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A B S T R A C T

Shape memory polymer composites (SMPCs) can be used to improve the mechanical properties of the shape
memory polymers (SMPs). They also have the potential to enhance or enable new stimulus approaches and novel
shape memory effects (SMEs). In this paper, a thermoviscoelastic finite deformation constitutive model is de-
veloped for thermally activated unidirectional continuous elastic fiber reinforced SMPCs. Since the structural
relaxation and viscous flow mainly exist in the SMP matrix, an internal state variable modeling approach is used
to describe the thermomechanical behavior of the SMPCs. Recent works mainly focus on the thermomechanical
behavior of carbon fiber reinforced SMPCs in the small strain range, for the tensile tolerant strain of carbon fiber
is small. The model that is developed here shows that the unidirectional continuous carbon fiber reinforced
SMPCs with proper fiber inclination angle and volume fraction can also be used in finite deformation range for
the first time. The finite deformation thermomechanical response of unidirectional continuous carbon fiber
reinforced SMPCs with different inclination angles and volume fractions is addressed here. Therefore, this study
provides useful guidance for reasonable design of unidirectional continuous elastic fiber reinforced SMPCs.

1. Introduction

Shape memory polymers (SMPs) have drawn plenty of attention
from all over the world for their capability to recover the initial shape
even under the condition of large deformation. To date, many kinds of
external stimuli have been developed to trigger the shape memory ef-
fects (SMEs) of SMPs, such as temperature, electricity, moisture or ra-
diation (Li and Wang, 2016; Liu et al., 2009). There are so many ad-
vantages of SMPs compared with the shape memory metallic alloys
(SMAs), such as light weight, low cost, large deformation, good bio-
compatibility and biodegradability. The potential application of SMPs is
very broad, ranging from clothing manufacturing, intelligent medical
equipments to self-deployable structures in aeronautics and astro-
nautics (Leng et al., 2011).

The evident shortcoming of SMPs is that the mechanical properties
of these materials are relatively low, which seriously limits the devel-
opment in this area. Therefore, a number of shape memory polymer
composites (SMPCs) have been developed to increase the mechanical
properties of the SMP matrix. Besides, some of them also have the

ability to enhance or enable new stimulus approaches and novel SMEs.
Generally, SMPCs can be classified into two categories: fiber reinforced
SMPCs and particle reinforced SMPCs. The SMPCs with long thin fibers
have many outstanding mechanical properties, such as high stiffness
and strength. Therefore, a larger recovery stress can be generated by the
fiber reinforced SMPCs during the process of deformation recovery.
Obviously, this is a desirable feature in engineering applications.

It is clear that the constitutive models are critical to analyze and
predict the shape memory behaviors of SMPs and SMPCs. However, the
modeling efforts lag far behind the achievements in developing novel
SMPs and SMPCs. So far the modeling approaches for thermally acti-
vated SMPs can be classified into the phase transition modeling ap-
proaches and thermoviscoelastic modeling approaches. In the phase
transition modeling approaches, the substance could be divided into
two or more phases. Hence, the mechanism of shape memory behaviors
can be explained by the transition between different phases. Generally,
the approaches are used in modeling crystallizable polymers (Lu et al.,
2016; Bouaziz et al., 2017). Liu et al. (2006) firstly used the phase
transition approaches for amorphous SMPs on the assumption that the
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substance can be divided into frozen phase and active phase. Though
the phase transition modeling approaches are not physics-based de-
scription for amorphous SMPs, their phenomenological representations
provide useful predictive tools (Boatti et al., 2016; Li et al., 2017).
Recently, the modeling approaches are developing towards more phy-
sical descriptions of the underlying shape memory mechanisms.
Diani et al. (2006) firstly proposed the 3D finite deformation thermo-
viscoelastic model. The model can be used to describe the entropy
elasticity of the high temperature response for amorphous polymers.
Besides, the time-dependent and temperature-dependent viscoelastic
behavior of the glass transition are addressed. Thereafter, the theore-
tical framework of Diani et al. (2006) was further developed by
Nguyen et al. (2008), and a model incorporates structural relaxation
and stress relaxation was proposed. In order to describe the multitude
of relaxation processes, Xiao et al. (2013) amended the model by in-
corporating the multiple discrete structural and stress relaxation pro-
cesses. Similar multi-branch modeling approaches were also used by
Westbrook et al. (2011).

The fictive temperature θf can be used as an internal variable to
describe the nonequilibrium structure during the glass transition of
amorphous SMPs (Nguyen et al., 2008; Xiao et al., 2013). It should be
noted that the fictive temperature approach was firstly introduced by
Tool (1946) to model the structural relaxation in glasses. The relaxation
time is one of the critical factors in describing the thermomechanical
behavior of the material. Generally, the relaxation time model de-
scribed by the fictive temperature is temperature dependent only. In the
work of Gu et al. (2017), an internal state variable modeling approach
developed by Lion et al. (2010) based on thermodynamics was used
instead of the traditional phenomenological fictive temperature. The
main reason is that the model of Lion et al. (2010) can extend the
classical theories based on fictive temperature in two ways. Firstly,
temperature effects and mechanical loadings are accounted for in a
single consistent approach. Secondly, the basic thermodynamic poten-
tial is determined by the temperature, the stress and a set of internal
variables.

