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In the structural health monitoring or nondestructive examination system based on the
Lamb wave technology, the accurate and valid characteristics of wave packet extracted
from the signal are critical factors to evaluate damage. However, the dispersion effect
and the multi-mode characteristic in the elastic wave make the data extraction difficult
and degrade the resolution, and therefore further prevent the effectiveness of Lamb wave
for damage detection. In this study, we proposed a model-based approach for extracting
effective characteristics from the noisy signals. By taking the narrow band Gabor pulse
as the incident pulse and considering the general non-linear frequency dispersion (quadra-
tic dispersion), we developed a model with five parameters to model the dispersive wave
packet and obtained the parameter vector of each wave packet by the expectation-
maximization (EM) algorithm. The parameters in the model present the characteristics
of signals, which can be further applied to locate and evaluate the structure’s damage.
To study the convergence property, synthetic signals with different sampling rates and
noise intensities were considered. Furthermore the developed approach is also verified
by the experimental data from an isotropic aluminum plate.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Lamb waves are guided waves propagating in plate-like structures, also known as plate waves [1]. For damage diagnosis
of large plate-like structures, with the merits of long propagation distance without much energy loss and sensitivity to both
internal and surface defects, the structural health monitoring (SHM) or nondestructive examination (NDE) based on Lamb
wave is widely considered to be promising [2–4]. For active Lamb wave technology, the initial ultrasonic elastic wave is usu-
ally generated by the actuator mounted on or embedded in the monitored structure. Reflection/scattering occurs when the
elastic wave encounters the damage or boundaries, which can be revealed by signal analysis. The extracted arrival time of
wave packet can be used to locate the damage by classical methods such as ellipse method and triangulation method [5,6],
and the mode information can be used for damage identification based on the scattering analysis [7,8]. For damage diagnosis
in large structures, guided waves can be generated by the actuator on the surface of (or inside) the testing structure, instead
of scanning the whole surface by the conventional ultrasonic test. Since the propagation medium of Lamb waves is the plate-
like structure with the free upper and lower boundaries, the effect of the defects in/on the structure can be located and ana-
lyzed by analyzing the signals. By the Lamb wave technique, the rapid inspection of the monitored structure can be realized.
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However, in the Lamb wave testing, the nature of dispersion increases the signal duration and decreases the amplitude.
Due to the interaction between the damage and the structure, the reflected wave packets may overlap seriously in the
obtained signal. In practice, the background noise leads to the weak signal-to-noise ratio (SNR) and makes the problemmore
challenging. Thus, all these factors make the signal less straightforward and difficult to read. As another major problem,
multi-mode characteristic has yet to be addressed through the application. Even at low frequency-thickness product, A0
and S0 modes can propagate in the structure, and with the increase of frequency-thickness product, more modes may com-
plicate the signal. For these reasons, it is generally to excite a single mode with frequencies restricted in a relatively non-
dispersive region in the tests. Even so, modal conversion will induce other modes that differ from the excitation, so the prob-
lem of the multi-mode characteristic is unavoidable. Indeed, the identification of modes different from the excitation can be
used to recognize the damage type and help to understand the interaction between incident wave and damage.

Various techniques of signal processing have been proposed for the dispersive guided wave signals. One is time–fre-
quency analysis, which employed short-time Fourier transform (STFT), Wigner-Ville distribution (WVD), Wavelet transform
(WT) and Hilbert-Huang transform (HHT) [9–13]. Although the time–frequency analysis can provide an intuitive interpre-
tation for the dispersive signals, the results may not be satisfactory since the time–frequency resolutions are very sensitive
to the noise. The compressing techniques to increase the time resolution and SNR, with a known/measured dispersion rela-
tion to compensate the spread wave packets to the original shape, have been proven as effective methods [14–18]. Generally
speaking, these techniques only compress the wave packets with the same mode as excitation, and the compensation results
of other wave packets (e.g., induced by the modal conversion phenomenon) are usually undesirable. To search better reso-
lutions, matching pursuit (MP) and warped basis pursuit (W-BP) as a kind of sparse approximation or representation method
has been employed in the guided wave signal processing [8,19–23]. In these techniques, dictionaries need to be carefully
customized for decomposing the wave packet with several specific modes from the signal, i.e., the time resolution strongly
depends on the dictionary. Therefore, there is a critical need to develop a signal processing technique to obtain the accurate
wave packet characteristics from the measured signal.

