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When a dielectric elastomer (DE) balloon is subjected
to electromechanical loading, instability may happen.
In recent experiments, it has been shown that the
instability configuration of a DE balloon under
electromechanical loading can be very different
from that only subjected to mechanical load. It
has also been observed in the experiments that
the electromechanical instability phenomena of a
DE balloon can be highly time-dependent. In this
article, we adopt a nonlinear viscoelastic model
for the DE membrane to investigate the time-
dependent electromechanical instability of a DE
balloon. Using the model, we show that under a
constant electromechanical loading, a DE balloon may
gradually evolve from a convex shape to a non-
convex shape with bulging out in the centre, and
compressive hoop stress can also gradually develop
the balloon, resulting in wrinkles as observed in the
experiments. We have further shown that the snap-
through instability phenomenon of the DE balloon
also greatly depends on the ramping rate of the
applied voltage.

1. Introduction
A dielectric elastomer (DE) membrane can change
shape dramatically when subjected to electrical voltage.
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Figure 1. (a) Experimental observation of the shape change of an inflated DE membrane with time under constant
electromechanical loading condition [28]. (b) A bulging-out region appears and grows with the increase in time. It is noted
that the diameter of the membrane is 4.5 cm. (Online version in colour.)
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Figure 2. Schematics of the deformation of a DE balloon subjected to electromechanical loading. (a) Undeformed state. (b) First
inflation of the DEmembrane by an internally applied pressure. (c) Additional deformation of the DE balloon induced by voltage.
(Online version in colour.)

Thanks to their fast response, high energy efficiency, great deformability and low cost [1,2], DE
membranes have been intensively explored in recent years as soft actuators for the applications of
soft robot [3–6] and as strain sensors for numerous biomedical devices [7–9]. In the applications,
the interplay of mechanics and electric field in DE can often lead to complex phenomena such
as electromechanical pull-in instability [10–12], voltage-induced wrinkling [13,14], creasing and
cratering [15–17] and electromechanical bifurcation of a spherical balloon [18,19], to which
interpret, detailed modelling is imperative.

Among all the applications of DE membranes, balloon shape has been often adopted. For
instance, balloon-like DE structures of different sizes have been designed as tunable lens [20–22],
pumps [23–25] and generators [26,27]. In recent experiments [28,29], abnormal bulging out of a DE
balloon under electromechanical loading was observed, as shown in figure 1. In the experimental
set-up, a DE membrane without prestretch was mounted on the top of an air chamber, which was
connected to an air pump through a valve, as shown in the schematics of figure 2. To inflate the
DE membrane to a balloon shape, a certain amount of air was first pumped into the air chamber.
The valve was then closed, and consequently, the total amount of the air enclosed by the chamber
and the DE balloon was fixed. A constant voltage was then applied onto the DE membrane. It
was observed that without changing the electromechanical loading condition, the shape of the
DE balloon gradually evolved, and a localized bulging-out area formed at the centre of the DE
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balloon, as shown in figure 1b. Simultaneously, the monitored pressure inside the DE balloon
decreased with time (figure 1a), indicating the increase in its volume. It is worth mentioning that
such bulging-out phenomena have never been reported in a hyperplastic or viscoelastic balloon
only subjected to mechanical loading.

To explain the experimental observations described above, theoretical analyses have been
conducted [29,30]. In the modelling, a hyperelastic model was adopted for the DE membrane.
It has been found that non-convex shapes are indeed possible equilibrium configurations for the
DE balloon for a certain range of internal pressure and applied voltage. However, there are still
at least two important questions unaddressed in the previous studies. First, it has been shown in
both studies [29,30] that the DE balloon with non-convex shape usually has higher free energy
than the one with the convex shape for the same pressure and voltage. It remains unclear how
the DE balloon with convex shape gradually evolves into a non-convex shape in the experiments
with various loading conditions or loading paths. Second, in both previous studies [29,30] the DE
membrane was assumed to be a hyperelastic material, and viscoelasticity was ignored. But as has
been seen in the experiment [28], even with constant electromechanical loading the shape of the
DE balloon can change dramatically with time. In particular, a bulging-out region appears and
grows with the increase in time, as shown in figure 1b. Such time-dependent behaviour of the
DE balloon cannot be explained by the previous model. In addition, although in the experiments
[28,29], an extremely low ramping rate of voltage is adopted where viscosity of the DE membrane
can be ignored, as pointed out in [28], a higher ramping rate may be more relevant for engineering
applications.