Evidently, the constitutive models for thermally activated fiber re-
inforced SMPCs are more complicated to establish. By using the mi-
cromechanical method, Jarali et al., (2011) proposed a modeling ap-
proach for the effective properties and thermomechanical behavior of
the SMA fiber reinforced SMPC laminates. In their study, the con-
stitutive model of the SMP matrix is the same as the phase transition
model developed by Liu et al. (2006), which is only applicable to the
condition of small strain. In the work of Song et al. (2015), a linear
constitutive model for the SMA fiber reinforced SMPC was developed
based on the self-consistent homogenization approach. It should be
noted that the constitutive model of the SMP matrix is also the same as
the model developed by Liu et al. (2006). Therefore, the viscoelastic
behavior of the SMP matrix is not taken into account in their work.
Mao et al. (2015) studied the thermoviscoplastic behavior of a cold-
programmed anisotropic shape memory elastomeric composite (SMEC)
which is consisted of an elastomeric matrix reinforced by aligned
amorphous polymer fibers. A 3D anisotropic thermoviscoelastic con-
stitutive model was developed in their work to capture the cold-pro-
grammed SMEs and the dramatic non-affine shape change of the
composite. By taking advantage of 3D printing, Ge et al. (2016) pre-
sented a new approach for fabricating printed anisotropic SMECs. The
SMEs of the composites is triggered by the crystallizable polymeric

fibers implanted in the matrix. To describe the complex, anisotropic,
larger deformation thermomechanical behaviors of the composites, a
constitutive model was developed in their work by incorporating the
phase evolution theory for soft active materials into the existing theory
for fiber reinforced hyperelastic composites.

It should be noted that carbon fibers are often used as the re-
inforcement phase in the SMP matrix, for its outstanding mechanical
properties. Nishikawa et al. (2012) conducted periodic-cell simulations
of the thermomechanical cycle for the discontinuous carbon fiber re-
inforced SMPC. In their work, the thermomechanical behavior of the
SMP matrix was described by the liner constitutive model. Besides, the
effects of fiber volume fraction, fiber aspect ratio and fiber end position
on the shape fixity and shape recovery of the composite were studied in
detail. Based on the bridging model, Tan et al. (2014) developed a
constitutive model for axial unidirectional continuous carbon fiber re-
inforced SMPCs under thermomechanical loadings in the small strain
range. The phase transition model proposed by Liu et al. (2006) was
also used in their study for the SMP matrix. It should be noted that the
recent works mainly focus on the thermomechanical behavior of carbon
fiber reinforced SMPCs in small strain range, for the failure tensile
strain of carbon fiber is small (about 2%). In this paper, the model
developed here shows that the unidirectional continuous carbon fiber
reinforced SMPCs with proper fiber inclination angle and volume
fraction can also be used in finite deformation range for the first time.

This paper is arranged in the following order. The fundamental
equations of the finite deformation constitutive model for the uni-
directional continuous fiber reinforced SMPCs are shown in Section 2.
The approach for the determination of model parameters is briefly in-
troduced in Section 3. Then the model prediction of the thermo-
mechanical behavior and the SMEs of the composites are adequately
presented in this section. Reviews and future work are discussed in
Section 4.

2. Constitutive model

A finite deformation constitutive model of fiber reinforced SMPCs is
presented in this section by using the approach proposed by Gu et al.
(2017), based on thermodynamics with internal state variables. The
stress-strain response of the fiber is regarded as linearity. The me-
chanical properties of the SMPCs is determined by mesomechanics.
Fig. 1 illustrates the stress-deformation response of the model for fiber
reinforced SMPCs.

2.1. Structural relaxation

As demonstrated previously, the approach proposed by Lion et al.
(2010) has the advantages of good applicability and more definite
physics-based description, compared to the fictive temperature ap-
proach. In the work of Gu et al. (2017), it is demonstrated that the
approach is rather effective in describing the structural relaxation of the
amorphous SMPs in the glass transition. Since the structural relaxation
mainly exists in the SMP matrix, it is assumed that the approach is still
valid in modeling the structural relaxation of elastic fiber reinforced
SMPCs.

In the model of Lion et al. (2010), the vicinity of the thermodynamic
equilibrium reference state is described by the sufficient small fluc-
tuations of the variables (stress tensor T, strain tensor E, temperature θ,

Fig. 1. 1D analogy of the constitutive model for the fiber re-
inforced SMPCs.

J. Gu et al. Mechanics of Materials 130 (2019) 9–19

10



specific entropy s per unit mass and internal variable tensor α). The
internal variable α is used to describe the history-dependent properties
of thermoviscoelastic materials in the vicinity of the glass transition. It
can be determined by a system of ordinary differential equations de-
pending on the selected set of external variables (E, s), (T, s), (E, θ) or
(T, θ) and the current value of the internal variable itself (Lion et al.,
2010). Therefore, the values of the variables in the current state can be
obtained by

= +T T t( )ref (1a)

= +E E t( )ref (1b)

= + t( )ref (1c)

= +s s t( )ref (1d)

= + t( )ref (1e)

where Tref, Eref, θref, sref and αref are reference values in an equilibrium
reference state, Σ(t), Γ(t), ϑ(t), η(t) and δ(t) are perturbation functions.

