ranked the models based on the coefficient of determination and

also the number of material parameters required. Applying a slightly

different approach, Ritto and Nunes53 utilized two methods in

ranking five hyperelastic materials. First, they ranked according to

the error between the predicted and the experimental data con-

sidering two loading modes; pure and simple shear. Second, they

developed a model based on Bayesian statistics which they found to

be comprehensive in ranking a given set of hyperelastic models.

In general, two factors are crucial in determining a model's rank. The

first and most important factor is the model's capability in replicating the

experimental data in all of the three modes of loading namely uniaxial

tension, equibiaxial tension, and pure shear. The second is the number of

material parameters required by the model. This influences in that a

higher number of parameters means more tedious experimental work is

required to calibrate the model. This may not be much of an issue these

days since codes that accurately approximate the material parameters for

hyperelastic models based on uniaxial loading data have been developed

such as the MCalibration.54 In this section, we will present the predictive

performances of the hyperelastic models on each of the three loading

modes based on the coefficient of determination. Finally, we will propose

a new ranking method that is based on the ability of the model to ac-

curately predict the behavior in the three loading modes taking into ac-

count the deviation of the R2 values. Based on our observation, some

models are excellent in predicting the behavior in one mode, for example,

uniaxial tension but poorly predict the other modes of loading. We pro-

pose that a good model should be able to predict all three modes accu-

rately with minimum differences in the R2 values.

4.1 | Uniaxial tension

As shown in Figure 6, the majority of the models discussed pre-

dict the uniaxial tension behavior accurately with R2 values of

over 0.98. On the other hand, the Valanis–Landel model performs

extremely poorly in predicting uniaxial behavior with R2 value of

about 0.1. The 3‐chain, EC, HS, and Gent exhibit excellent pre-

dicted results while requiring only three material parameters

hence can be rated as top‐performing models for uniaxial tension

prediction.

4.2 | Equibiaxial tension

The performance of the models in the equibiaxial tension is better

than in the uniaxial tension as shown in Figure 7. Even though the

Ogden model's predictions agree excellently with the observed ex-

perimental behavior as demonstrated by the R2 of 0.9984, it requires

seven material parameters hence models such as Mooney–Rivlin and

EC are preferred since they require only three parameters and ex-

hibits almost similar accuracy levels. Again, the Valanis–Landel model

poorly predicts the equibiaxial loading but better than in the uniaxial

tension.

4.3 | Pure shear

All the models reviewed in this study predict the planar shear

loading behavior pretty accurately. As shown in Figure 8, the

highest and the lowest R2 values are 0.9982 and 0.8664 for the

extended tube and the Valanis–Landel models, respectively. With

only three parameters, the 3‐chain, EC, Horgan‐Saccomandi, and

Gent models are the best choices for this loading type since their

predictions agree with over 97% of the experimental data.

4.4 | Overall predictive capabilities

To deduce the R̄2 value for the overall predictive capability for

each of the models, a simple average of the R2 values for the three

loading modes was obtained. Without considering the number of

material parameters required, the Ogden, Carroll, Extended tube,

and Shariff models are the best with over 0.99 R̄2 values as shown

in Figure 9.

F IGURE 6 Performance of the models in uniaxial tension loading
based on R2 values
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4.5 | Proposed ranking method

Indeed, understanding the best model to use in designing

hyperelastic‐based components is crucial for the success of the de-

sign process. As such, ranking of hyperelastic models is an important

part of a review work yet very few authors in the literature have

addressed it. To the best of our knowledge, Marckmann and Verron10

were the first authors to propose a ranking scheme that was mainly

based on the ability of the model to achieve complete behavior, that

is, reproduce experimental data in different types of loading condi-

tions. They also considered the number of material parameters and

whether the model is micromechanical or phenomenological. The

recent work by Dal et al.22,23 based their ranking on quality of fit for

simultaneous fits. Generally, the overall behavior is quantified by

obtaining the average of the quality of fit in all the loading modes.

This may be inaccurate in some cases. For instance, a model with high

and low accuracies in two different loading modes may still record a

higher average (overall) behavior than a model with acceptable ac-

curacies in all loading modes. Therefore, a more accurate ranking

system must consider the deviations in the quality of fit in individual

loading modes. While the number of parameters of a highly ranked

model should be as few as possible, it should have little influence on

the ranking as the modern computational capabilities of computers

are highly advanced and some algorithms easily determine the

parameters for phenomenological models. In the case of two models

with the same predictive performance, the one with fewer para-

meters will be preferred and ranked higher.