Therefore, in this article, we aim to study the time-dependent behaviour of a DE balloon
subjected to electromechanical loading, with consideration of the viscoelastic behaviour of the
material. The paper is organized as follows. In §2, we briefly summarize the governing equations
for a viscoelastic DE membrane inflated by an internal pressure and subjected to an electrical
voltage. We then discuss the multiple coexisting equilibrium configurations of the DE balloon in
§3. In §§4 and 5, we investigate the effects of viscoelasticity of the DE membrane and the loading
dynamics on the evolution of the shape of the DE balloon. All the results are summarized in §6.

2. Governing equations and numerical computation
Figure 2 sketches a circular DE membrane with thickness H and radius R mounted on an air
chamber before and after electromechanical loading. The atmosphere pressure is patm, and the
volume of air underneath is Vc. In figure 2a, the DE membrane is not subjected to any load. The
actuation of the DE membrane can be divided into two steps: first, an initial pressure p0 is applied
to the DE membrane to inflate it into a balloon shape (figure 2b). Second, the valve connecting the
air pump and the air chamber is closed, and then a voltage Φ is applied onto the DE membrane
to induce further deformation with the internal pressure changing to p (figure 2c). The volume of
the DE balloon is set as V0 and V after the actuation of steps 1 and 2, respectively.

We first briefly summarize all the governing equations for the system, which have been
derived in our previous work [31]. We assume the deformation of the DE membrane is
axisymmetric and establish the Cartesian coordinates x–z upon the DE membrane. The
x-coordinate is along the horizontal direction and the z-coordinate is along the axis of symmetry.
In the undeformed state, each material point occupies a position with the coordinate (X, 0), and
all the physical fields in the deformed state can be expressed as a function of X. Considering
a material point (X, 0) and its adjacent point (X + dX, 0), they transform into (x(X), z(X)) and
(x(X + dX), z(X + dX)), respectively, in the deformed state, then we have dx = x(X + dX) − x(X)
and dz = z(X + dX) − z(X). The distance between the two material points changes from dX to
λ1dX, where λ1 is the stretch in the longitudinal direction. Define θ (X) as the angle between the
tangent of the material point and the horizontal direction in the deformed state, so we have

dx
dX

= λ1 cos θ (2.1)
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Figure 3. Viscoelastic model of a DE membrane consisting of two springs and one dashpot.

and
dz
dX

= λ1 sin θ . (2.2)

Simple geometrical analysis enables us to calculate the longitudinal stretch λ1 and the
latitudinal stretch λ2 as

λ1 =
√(

dx
dX

)2
+
(

dz
dX

)2
(2.3)

and

λ2 = x(X)
X

. (2.4)

The force balance equations are

d
dX

(σ1hx cos θ ) +
(

px − σ2h
sin θ

)
dz
dX

= 0 (2.5)

and
d

dX
(σ1hx sin θ ) − px

dx
dX

= 0, (2.6)

where σ 1 and σ 2 are the true stresses in the longitudinal and latitudinal direction, respectively,
and h(X) is the thickness of the deformed DE membrane. Simple analysis can show that the inertia
of the balloon becomes relevant only when the time scale is shorter than 0.1 s for the system shown
in figure 1. Therefore, in equations (2.5) and (2.6) and the following analyses, the inertial effect
is ignored.