For simplicity, the tensors in Eq. (1) can be written in Voigt nota-
tion, e.g.

= =T T
T T T
T T T
T T T

T T T T T T{ } [ ]
11 12 13

21 22 23

31 31 33

11 22 33 12 23 13 T

(2)

where the subscripts 1, 2 and 3 denote the normal directions. Deduced
from the Clausius–Duhem inequality, the correlations of the perturba-
tions are given by Lion et al. (2010) as follows:

= +D wk{ } { } { }0 0 (3a)

= +
c

e k·{ } 1 ·{ }p

ref

0
0

(3b)

= + +e
d

w
d

{ } 1 { } { }
T

(3c)

where cp0, ρ and d are specific heat, density and material parameter,
respectively. k0, e are the parameter vectors which can be represented
as:

=k k k k[ 0 0 0]T
0 0 0 0 (4)

=e e e e[ 0 0 0]T (5)

where k0 is the thermal expansion coefficient and e is the parameter
which can be used to describe the coupling between the temperature
and the internal variables. D0 is the compliance of the glassy state
material which can be expressed as

= +
+

+

D
E

µ µ
µ µ
µ µ

µ
µ

µ

1

1 0 0 0
1 0 0 0

1 0 0 0
0 0 0 2(1 ) 0 0
0 0 0 0 2(1 ) 0
0 0 0 0 0 2(1 )

0

(6)

where E is the Young's modulus and μ is the Poisson's ratio. w can be
used to describe the coupling between the stress and the internal
variables.

=w

w v v
v w v
v v w

w
w

w

0 0 0
0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

t t t

t t t

t t t

s

s

s (7)

where wt, vt and ws are the additional material parameters. τ is the
structural relaxation time that can be written as

= B
s

exp0 (8)

where B is the activation parameter.

2.2. Deformations and stresses

The deformation of a 3D solid body is described by the deformation
gradient F which can be used to determine the deformation from its
reference configuration Ω0 in thermodynamic equilibrium to the cur-
rent configuration Ω. Here, it is assumed that the general thermo-
mechanical deformation of the SMPCs can be firstly split locally into
two parts.

=F F FM (9)

where FM and Fθ are the mechanical and thermal deformations, re-
spectively. FM can further be separated into elastic and viscous parts as
follows:

=F F FM e v (10)

where Fv is a relaxed configuration obtained by elastically unloading
F( )e 1.
As shown in Fig. 1, the mechanical behavior of the SMPCs can be

decomposed into two parts: an equilibrium response and a time-de-
pendent deviation from equilibrium. Therefore, it is appropriate to split
the general stress into an equilibrium part σn and a nonequilibrium
time-dependent part σv(σe) representing the viscoplastic behavior.

The stress of the equilibrium component can be obtained by using
the hyperelastic constitutive model for fiber reinforced composites of
Guo et al. (2007). The model for the transversely isotropic material is
developed based on a multiplicative decomposition of the deformation
gradient (a uniaxial deformation along the fiber direction and a sub-
sequent shear deformation) which considers interaction between the
fiber and the matrix. In the model of Guo et al. (2007), the Cauchy
stress of the transversely isotropic fiber reinforced hyperelastic com-
posites can be written as

= + +I F F F a F ap G cG I( ) (1 )n
c

M M T
c

M M
4

3/2
0 0 (11)

where I is the second order identity tensor, p is an arbitrary hydrostatic
pressure, Gc is an effective shear modulus of the composite. Parameters
c can be expressed as

= +c G v G v G G( )/m m f f c c (12)

where Gm and Gf are the shear moduli of the matrix and fiber, vm and vf
are the volume fractions of the matrix and fiber. a0 is the fiber direction
in the reference configuration in the composite. Therefore, FMa0 can be
used to represent the fiber direction in the current configuration. The
additional invariant I4 can be given by

= F FI a a·M M
4 0 0 (13)

It is also known that = If 4 is the stretch in the fiber direction.
As Fig. 1 shows, the stress of the nonequilibrium part caused by the

viscous deformation can be derived through Fe as follows:

= = L E
J
1 :v e

e
e e

(14)

where = FJ det( )e e , =E V Ie e , and Le is the fourth order elasticity
tensor.

Therefore, the total stress acting on the system can be obtained as

= +n e (15)

2.3. The viscous flow rule

As demonstrated previously, the viscoplastic stretch rate Dv can be
constitutively described by the plastic shear strain rate V though

=D nV V (16)
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where =n /v v is the direction of the flow stress and
= I1/3tr( )v v v is the deviatoric part of σv.
Generally, the Eyring model is applied to describe the temperature-

dependent, stress-activated property of viscoplastic flow for the glassy
state polymers. In the work of Gu et al. (2017), a modified Eyring model
incorporated with Eq. (8) is developed to extend the viscoplastic flow
rule to the glass transition and the vicinity of the process.

=
s

Q
B
s

Q
s

exp sinh ¯
V

y

yref (17)

where sy is the athermal shear strength, ηref is the reference shear
viscosity, Q is the activation parameter, and =¯ / 2v is the
equivalent shear stress.