In this section, we propose a ranking scheme based on two important

functions of the models and without considering the number of material

parameters required. First, the model should not only be able to re-

produce the experimental data in the three loading modes to a higher

level of accuracy but should also have minimum deviations (found by

calculating the SD) between the R2 values for each of the loading modes.

This means that a model with high predictive capability in one loading

mode and low in the other will be ranked low. Second, the R̄2 value is

taken into consideration by categorizing those that fall between 0.95‐1.0

as index 1, 0.90‐0.94 as index 2, 0.85‐0.89 as index 3, and so on. The

ranking coefficient will be the sum of the SD and the index value of the

model. The model with the lowest ranking coefficient (meaning both the

SD and the index value are the lowest) is taken as the best. The summary

of the ranking is presented in Table 1 below. The best‐ranked models

from the scheme include the Shariff, Carroll, Ogden, extended tube, Gent,

and EC. On the other hand, the poorly ranked models include the

Valanis–Landel, tube, and the Flory–Erman. While we believe that the

ranking scheme introduced can be reliable in determining the best models

for material behavior prediction, it is worth noting that it was introduced

specifically for this review work and is not intended to be an authoritative

F IGURE 7 Performance of the models in equibiaxial tension
loading. The number of material parameters in each model is shown
in red circles

F IGURE 8 Predictive performance of the models in pure shear
loading

F IGURE 9 Overall predictive performances of the models
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guide in choosing hyperelastic models. Since the Shariff and the Carroll

models are not available in most of the finite element codes, Ogden, EC,

and neo‐Hookean models remain the most commonly used because of

their availability.

5 | RELEVANCE TO MECHANICAL
SYSTEM DYNAMICS

One of the main topics in mechanical system dynamics is in modeling

and computation where formulation of finite element system dy-

namics with characteristics such as large deformation and non-

linearity is undertaken. These simulations are nowadays a requisite

part of the product design process in addition to physical experi-

ments. The success of such formulations in terms of accuracy and

reliability of the simulation results depends on accurate constitutive

relations that describe mechanical behavior with the mentioned

characteristics. Therefore, knowledge of hyperelastic models is highly

relevant to the advancement of mechanical system dynamics.

Vibration control and damping are highly relevant in mechanical

system dynamics. Mechanical systems exhibit vibrations (when subjected

to loading conditions) which are undesirable in many engineering appli-

cations as they may lead to damaging effects on the system. Besides

being highly nonlinear elastic and capable of undergoing large deforma-

tions, elastomeric materials exhibit viscous behavior i.e. high damping and

energy storage capabilities. Consequently, they are widely utilized in

fabricating shock absorbers that reduce the vibrations and shock loadings

in dynamic mechanical systems. To predict the system behavior, two

kinds of constitutive models are necessary; hyperelastic and viscoelastic

models. The former is responsible for predicting the large nonlinear elastic

behavior whereas the latter predicts the time‐dependent response. This

study contributes to the understanding of hyperelastic behavior which is

indispensable in vibration control and damping in mechanical system

dynamics.

6 | CONCLUSIONS

Hyperelastic materials are so‐called because, intrinsically, they can un-

dergo finite deformations that can be completely recovered upon re-

moval of the load and the material resumes its initial state, that is, no

internal energy dissipation. It constitutes a large number of important

engineering materials such as elastomers, polymers, and soft tissues.