The model-based method that has to synthesize the physical characteristics of the system can be used for accurately
extracting the wave packets characteristics and effectively applied in the processing non-dispersive signals [24–26]. Com-
pared to the non-dispersive elastic wave, the guided wave should consider the dispersion effect. That is, besides the param-
eters of amplitude, time of arrive (ToA), center frequency, bandwidth and the phase, the dispersive characteristic must be
considered. These features can be characterized by many methods, e.g., the ToA can be carried out by the envelope or
time–frequency analysis result (i.e. the time point responding to the energy peak); the frequency component distribution
can be observed in the STFT or WVD results, etc. However, these methods have limitations in accuracy. In Lamb-wave-
based defect inspection, the model-based compressive sensing (TS) technique adopting the warped frequency transform
(WFT) technique were developed, and high solution were performed [27]. To achieve the application of the model-based
method for time-domain signal analyzing, an effective and valid model is needed. In this paper, we take the narrowband
Gabor pulse as the incident pulse and consider the general non-linear frequency dispersion to derive the model function
strictly. With this model and parameter estimation method, the parameters in the measured signals can be calculated,
and the estimation can be realized by the expectation-maximization (EM) algorithm.

This paper is organized as follows. In the Section 2, we developed the model function and showed how to identify the
packet mode by determining the parameters and the implementation steps. In Section 3, synthetic signals with different
SRs and noise intensities were used to study the convergence property; two groups of experimental data were measured
from two isotropic aluminum plates: the first group was used to study the relationship between the result accuracy and
the bandwidth of excitation pulse; the second group was used to verify the ability of mode identification and time locating.
2. Approach of dispersive signal processing based on the EM algorithm

In this section, we solved the problems in the Lamb wave signal from the model-based estimation perspective which can
offer a more specific and a higher-resolution result. Actually, a parametric form of the dispersive wave packets can simplify
the problems, and evaluate the structural damage based on signal characteristics conveniently.

2.1. Dispersive wave packets model

Since the time and frequency localization of the incident pulse are very important when using Lamb wave technology for
efficient damage inspection, to select an optimal pulse as the excitation signal is a matter of cardinal significance [20]. To
achieve the targets, the Gabor pulse (modulated Gaussian pulse) centered at a center frequency 2pf c was employed here
f tð Þ ¼ Aexp �t2=2r2� �
cos 2pf ct þ /ð Þ ð1Þ
where the A is the amplitude, r is a bandwidth factor that denotes the duration of the pulse waveform, / is the phase, and t is
the time.

With the assumption in the close region of high wave energy intensity, the dispersion relation characteristic can be
adequately approximated by a finite polynomial. So the waveform of general non-linear frequency dispersion (the case of
quadratic dispersion) can be given in [16], expressed as
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f x; tð Þ ¼ m t � k1xð Þ � q tð Þ½ �exp i 2pf ct � k0xð Þ½ �; ð2Þ

where � denotes convolution, m tð Þ is a modulation envelope function related to the excitation signal, and q tð Þ is a Gaussian
function, expressed as,
q tð Þ ¼
ffiffiffiffiffiffiffiffiffi
a=p

p
exp �at2� �

; ð3Þ
where a ¼ 4ik2xð Þ�1, ki i ¼ 0;1;2ð Þ are the Taylor series coefficients of the wave number that expanded by a Taylor series in
the neighborhood of the center frequency 2pf c .s ¼ k1x, where s is defined as the ToA of wave packet. So the Eq. (2) can be
rewritten as
f s; tð Þ ¼ m t � sð Þ � q tð Þ½ �exp i2pf c � t � sð Þ þ i/0½ �; ð4Þ

where /0 ¼ 2pf c � k0=k1ð Þs. By using the Gabor pulse in Eq. (1) with initial phase / ¼ 0 as the excitation signal, the wave-
form expression in Eq. (4) is,
f s; tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g1 sð Þ � ig2 sð Þð Þ

q
exp � t � sð Þ2bg1 sð Þ

h i
exp i 2pf c � t � sð Þ þ g2 sð Þ � t � sð Þ2 þ /0

h in o
; ð5Þ
where b ¼ 1=2r2, gj sð Þ j ¼ 1;2ð Þ are the functions of ToA s, which contain unknown Taylor coefficients ki i ¼ 1;2ð Þ, given by
g1 sð Þ ¼ k21
k21 þ 4bsk2ð Þ2