2.4. Thermal deformation

Here, a coefficient of thermal expansion (CTE) model for the
transversely isotropic composite is developed by assuming that the fiber
reinforced SMPCs are two phases homogenized systems. It is considered
that the SMPCs can be divided into SMP phase and fiber phase. Based
on the method of mesomechanics, the longitudinal CTE of the axial
unidirectional continuous fiber reinforced SMPCs can be derived as

=
+
+

E v E v
E v E v

m m m f f f

m m f f
1

1 1

1 (18)

where αm and αf1 are the equivalent CTE of the isotropic SMP matrix
and longitudinal CTE of the fiber, Em and Ef1 are the Young's moduli of
the SMP matrix and longitudinal Young's moduli of the fiber. Here, the
CTE of the fiber is regarded as temperature-independent. Since the CTE
of the SMP matrix is temperature-dependent in the range of glass
transition, the equivalent CTE of SMP is defined as

=m
m,

0 (19)

where θ and θ0 are the current temperature and initial temperature,
respectively. εm,θ is the thermal strain of the SMP, which can be derived
from Eq. (3a), under the condition of ={ } {0}. By using the rule of
mixture, the transverse CTE of the SMPCs can be obtained as

= + + +µ v µ v µ(1 ) (1 )m m m f f f2 2 1 21 (20a)

= +µ µ v µ v( )m m f f21 (20b)

where αf2 is the transverse CTE of the fiber, μm and μf are the Poisson's
ratios of the SMP matrix and fiber.

As shown in Fig. 2, the CTEs of the SMPCs in x-y plane can be
calculated as follows, through the coordinate transformation formula.

= + sincosx 1
2

2
2 (21a)

= +sin cosy 1
2

2
2 (21b)

= sin2( ) cosxy 1 2 (21c)

where φ is the inclination angle of the fiber, which is also defined as the
angle rotated on the x-axis. It should be noted that the CTE of the

SMPCs in the z direction is not affected by the inclination angle of the
fiber, and always equals to α2.

During a thermomechanical shape memory cycle, the transversely
isotropic SMPCs have thermal deformation gradients in the following
form:

=F
S 0

0 0
0 0

T
xx xy

yy

zz

T T

T

T
(22)

where Sxy
T is the thermal shear strain and equals to αxy( 0). The

normal components can be written as

= + =i x y z1 ( , , )ii ii
T T (23)

where ii
T is the thermal strain in normal direction and equals to

αii( 0).

3. Results and discussions

The thermomechanical behavior of unidirectional continuous
carbon fiber reinforced SMPCs has been studied in the earlier sections.
In the simulations to follow, the SMP matrix is an acrylate-based net-
work polymer. The reinforcement material is T700 Toray carbon fiber.
It is assumed that the fibers are uniformly distributed throughout the
matrix. Therefore, the SMPC studied here is an ideal transversely iso-
tropic material.

3.1. Determination of model parameters

A series of tests were carried out by Westbrook et al. (2011) to
determine the material properties of the SMP. Model parameters related
to the SMP matrix listed in Table 1 can either be measured from or
fitted to the experimental data (Gu et al., 2017). The parameters of the
carbon fiber are listed in Table 2.

Mahieux and Reifsnider (2001) presented a temperature-dependent
model for the storage modulus E’ of the polymers at a constant fre-
quency as follows:

= +

+

E E E E E

E

( ) ( )·exp ( )·exp

·exp

m m

m

1 2 2 3
g

3
f

1 2

3

(24)

where θβ, θg and θf are the temperatures of β-transition, glass transition
and beginning of the flow region, respectively. E'i and mi (i=1, 2, 3) are
the instantaneous stiffness at the beginning of each transition and
Weibull exponents corresponding to the statistics of the bond breakage.
As shown in Fig. 3, the values of the parameters above can be de-
termined by fitting the Dynamic Mechanical Analysis (DMA) experi-
ment.

Generally, it is considered that the Young's modulus Em of the SMPs
is equal to the storage modulus E’ since the loss modulus is usually
much less than the storage modulus. In the paper, the phase transition
approach is used to describe the temperature dependence of Poisson's
ratio μm of the SMP matrix (Qi et al., 2008).

= +µ µ f µ f(1 )m g g r g (25a)

=
+

f
Z

1 1
1 exp[ ( )/ ]g

m (25b)

where μg and μr are the Poisson's ratios of the frozen phase and active
phase, respectively. fg is the volume fraction of the frozen phase. θm and
Z are the reference temperature and the parameter related to the width
of the phase transition zone, respectively. As detailed in Gu et al.
(2017), other parameters listed in Table 1 can be obtained by fitting of
the thermal strain of the SMP matrix.Fig. 2. Relations of coordinate systems of a fiber reinforced SMPCs.
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Under the assumption that the fibers and the matrix have the same
deformation in the fiber direction, the effective elastic constants of the
transversely isotropic SMPCs can be determined as follows, based on

the theory of volume averaging (Shen and Hu, 2006).

= +E E v E vC1 f1 f m m (26a)

= +E C E CE(1 )C2 C2
1

C2
2 (26b)

= +µ C µ Cµ(1 )C21 C21
1

C21
2 (26c)

=µ µ E
EC12 C21

C2

C1 (26d)

= +G C G CG(1 )C12 C12
1

C12
2 (26e)

where C is the transverse contact coefficient between the fibers. Su-
perscripts 1 and 2 denote the constants associated with models, re-
spectively, in series and in parallel.