Following the previous studies, a DE membrane is usually assumed to be incompressible,
so

h(X) = H
λ1λ2

. (2.7)

In order to account for the viscoelasticity of the material, we adopt a specific rheological model
[32,33]. As shown in figure 3, a spring α is in parallel with a Maxwell unit (a spring β connected
to a dashpot). In the deformed state, the spring α has stretches λ1 and λ2 in the two principal
directions, and the stretches of the spring β are λ1ξ

−1
1 and λ2ξ

−1
2 , where ξ1 and ξ2 are the stretches

of the dashpot.
Taking account of the strain stiffening, we write the strain energy of each spring using the

Gent model [34]. The total strain energy is the sum of the two springs. In the previous study
[28], the authors used the parameter Jlim = 270, so we also set Jαlim = Jβlim = Jlim = 270 throughout
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this article. With the introduction of μα + μβ = μ and μα/μ= k, we can write the total strain
energy as

WStretch(λ1, λ2, ξ1, ξ2) = − kμJlim

2
log

(
1 − λ1

2 + λ2
2 + λ1

−2λ2
−2 − 3

Jlim

)

− (1 − k)μJlim

2
log

(
1 − λ1

2ξ1
−2 + λ2

2ξ2
−2 + λ1

−2λ2
−2ξ1

2ξ2
2 − 3

Jlim

)
, (2.8)

where k determines the viscoelasticity of material. If k = 1, the material is purely elastic; while the
material behaves like viscous fluid when k = 0.

The ideal dielectric elastomer model [35,36] is adopted, as the change of the electrical
permittivity ε is negligible with its deformation [37]. The relationship between the electric
displacement and electric field is further assumed to be linear, namely

D = εE. (2.9)

The constitutive model of an incompressible, ideal dielectric elastomer membrane gives the
relation between true stresses and stretches as [36,38]

σ1 + εE2 = kμ(λ1
2 − λ1

−2λ2
−2)

1 − (λ1
2 + λ2

2 + λ1
−2λ2

−2 − 3)/Jlim

+ (1 − k)μ(λ1
2ξ1

−2 − λ1
−2ξ1

2λ2
−2ξ2

2)
1 − (λ1

2ξ1
−2 + λ2

2ξ2
−2 + λ1

−2ξ1
2λ2

−2ξ2
2 − 3)/Jlim

(2.10)

and

σ2 + εE2 = kμ(λ2
2 − λ1

−2λ2
−2)

1 − (λ1
2 + λ2

2 + λ1
−2λ2

−2 − 3)/Jlim

+ (1 − k)μ(λ2
2ξ2

−2 − λ1
−2ξ1

2λ2
−2ξ2

2)
1 − (λ1

2ξ1
−2 + λ2

2ξ2
−2 + λ1

−2ξ1
2λ2

−2ξ2
2 − 3)/Jlim

. (2.11)

In the Maxwell unit, the dashpot is subjected to the same true stresses as the spring β. The true
strain rates in the dashpot are given by

dξ1

ξ1dt
= 1

3η

⎛
⎜⎜⎜⎝

(1 − k)μ(λ1
2ξ1

−2 − λ1
−2ξ1

2λ2
−2ξ2

2)
1 − (λ1

2ξ1
−2 + λ2

2ξ2
−2 + λ1

−2ξ1
2λ2

−2ξ2
2 − 3)/Jlim

− (1 − k)μ(λ2
2ξ2

−2 − λ1
−2ξ1

2λ2
−2ξ2

2)/2
1 − (λ1

2ξ1
−2 + λ2

2ξ2
−2 + λ1

−2ξ1
2λ2

−2ξ2
2 − 3)/Jlim

⎞
⎟⎟⎟⎠ , (2.12)

and

dξ2

ξ2dt
= 1

3η

⎛
⎜⎜⎜⎝

(1 − k)μ(λ2
2ξ2

−2 − λ1
−2ξ1

2λ2
−2ξ2

2)
1 − (λ1

2ξ1
−2 + λ2

2ξ2
−2 + λ1

−2ξ1
2λ2

−2ξ2
2 − 3)/Jlim

− (1 − k)μ(λ1
2ξ1

−2 − λ1
−2ξ1

2λ2
−2ξ2

2)/2
1 − (λ1

2ξ1
−2 + λ2

2ξ2
−2 + λ1

−2ξ1
2λ2

−2ξ2
2 − 3)/Jlim

⎞
⎟⎟⎟⎠ (2.13)

where η is the viscosity of the dashpot. The relaxation time is determined by the viscosity of the
dashpot and the elastic modulus of the spring β

tv = η

(1 − k)μ
. (2.14)

Previous experiment tests have shown that the spectrum of the relaxation time of the VHB
elastomer ranges from subseconds to tens of minutes [39–41]. However, to simplify the problem,
we assume a single relaxation time scale in the following analyses.