Developing the constitutive models for these materials begins with de-

fining the expression for an energy potential known by names such as

Helmholtz free energy per unit reference volume, strain energy density,

or elastic potential. There are two main approaches to formulating the

elastic potential; the micromechanical and the phenomenological ap-

proach. The former involves the utilization of statistical mechanics the-

ories on the networks formed by polymeric chains at the microstructure

level of the material and are sometimes known as statistical approaches

whereas the latter involves the fitting of mathematical equations to the

experimental data. The stress–strain or stress–stretch behavior of the

hyperelastic material is then obtained by the derivative of the elastic

TABLE 1 Ranking of the hyperelastic models

Coefficient of determination
SD Range Index

Ranking
coefficientRank Model UT EB PS Overall

1 Shariff 0.9973 0.994 0.9935 0.9949 0.001685 0.95–1.0 1 1.001685

2 Carroll 0.9983 0.9961 0.9940 0.9961 0.001755 0.95–1.0 1 1.001755

3 Ogden 0.994 0.9984 0.9978 0.9967 0.001948 0.95–1.0 1 1.001948

4 ET 0.992 0.9958 0.9982 0.9953 0.002552 0.95–1.0 1 1.002552

5 Gent 0.9878 0.9401 0.9705 0.9661 0.019716 0.95–1.0 1 1.019716

6 E‐C 0.9947 0.941 0.9754 0.9704 0.022209 0.95–1.0 1 1.022209

7 Yeoh 0.9906 0.9405 0.9918 0.9743 0.023905 0.95–1.0 1 1.023905

8 3‐C 0.9933 0.7224 0.9904 0.9020 0.127025 0.90–0.94 2 2.127025

9 HS 0.9882 0.7303 0.9751 0.8978 0.118586 0.85–0.89 3 3.118586

10 N‐H 0.6489 0.8918 0.8759 0.8055 0.110946 0.80–0.84 4 4.110946

11 M‐R 0.5882 0.9852 0.9522 0.8419 0.179874 0.80–0.84 4 4.179874

12 Isihara 0.5315 0.9857 0.9921 0.8364 0.215636 0.80–0.84 4 4.215636

13 F‐E 0.3825 0.6172 0.9648 0.6548 0.239207 0.65–0.69 7 7.239207

14 Tube 0.2418 0.7576 0.9467 0.6487 0.297898 0.60–0.64 8 8.297898

15 V‐L 0.106 0.4085 0.8664 0.4601 0.312585 0.45–0.49 11 11.31258

Note: ET, E‐C, HS, 3‐C, N‐H, M‐R, F‐E, and V‐L represents extended tube, eight‐chain, Horgan‐Saccomandi, three‐chain, Neo‐Hookean, Mooney‐Rivlin,
Flory‐Erman, and Valanis‐Landel respectively. The UT, EB, and PS represent uniaxial tension, equibiaxial tension, and pure shear, respectively.
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potential with respect to the strain invariants or the principal stretches.

The material is assumed to be homogenous and isotropic. In-

compressibility is mostly assumed to simplify the stress–strain

expressions.

For the interest of research and design engineers, this study em-

ployed a unique approach to bring about the knowledge of constitutive

models for large nonlinear elastic mechanical behavior of elastomeric

materials in a succinct manner. The models were categorized based on

the approach in which the strain energy density expression is formulated,

phenomenological or micromechanical. The former was further grouped

into those that are dependent on the strain invariants of the

Cauchy–Green deformation tensors or principal stretches. For each

model, emphasis was placed on the strain energy density expression, the

stress–strain or stress–stretch expression for arbitrary or specific loading

conditions, and the material parameters for the classical Treloar's ex-

perimental data. Importantly, the predictive performances of the models

were ascertained by comparing the predicted stress–stretch or

stress–strain data to the experimental data by Treloar where the coeffi-

cient of determination R( )2 was employed to determine the closeness of

the predicted and the experimental data. The predictive performance was

presented in two ways; first for each loading mode (uniaxial tension,

equibiaxial extension, and pure shear) and second for the overall or

complete behavior in which the average of the coefficient of determi-

nation in each loading mode was utilized. Since the performance of the

models in different loading modes varies, it is important to establish both

the individual and overall behavior. Except for the single‐parameter

models with a linear dependence on the first invariant, the predictive

performance in the uniaxial tension and pure shear was to an acceptable

accuracy level. On the other hand, the equibiaxial loading proved to be

the most difficult to reproduce by most models. An excellent model that

can be utilized to predict the practical behavior of complex 3D compo-

nents under arbitrary loading conditions should reproduce the experi-

mental data in all the loading modes accurately. Furthermore, a model

with a minimum number of material parameters is highly desirable as

more will mean increased complexity of the model and the calibration

process may lead to instabilities in the parameters. This study proposed a

ranking method whereby the model with a high R̄2 value (the average of

the R2 values for the three loading modes) and minimum deviations be-

tween the R2 values for each of the loading modes, is considered as

the best.

As the computational capabilities of modern computers continue to

soar high, the numerical simulations via finite element codes increasingly

become indispensable in the component design process and so is the

development of the constitutive models. While it is highly encouraged to

have models with fewer material parameters for simplicity, stability, and

low computational costs, what will matter in the future is the ability of the

model to accurately predict the material behavior under arbitrary loading

as there are algorithms that extract material parameters from simple

uniaxial loading data. On top of achieving models that accurately describe

the experimental behavior in all kinds of loading conditions, future re-

search should focus on addressing some of the main drawbacks of the

current models that include the number of experimental data required for

calibrating phenomenological models and the range of applicability of the

models. For stable parameters, the majority of the models require si-

multaneous fitting to both uniaxial tension and equibiaxial extension data.

This is disadvantageous since it increases the number of experiments, the

time, and the cost of calibrating models. Furthermore, the equibiaxial

loading experimental setup is complicated and prone to errors. On the

range of applicability, some models are accurate but only to a limited

strain range, for example, moderate strains. Researchers should strive to

achieve models that work in the full strain range.
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