=
+

E E E
E v E vC2

1 f2 m

f2 m m f (27a)

= +E E v E vC2
2

f2 f m m (27b)

= +µ µ v µ vC21
1

f f m m (27c)

=
+
+

µ
µ E v µ E v

E v E vC21
2 f f2 f m m m

f2 f m m (27d)

=
+

G G G
G v G vC12

1 f12 m

f12 m m f (27e)

= +G G v G vC12
2

f12 f m m (27f)

It should be noted that the values of the effective elastic constants
are between the values calculated by series model and the values

Table 1
Parameters of the model for the SMP matrix.

Parameters Values

θβ (β-transition temperature) 22.2 °C
θg (Glass transition temperature) 32 °C
θf (Temperature at the beginning of the flow region) 142.5 °C
E'1 (Material stiffness at the beginning of β-transition) 2552.9MPa
E'2 (Material stiffness at the beginning of glass transition) 1876.3MPa
E'3 (Material stiffness at the beginning of flow region) 5MPa
m1, m2, m3 (Weibull exponents) 19.3, 58.4, 177.6
μg (Poisson's ratio of the frozen phase) 0.35
μr (Poisson's ratio of the active phase) 0.499
θm (Reference temperature for phase transition) 27.5 °C
Z (Parameter characterizing the width of the phase transition zone) 7
Q/sy (Activation parameter for viscous flow) 175 °C/MPa
ηref (Reference shear viscosity) 12MPa s
θref (Temperature of thermodynamic equilibrium reference state) 25 °C
sref (Specific entropy of thermodynamic equilibrium reference state) 6 J/kg K
T1ref (Uniaxial stress of thermodynamic equilibrium reference state) −5MPa
cp0 (Specific heat) 50 J/kg K
k0 (Thermal expansion coefficient) 1.4× 10−4 /°C
d (Parameter for internal variable perturbations) 1.5× 10−17 J/kg
e, wt, vt (Parameter for influence of coupling) 1.5× 10−9 J/kg K, 1×10−16 m3/kg, 5×10−16m3/kg
B (Activation parameter for structural relaxation) 20,000 J/kg
τR0 (Reference value of structural relaxation time) 3× 10−2 s
ρ (Density of the material) 1050 kg/m3

Table 2
Material parameters of the carbon fiber.

Parameters Values

Ef1 (Longitudinal Young's modulus) 230 GPa
Ef2 (Transverse Young's modulus) 8.2 GPa
Gf12 (Shear modulus in 1–2 plane) 27.3 GPa
μf (Poisson's ratio) 0.25
αf1 (Longitudinal coefficient of thermal expansion) −8.3× 10−7 /°C
αf2 (Transverse coefficient of thermal expansion) 10× 10−6 /°C
C (Transverse contact coefficient between fibers) 0.2

Fig. 3. Temperature-dependent parameter fitting for storage modulus.

Fig. 4. Cartoon illustrating the loading applied onto the SMPC lamina.

Fig. 5. Geometry of the representative element of deformation.
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calculated by parallel model. It has been demonstrated that the model is
valid in calculating the effective elastic constants for glass fiber/epoxy
composites. The comparison with the experimental data indicates that
the empirical value of C for the glass fiber/epoxy composites is 0.2
(Shen and Hu, 2006). Due to the reason that both the glass fiber/epoxy
composites and the carbon fiber reinforced SMPCs are elastic fiber re-
inforced polymer composites, the model is also adopted in our study.
For simplicity, the value of C is also equal to 0.2 in our study since the
objective of our work is providing guidance for reasonable design of the
elastic fiber reinforced SMPCs in theory.

In the condition of plane stress, the relation of stress and strain can
be written as

= Q̄
xx
yy

xy

xx
yy

xy (28)

where constitutive matrix Q̄ can be obtained by

=Q T Q T¯ ( )1 1 T (29)

where T is the coordinate transformation matrix for the x-y coordinate
system that can be given by

=T
sin

sin
sin

cos 2 sin cos
cos 2 sin cos

sin cos sin cos cos

2 2

2 2

2 2 (30)

where φ denotes the angle rotated on the x-axis, as shown in Fig. 2.
Constitutive matrix Q can be written as

=Q
Q Q
Q Q

Q

0
0

0 0

11 12

12 22

66 (31)

where =Q E µ µ/(1 )11 C1 C12 C21 , =Q E µ µ/(1 )22 C2 C12 C21 ,
=Q µ E µ µ/(1 )12 C21 C2 C12 C21 and =Q G66 C12.

3.2. Model prediction

In this subsection, the simulations are carried out to predict the
thermomechanical behavior of the unidirectional continuous carbon

Fig. 6. Variation of the mechanical tensile strain of the carbon fibers with
different initial inclination angles in response to x direction stretch.

Fig. 7. Variation of the mechanical tensile strain of the carbon fiber in response
to the fiber inclination angle and fiber volume fraction under biaxial tension.

Fig. 8. Variation of x direction stress of the SMPCs with different inclination
angles in response to x direction stretch.