6

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20190316

..........................................................

In order to solve equations (2.1)–(2.14), we rewrite the force balance equations (2.5) and (2.6) as

dθ

dX
= −σ2λ1 sin θ

σ1λ2X
+ pλ1

2λ2

σ1H
(2.15)

and
dλ1

dX
=
[

X
∂

∂λ1

(
σ1

λ1

)]−1 [
σ2

λ2
cos θ − σ1

λ1
− ∂

∂λ2

(
σ1

λ1

)
(λ1 cos θ − λ2)

]
. (2.16)

Equations (2.15) and (2.16) together with (2.1) and (2.2) constitute the first set of differential
equations, determining the deformation field of the DE membrane at any time t. The boundary
conditions are

x(0, t) = 0, z(0, t) = 0, θ (0, t) = 0, x(R, t) = R. (2.17)

Equations (2.12) and (2.13) provide the second set of differential equations with unknowns
ξ1(X, t) and ξ2(X, t). In all the following computations, we assume the pre-deformation of the
DE membrane before its shape evolution is instantaneous, so we have the initial conditions for
the dashpot as

ξ1(X, 0) = 1, ξ2(X, 0) = 1. (2.18)

In the computation, we use the following dimensionless quantities: x-coordinate x/R,
z-coordinate z/R, volume V/R3, pressure pR/μH, voltage Φ/H

√
μ/ε, time t/tv and the modulus

ratio k, which is fixed as 0.5 in the current work. At time t = 0, the dashpot has no deformation.
If pR/μH and Φ/H

√
μ/ε are given, the first set of differential equations can be solved by using

the shooting method. Once λ1(X, 0) and λ2(X, 0) are known, with an appropriate time increment
�t, the stretches of the dashpot ξ1(X, �t) and ξ2(X, �t) can be solved from the second set of
differential equations. With knowing the loading parameters pR/μH and Φ/H

√
μ/ε, we can

further update all the physical fields by using the first set of differential equations again. It is
worth noting that at time t = �t, if we keep the total amount of air as a constant, the pressure will
drop with the increase in the volume, so we need to find a new pressure p at this moment that
satisfies the ideal gas law

NKT = (p + patm)(V + Vc) = (p0 + patm)(V0 + Vc), (2.19)

where the normalized atmosphere pressure patmR/μH = 100 will be used throughout our paper.
Repeating this procedure by continuously increasing the time, all the physical fields can be
determined step by step.

3. Equilibrium states and loading paths
We first compute the possible equilibrium states of the DE balloon by ignoring the viscous effects
of the material. When k is set to be one in equations (2.8), (2.10) and (2.11), we obtain the governing
equations for a hyperelastic DE balloon. The pressure–volume relationship for the DE balloon for
several different voltages is plotted in figure 4. When the voltage is low, the pressure–volume
curves have N-like shapes. When the applied voltage is higher than a critical value (higher than
0.145), the shapes of the curves become more complex, which have been discussed in detail in
previous studies [29,30].

It is noted that in previous studies [29,30], five equilibrium configurations of the DE balloon
can be found in a certain range of internal pressure and applied voltage. With more detailed
calculations, we further find that in the current study that seven equilibrium configurations of
the DE balloon can exist for a certain range of pressure and voltage (e.g. Φ/H

√
μ/ε = 0.17 and

1.468 < pR/μH < 1.478). For the seven equilibrium configurations, four of them (A, C, F, G) have
convex shapes and three (B, D, E) have non-convex shapes, as shown in figure 5.

Although multiple equilibrium states can exist at the same pressure and voltage, it is difficult
to obtain all those equilibrium states in the experiment. For instance, if the applied voltage is
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Figure 4. Pressure–volume curves of a DE balloon at several different voltages. Dashed curve 1 is for Vc/R3 = 525, and dashed
curve 2 is for Vc/R3 = 275. (Online version in colour.)
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fixed, with the pressure-control mode, the DE balloon will snap from a state of small volume to
a state of large volume when the pressure reaches the first peak of the pressure–volume curve of
the DE balloon. All the configurations between the two states cannot be achieved in experiment.