; g2 sð Þ ¼ 4b2sk2k1
k21 þ 4bsk2ð Þ2

; ð6Þ
Eqs. (5) and (6) indicate the duration of thewave packet increaseswith time, while the amplitude decreases. The description is
consistent with the dispersive effect, and the real-valued waveform in the Eq. (5) of wave packet can be further simplified as
f s; tð Þ ¼ f A sð Þexp � t � sð Þ2bg1 sð Þ
h i

cos g2 sð Þ � t � sð Þ2 þ 2pf c � t � sð Þ þu sð Þ
h i

; ð7Þ
where the f A sð Þ is the amplitude of wave packet andu sð Þ is the phase, both of which are the function of ToA. However, in the
engineering application, the characteristics of flaw will affect the amplitude and may cause a phase variation. For simplifi-
cation, we consider these functions irrelevant to the ToA. Therefore, the parametric model of general non-linear frequency
dispersion wave packets can be expressed as
v H; tð Þ ¼ nexp �bd � t � sð Þ2
h i

cos 2pf c � c � t � sð Þ2 þ t � sð Þ
� �

þu
h i

; ð8Þ
whereH ¼ n d s c u½ � is the parameter vector, which contains all the parameters to describe the dispersive wave packets, the
amplitude n, the bandwidth impact factor d, the s, the phase u and the mode characteristic constant c. In addition, theoret-
ically, the d equals to g1 sð Þ, and c ¼ g2 sð Þ=2pf c . For simplifying the problem we consider the d and c as parameters irrelevant
to the s.

For describing the multiple packets in the signal, the Eq. (8) can be generalized as
y tð Þ ¼
XM
m¼1

v Hm; tð Þ; ð9Þ
where Hm ¼ nm dm sm cm um½ �, and the M denotes the wave packet number in the noiseless signal.

2.2. Mode identification

In a given frequency region, since the dispersion relation characteristic of each mode is different, the unique mode’s fea-
ture can be treated as the mode identification. In the model function of Eq. (8), the mode’s feature is parameterized as c.
Although we take the mode’s feature as parameter irrelevant to the TOA, the basic relation of c and Taylor series coefficients
k1 and k2 cannot be ignored. k1 relates to the group velocity vg , and can be expressed as k1 ¼ 1=vg . The k2 is a function of vg

and can be given by k2 ¼ �v 0
g= 2v2

g

� �
where the superscript ‘‘0” indicates differentiation with respect to frequency. Obviously,

as expressed in g2 sð Þ, the sign of the c is same as the product of k1 � k2.
By considering the sign of c, A0 and S0 modes in the low frequency-thickness product region generated by the same exci-

tation can be identified. For a visualized illustration, a typical group velocity for A0 and S0 modes versus the frequency-
thickness product in an aluminum plate is given in Fig. 1a. The group velocity of the A0 mode increases or almost remains
constant with the frequency-thickness product (under 2000 KHz �mm), but the one of S0 mode consistently decreases. That
is, k2 of A0 mode is non-positive, and the one of S0 mode is positive. Therefore, the mode can be identified by the sign of
parameter c.

For better explaining the role of c in featuring the dispersive wave packet, Fig. 1b shows a synthetic signal containing a S0
and an A0 wave packet. While Fig. 1c shows the corresponding time–frequency result obtained by WVD. It can be found,
higher-frequency propagates faster than the lower-frequency in the A0-mode while in the S0-mode the higher-frequency
propagates slower than the lower-frequency. This is the feature that parameterized by the parameter c.
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Fig. 1. (a) Group velocity dispersion curve for aluminum. (b) Synthetic signal contains S0 and A0 packets. (c) Time-frequency result obtained by WVD of the
synthetic signal in figure (b).
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In addition, once the k1 and k2 are given, the waveform with the ToA s in time-domain can be predicted. However, the
inverse problem is how to determine the k1, k2 from the parameters. Actually, the values of k1, k2 cannot be directly obtained
from the quantitative parameters, i.e. d, s and c. As mentioned above, d equals to g1 sð Þ, and c ¼ g2 sð Þ=2pf c , thus the Eq. (6)
can be written as,
d ¼ k21
k21 þ 4bsk2ð Þ2

; 2cpf c ¼
4b2sk2k1

k21 þ 4bsk2ð Þ2
; ð10Þ
then the relation between k1 and k2 can be given as
k2
k1

¼ 2pf cc
4b2sd

; ð11Þ
For the wave packets with the identical mode, the calculated quotient of k1, k2 should be same. Here, we define k2=k1 as the
mode identification constant (MIC) to classify wave packets.