J. Gu et al. Mechanics of Materials 130 (2019) 9–19

14



fiber reinforced SMPC lamina. It is considered that the SMPC lamina is
in the state of plane stress and only a longitudinal stress is applied on
the lamina, as illustrated in Fig. 4.

Generally, the total deformation gradient of the lamina during a
shape memory cycle can be written as

=F
S 0

0 0
0 0

xx xy

yy

zz (32)

where Sxy is the total shear strain, λii (i= x, y, z) is the total stretch in i
direction. Based on Eq. (9), the mechanical deformation gradient can be
written as

=F
S 0

0 0
0 0

xx xy

yy

zz

M

M M

M

M
(33)

The mechanical deformation is regarded as incompressible, whence,

= 1xx yy zz
M M M (34)

The corresponding Cauchy stress tensor σn can be calculated from
Eq. (11) as follows:

=
0
0

0 0
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n

xy

yx yy
n

zz
n

n

n

n

(35)

It is clear that the boundary conditions are = = 0xy yx
n n , = 0yy

n and
= 0zz

n for the lamina in the state of plane stress and only σxx is applied
on it. In a thermomechanical strain-controlled programming, the var-
iation of λxx is definite. Therefore, the arbitrary hydrostatic pressure p
and the mechanical deformation gradients of other directions can be
derived from the boundary conditions. Finally, the value of xx

n at any
temperature and any time can be obtained from Eq. (11).

Generally, the recent works mainly focus on the thermomechanical
SME of carbon fiber reinforced SMPCs in the small strain range, for the
failure tensile strain of carbon fiber is very small (about 2%). As shown
in Fig. 5, the total tensile strain of carbon fiber can be derived through
the geometry of the representative element. Firstly, the initial length of
the carbon fiber can be written as

= + = +l l l l 1 tanx y xf0 0
2

0
2

0
2

0 (36)

where lx0 and ly0 are the initial width and height of the representative
element, respectively. Clearly, the width and height of the re-
presentative element in the deformed shape can be calculated as
lx= λxxlx0 and ly= λyyly0, respectively. According to the law of cosines,
the deformed length of the carbon fiber can be written as

= + +l l l l l cos( /cos ) 2 ( / )cos( /2 )x y x yf
2 2 (37)

where γ is the shear deformation. Since the total tensile strain of the
carbon can be defined as of = l l/ 1f f f0 , ɛf can be obtained by

=
+ +

+
( tan /cos ) 2 tan cos( /2 )/cos

1 tan
1xx yy xx yy

f

2
0

2
0

2
0

(38)

As the thermal deformation taken into account, the mechanical
tensile strain of the carbon fiber can be given by

=f
M

f 1 (39)

where Δθ is the change of temperature. According to Eqs. (38) and (39),
the inclination angle of the fiber can distinctly affect the mechanical
tensile strain of the carbon fiber. Therefore, the variation of f

M of the
SMPCs with fiber volume fraction vf = 10% and different inclination
angles in response to λxx at 60 °C under uniaxial tension is depicted in
Fig. 6. It can be seen from Fig. 6(a) that f

M of the SMPC with the in-
clination angle φ0< 60° increases as λxx increases. Clearly, the SMPC
with a larger φ0 has a smaller f

M. It is found from Fig. 6(b) that the f
M of

the SMPC with 43°<φ0< 58° is in the range of 0%∼2% while the
stretch of the SMPC is 1.2, which means the unidirectional continuous
carbon fiber reinforced SMPC with the proper fiber inclination angle
can be used even in the finite deformation. Therefore, the following
study in the paper focuses on the finite deformation SMEs of these
SMPCs. Similarly, it can be seen from Fig. 6(a) that f

M of the SMPC with
φ0≥ 60° increases as λxx increases. It also should be noted that f

M of
the SMPC with φ0≥ 60° is the compressive strain, although λxx of the
SMPC is the tensile stretch. Since the carbon fiber will buckle under the
compressive strain, the SMPCs with these inclination angles are not
stable. Therefore, they will not be studied in the paper.

There are several biaxial loading methods in practice. The simplest
one is equibiaxial load. Here, the variation of f

M of the SMPC with fiber
volume fraction vf = 10% at 60 °C in response to the fiber inclination
angle under equibiaxial tension is depicted in Fig. 7(a), in the condition
of λxx= λyy=1.2. It is shown that the f

M of the SMPC decreases as the

Fig. 9. Variation of the mechanical tensile strain of the carbon fibers with
different fiber volume fractions in response to x direction stretch.

Fig. 10. Variation of x direction stress of the SMPCs with different fiber volume
fractions in response to x direction stretch.

Table 3
Thermomechanical programming and recovery environment.

Step Condition Temperature

1. Loading (20% strain) Strain rate 0.01 /s 60 °C
2. Holding Cooling rate −2.5 °C/min 10 °C
3. Unloading Strain rate −0.01 /s 10 °C
4. Heating Heating rate 2.5 °C/min 60 °C
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φ0 increases firstly. After reaching the minimum value, f
M increases

with the increasing of φ0. It is calculated that the minimum value of f
M

is still above 2% which indicates that the carbon fiber will be invalid
under this kind of biaxial loading regardless of the fiber inclination
angle. The variation of f

M of the SMPC with φ0= 45° at 60 °C in re-
sponse to the fiber volume fraction under equibiaxial tension is de-
picted in Fig. 7(b). It can be found that the f

M of the SMPC slightly
decreases as the vf increases and finally approaches a steady value
which is still larger than 2%. Therefore, only the thermomechanical
behavior of the SMPCs under uniaxial tension is studied in the following
work.