In the experiments described previously [28,29], the DE membrane is first inflated to a balloon
shape. Subsequently, the valve is closed to fix the total amount of air enclosed by the DE balloon
and the chamber. Then a voltage is applied onto the balloon. In this case, with the increase in the
balloon volume induced by the voltage, the internal pressure drops, which can stabilize some of
the equilibrium states of the DE balloon located in the descending paths in the pressure–volume
curves in figure 4. For two different representative volumes of the air chamber Vc/R3 = 525 and
275 and with the initial pressure p0R/μH = 1.9, the relationships between the volume of the DE
balloon and the internal pressure given by equation (2.19) are represented by the two dashed
curves in figure 4 for the fixed total amount of enclosed air. Therefore, with the increase in the
voltage and valve being closed, the state of the balloon moves along one of the dashed curves
(depending on the volume of the air chamber).
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4. Evolution of the shape of the dielectric elastomer balloon subjected to a
constant voltage and with a fixed amount of enclosed air

In this section, we study the effects of the viscoelasticity of the DE material on the shape evolution
of the DE balloon with a constant electromechanical loading. To understand the phenomena
described in the experiment and as shown in figure 1, we assume the DE balloon at time t = 0
is first inflated by an internal pressure and then subjected to a voltage instantaneously. After that
(t > 0), the applied voltage is maintained unchanged and the valve connecting the air pump and
the air chamber is closed, namely, the total amount of air enclosed by the chamber and the DE
balloon is fixed. The change in the shape of the DE balloon with time can be computed.

To better understand the phenomenon, we first study the case with no applied voltage.
In the short-time limit (t = 0), the dashpot in the model (as shown in figure 3) has no deformation
and the stresses are taken by the two springs, so we have ξ1 = ξ2 = 1. In the long-time limit
(t → + ∞), the stresses on the dashpot are completely relaxed, and stresses are only taken by
the spring α, so we have λ1 = ξ1 and λ2 = ξ2. We plot the pressure–volume relationship for the DE
balloon for both short-time limit and long-time limit in figure 6.

We first consider the case with a constant internal pressure applied to the DE balloon, which
is equivalent to the case with an air chamber of infinitely large volume. If the pressure is low (e.g.
the pressure is below the first peak value of the pressure–volume curve for the long-time limit),
the volume of the DE balloon increases continuously from the short-time limit to the long-time
limit (figures 6 and 7a). However, if the applied pressure is high (the pressure is below the peak
of the pressure–volume curve for the short-time limit but above the peak of the pressure–volume
curve for the long-time limit), the volume of the DE balloon increases continuously first and then
snaps to a large value, as shown in figures 6 and 7a.

We can predict similar phenomena for the case of fixing the total amount of air enclosed by
the air chamber together with the DE balloon. Since the total amount of air is fixed, the pressure
applied to the DE balloon and its volume have to be related by the ideal gas law (equation (2.19)).
With two different volumes of the air chamber (Vc/R3 = 500 and 5000), equation (2.19) can be
represented by two different dashed curves, as shown in figure 6. We assume that the DE balloon
is first inflated instantly to a volume with the initial pressure p0R/μH = 1.2. If the volume of the
air chamber is small (Vc/R3 = 500), the volume of the DE balloon gradually increases due to the
stress relaxation in the DE membrane, finally reaching an equilibrium state, as shown in figure 7b.
If the volume of the air chamber is large (Vc/R3 = 5000), the DE balloon can snap from a state with
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small volume to a state with large volume, as shown in figures 6 and 7b. Detailed computations
provide a complete process of the evolution of the shape of the DE balloon, as shown in figure 7c,d.
It is noted that, in the computation, we ignore the inertia of the DE balloon. In other words, we
assume the discontinuous snap through of the DE balloon takes no time.

Next, we study the case with applied voltage. Similar to figure 6, figure 8 plots the short-time
and long-time limit of pressure–volume curves with two different voltages Φ/H

√
μ/ε = 0.11 and

0.12. The change of the volume of the DE balloon with time for two different level of voltages
and two fixed different volumes of air chamber Vc/R3 = 525 and 275 are shown in figure 9a,d.
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Figure 9b,c and e,f plots the configurations of balloons at the points marked on the volume–time
curves in figure 9a,d, respectively. It can be seen that the DE balloon can evolve from an initial
configuration with convex shape to a configuration with non-convex shape, which is very similar
to the formation of a bulging-out area in an inflated DE membrane with fixed electromechanical
loads, as reported in [28] and shown in figure 1.