Fig. 8 shows the stress σxx of the SMPCs with vf = 10% and φ0< 60°
in response to λxx at 60 °C without consideration of the fiber failure.
Evidently, the stress of the SMPCs is greatly improved by the carbon

fiber, which means the SMPCs may used in a broader application than
SMPs. In addition, the carbon fiber with a smaller inclination angle can
provide more reinforcement, which is also depicted in Fig. 8. Theore-
tically, the allowable tensile stretch of SMPCs with φ0< 43° could not
reach the range of finite deformation. Therefore, it should be more
effective to raise the fiber volume fraction vf in improving the stiffness
of the SMPCs than change the fiber inclination angle. Fig. 9 depicts the
variation of f

M of the SMPCs with φ0= 45° and different fiber volume
fractions in response to λxx at 60 °C. It is found that the f

M slightly
decreases as vf increases and become steady finally. The f

M of SMPCs
with vf ≥ 0.2% is less than 2% while the stretch of the SMPC is 1.2.
Therefore, it can be concluded that the unidirectional continuous
carbon fiber reinforced SMPC with vf ≥ 0.2% and φ0= 45° can be re-
liably used in the condition that λxx≤1.2. Fig. 10 shows the influences
of vf on the mechanical properties of the SMPCs with φ0= 45°. Clearly,
the stiffness of the SMPCs can be distinctly improved by raising the
fiber volume fraction.

Here, the thermomechanical behavior and SME of the unidirectional
continuous carbon fiber reinforced SMPCs with different φ0 and vf will
be discussed as follows. As mentioned above, only the SMPCs with

Fig. 11. Simulation results of SMPCs with different fiber volume fractions for stress and stretch separately as a function of time in the first 3 steps.

Table 4
Shape fixity ratios of the SMPCs with different fiber volume fractions.

vf 0 0.2% 0.4% 0.8% 1% 2% 4% 8%
Rfix 98.7% 96.3% 85.1% 47.8% 38.5% 18.6% 8% 2%
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43°<φ0< 58° will be studied in order to guarantee the validity of the
carbon fiber while the stretch of the SMPC is 1.2. In the simulation, the
procedure of a typical thermomechanical shape memory cycle can be
divided into 4 steps. Step 1, the lamina is isothermally deformed by
applying a longitudinal tensile load at a strain rate of 0.01/s at a
temperature well above θg (60 °C). Then the lamina is allowed to relax
for 10min to reach thermal equilibration. Step 2, cooling the lamina
down to a shape fixing temperature at a rate of 2.5 °C/min while
maintaining the deformation constraint. Thereafter, 60 min is given to
the lamina for stabilization. Step 3, the deformation constraint is re-
moved at a strain rate of 0.01 /s and the remaining shape is commonly
referred to as the temporary shape. At the end of this process, 10min is
given to the specimen for stabilization. Step 4, the SME of the SMPC
lamina is activated by raising the temperature to 60 °C at a rate of
2.5 °C/min. Two kinds of recoveries are predicted during this step. The
summary simulation conditions is listed in Table 3.

Fig. 11 shows the simulation results of the SMPCs with φ0= 45° and
different vf for the stress and the stretch separately as a function of time
in the first three steps. It can be seen that the stress gradually increases
in the cooling process. This should be the reason that the material be-
come stiffer as the temperature decreases. The stress nearly remains the
same in the following relaxation process and reaches 0 at the end of the
unloading step. During the process of stabilization after unloading, λxx
of the SMPCs with vf ≥ 0.2% gradually changes as time goes on. The

shape fixity ratio Rfix is an important parameter to denote the SME of
the SMPCs which can be defined as

= ×R 100%fix
r

p (40)

where εp is the initial pre-strain and εr is the reserved strain at the end

Fig. 12. Simulation results of SMPCs with fiber inclination angles 45°, 50° and 55° for stress and stretch separately as a function of time in the first 3 steps.

Fig. 13. Comparison of the present work with Gu et al. (2017) for constrained
recovery of the SMP.

Fig. 14. Recovery stresses of (a) the pure SMP and (b) the SMPCs with different
fiber volume fractions.
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of Step 3 (including the following stabilization process). It is shown that
Rfix rapidly decreases as vf increases, for the carbon fiber distinctly
improves the stiffness of the SMPCs which causes viscous flow even at a
low temperature. Here, the shape fixity ratios of the SMPCs with dif-
ferent fiber volume fractions are listed in Table 4. In order to study the
effect of fiber inclination angle on the thermomechanical behavior of
the SMPCs, the simulation results of the SMPCs with vf = 0.4% and
different φ0 are depicted in Fig. 12. It is found that the carbon fiber with
a smaller inclination angle can provide more axial reinforcement, at the
expense of the decreasing of shape fixity ratio. It also should be noted
that the evolution rule shown in Fig. 12 is accordance with that shown
in Fig. 11, due to the reason that both increasing the fiber volume
fraction and decreasing the fiber inclination angle can improving the
stiffness of the SMPCs. Since the variation of the fiber inclination angle
is limited, there is only a little difference between each other. There-
fore, the effect of φ0 on the recovery process will not be studied in this
work.