We further plot the evolution of the stretch at the centre of the DE balloon in figure 10
and the stress distribution in the DE balloon at several different times in figure 11. As we
can see, the stretch may increase dramatically with the increase in time, which can lead to the
failure of the DE balloon as seen in the experiment [28,29]. With the increase in time, the hoop
stress in the DE balloon can also change from tensile to compressive, as shown in figure 11d.
The compressive stress can cause wrinkles in the DE balloon, which has also been seen in the
experiments [28,29,42].
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As shown in the experiment [28] as well as figure 1, with a fixed voltage, the inflated DE
membrane evolves from a convex shape to a partially concave shape within several seconds,
which is consistent with the predictions shown in figure 9 when considering that the relaxation
time scale (tv) of VHB membrane is around several seconds [39–41]. In addition, with the results
from figure 10, we can predict that the true electric field on the centre of the DE membrane can
jump from the value lower than its electrical breakdown field to the value above the electrical
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breakdown field, which is also consistent with the experimental observation that the formation of
the bulging-out area often leads to the final failure of the DE membrane.

5. Effects of ramping rate of voltage on the shape of the dielectric
elastomer balloon

In this section, we investigate the effects of the ramping rate of the applied voltage on the
evolution of the shape of the DE balloon. We assume that the DE balloon is first instantaneously
inflated to a volume with the initial pressure p0R/μH = 1.9 at t = 0. The air enclosed in the
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system is then fixed. Finally, a voltage is applied onto the DE balloon with a constant ramping
rate, namely Φ=Kt with two different dimensionless ramping rates Ktv/H

√
μ/ε = 1 and 0.5,

respectively; the relationship between the volume of the DE balloon and the voltage is plotted
in figure 12 with the volume of the air chamber Vc/R3 = 525, where significant rate-dependence
is demonstrated.

For the three different cases in figure 12, snap-through phenomena of the DE balloon can be
predicted when the applied voltage reaches a critical value. With the decrease in the ramping
rate, lower voltage is needed to trigger the snap-through instability of the DE balloon. This is
because with the decrease in the ramping rate of voltage, the effective modulus of the viscoelastic
DE membrane also decreases. The shape of the DE balloon for the three cases before and after the
snap through is plotted in figure 13.

Figure 14 shows the corresponding stretch and stress distributions of the DE balloon with the
configurations shown in figure 13. The solid and dashed curves represent the distributions before
and after snap through, respectively. It is shown that after snap through, the stretch and stress at
the centre of the DE balloon change most dramatically.

Figure 15 plots the the relationship between the volume of the DE balloon and the voltage
with a smaller air chamber Vc/R3 = 275, for two different voltage ramping rates Ktv/H

√
μ/ε =

1 and 0.5. Comparing it to figure 12, we can see the critical voltage to trigger snap through is
higher with the same voltage ramping rate. The shape of the DE balloon before and after the
snap through is plotted in figure 16. Figure 17 plots the stretch and stress distributions of the
configurations in figure 16. After the snap through, compressive hoop stress may be induced, as
shown in figure 17d, resulting in wrinkles on the DE balloon.

6. Conclusion
In this work, we have studied the time-dependent phenomenon of a DE balloon subjected to
electromechanical loading. In the model, viscoelasticity of the DE membrane is taken into account.
Our computational results show that with a constant electromechanical loading, a DE balloon
with convex shape can gradually evolve into a non-convex shape, accompanied by snap-through
phenomenon, and also possibly the development of compressive hoop stress. According to our
knowledge, such time-dependent shape transition (from convex to non-convex) of a balloon has
never been predicted in the previous theoretical or computation studies of dielectric elastomers.
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Moreover, we have also studied the rate-dependent behaviour of an inflated DE balloon subjected
to voltage of various ramping rates. We found that the critical voltage for inducing the snap-
through instability of the DE balloon decreases with the decrease in the ramping rate of the
applied voltage or the increase in the volume of the air chamber.
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