Generally, there are two kinds of recoveries in a typical thermo-
mechanical shape memory cycle, i.e., constrained recovery and free
recovery. In the simulation of the constrained recovery, λxx is kept still
and the stress evolution is recorded during heating. It should be noted
that the constrained recovery of the pure SMP under compression was
explored in the work of Westbrook et al. (2011) and well predicted by
Gu et al. (2017). Instead of the eight-chain network model, the hy-
perelastic constitutive model for fiber reinforced composites is in-
corporated in this work for the equilibrium component should be the
major difference between our model and the model developed by
Gu et al. (2017). In order to verify the predictability of the model, a
comparison between the simulation result of present work and that of
Gu et al. (2017) is shown in Fig. 13. It can be found that the general
evolution rule of the stress-temperature response of the model agrees
with the experiment and that of Gu et al. (2017) to some extent, which
also demonstrate the validity of our model. The prime reason for the
discrepancies between the simulation results of both models should be
that the stiffness of this model is a little higher than that of the Gu et al.
(2017).

The recovery stresses of the pure SMP and the SMPCs with different
fiber volume fractions and φ0= 45° are shown in Fig. 14. It can be
found that the viscous flow of the SMP is not triggered in the early stage
of the heating process. Therefore, the compressive stress is caused by
the thermal expansion. Finally, the tensile recovery stress reaches a
steady value after the viscous flow is triggered. It should be noted that
this evolution rule of the stress-temperature response for the pure SMP
under tension is also in accordance with the experiment carried out by
of Liu et al. (2006) (Fig. 16 in this reference). Compared with the re-
covery stress of the SMPCs, the recovery stress of the pure SMP is small,
which is the crucial limitation in its application. It can be found that the
peak stress of the SMPCs increases first and then decreases with the

increase of fiber volume fraction. The main reason should be that the
shape fixity ratio decreases as the fiber volume fraction increases, al-
though the stiffness of the SMPCs increases with the increase of fiber
volume fraction. It also can be found that the recovery stress of the
SMPC with a higher fiber volume fraction distinctly decreases after
reaching the peak stress. This is also mainly caused by the low shape
fixity ratio of the SMPCs. Since the reserved tensile strain at the end of
Step 3 is rather small, the thermal expansion strain could evidently
affect the recovery stress and lead to the stress decrease at the late stage
of the heating process.

In the simulation for the free recovery, the sample could deform
freely without any constraint and the stretch evolution is recorded
during heating. The recovery stretch of the pure SMP and the SMPCs
with different fiber volume fractions and φ0= 45° is shown in Fig. 15.
It can be concluded that a higher fiber volume fraction shifts the onset
of the stretch recovery to a higher temperature. The prime reason
should be that the stiffness of the SMPCs can be greatly improved by the
carbon fiber which leads to the viscous flow triggered at a low tem-
perature. From Fig. 15, it also can be found that the SMPCs can rapidly
return to their original shape, for the driving stress provided by the
carbon fiber is higher than the SMP matrix. Therefore, the recovery
time and temperature of SMPCs decrease with the increase of fiber
volume fraction.

4. Conclusions

In this paper, a thermoviscoelastic finite deformation constitutive
model is developed for thermally activated unidirectional continuous
elastic fiber reinforced SMPCs based on thermodynamics with internal
state variables. Specifically, the modified Adam-Gibbs model and
modified Eying model are separately used to describe the structural
relaxation and viscous flow. The hyperelastic constitutive model for
transversely isotropic material captures the hyperelastic behavior of the
SMPCs up to large deformation at high temperatures. In addition, a CTE
model for the transversely isotropic SMPCs is developed here by as-
suming that the composites are homogenized systems with two phases.

The model developed here shows that the unidirectional continuous
carbon fiber reinforced SMPCs with proper fiber inclination angle and
volume fraction can be used in finite deformation though the failure
tensile strain of carbon fiber is very small (about 2%). This aspect dif-
ferentiates our model from previous works that mainly focus on the
thermomechanical behavior of carbon fiber reinforced SMPCs in the
small strain range. Emphasis is laid on the finite deformation thermo-
mechanical response of unidirectional continuous carbon fiber re-
inforced SMPCs with different fiber inclination angles and fiber volume
fractions.

The paper could provide a basis for design and application of uni-
directional continuous elastic fiber reinforced SMPCs in engineering.
For further study, a series of tests should be carried out to adequately
prove the validity and accuracy of the model. It should be noted that
there are a great variety of fibers. Classified models should be devel-
oped for the specific fiber reinforced SMPCs. At variance with con-
ventional elastic fibers, functional fibers (such as the SMA fiber and
crystallizable SMP fiber) can also be used as reinforcements in the SMP
matrix to enhance or enable new stimulus approaches and novel SMEs.
Therefore, the multi-configuration theory will be used in modeling the
thermomechanical finite deformation for these materials in our future
work.
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