2.3. Parameter estimation by the EM algorithm

The observed noisy signal with a number ofM superimposed dispersive wave packets can be represented by using Eq. (9),
x tð Þ ¼ y tð Þ þ n tð Þ ¼
XM
m¼1

v Hm; tð Þ þ n tð Þ; ð12Þ
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where x tð Þ is the noisy signal (or observed data), y tð Þ is the noiseless signal, and n tð Þ represents the noise (White Gaussian
noise, WGN). The expansion form of x tð Þ is,
x tð Þ ¼
XM
m¼1

nmexp �bdm � t � smð Þ2
h i

cos 2pf c � cm � t � smð Þ2 þ t � smð Þ
� �

þum

h i
þ n tð Þ: ð13Þ
Based on the model, the EM algorithms translate M-superimposed packets estimation into M-separated packets estima-
tions by using unobserved data sets. Consider the added WGN, we define the xm as the ‘‘unobserved data” set of the mth
wave packet, and the xm is
xm ¼ v hm; tð Þ þ n tð Þ; ð14Þ

The relation of linear transformation to the observed data is
x tð Þ ¼
XM
m¼1

xm tð Þ; ð15Þ
It has been proved that the maximum likelihood estimation (MLE) subjected to the data sets xm of the parameter vectors Hm

can be computed, and the MLE of Hm maximizes the probability density function (PDF) associated with the data sets xm. The
parameter vectors Hm can be estimated by EM algorithm [26,28].

By the Eq. (15), the expectation of current date set xm associated with Hm and observed data can be processed by,
x̂ kð Þ
m ¼ v h kð Þ

m

� �
þ cm � x�

XM
l¼1

v h kð Þ
l

� �" #
; ð16Þ
where
PM

m¼1cm ¼ 1, and kð Þ referred to the number of iteration in the EM algorithm. This is the E-step in EM algorithm, and
the maximization step (M-step) utilizes the expectation from E-step to maximize the PDF. In the M-step, the parameter vec-
tors are iterated by minimizing [23]
h kþ1ð Þ
m ¼ arghmmink x̂ kð Þ

m � v hmð Þ k2: ð17Þ

This approach based on EM algorithm for parameter estimation for the signal with M-superimposed dispersive packets in

WGN can be implemented as following steps:

Step 1. Based on the observed signal, guess the initial parameter vectors and form matrix as H 0ð Þ ¼ h 0ð Þ
1 ; h 0ð Þ

2 ; :::; h 0ð Þ
M

h i
, then

set k ¼ 0(iteration number) and kmax ¼ C where C is a nature number stands for the maximum iterations.
Step 2. (E-step) For m = 1,2,. . .,M, compute the expected packets
x̂ kð Þ
m ¼ v h kð Þ

m

� �
þ cm � x�

XM
l¼1

v h kð Þ
l

� � !
in the expression, cm ¼ 1=M, and v hlð Þ ¼ nle�dl� t�slð Þ2 cos 2pf c � cl � t � slð Þ2 þ t � slð Þ
� �

þul

h i
where f c is the center frequency

of the incident pulse.
Step 3. (M-step) For m = 1,2,. . .. M. Iterate the corresponding parameter vector

h kþ1ð Þ
m ¼ arghmmink x̂ kð Þ

m � v hmð Þ k2 and set h kð Þ
m ¼ h kþ1ð Þ

m . (In this step of our program, a MATLAB function, nlinfit.m is used.)

Step 4. Check convergence criteria and iterations: if k H kþ1ð Þ
m �H kð Þ

m k 6 tolerance or k P C, then stop.
Step 5. Set k ¼ kþ 1 and go to Step 2.
The above implementation introduces unnecessary calculation, because all parameters are invoked in every iteration cal-

culation. The convergence speed of each wave packet parameter vector is different, and the parameter vector which satisfies
the accuracy still needs to be calculated. To improve the computational efficiency, the space alternating generalized EM
(SAGE) algorithm can be employed, which convert the M-spike estimation problem into a ‘‘one spike at one time” estimation
problem [24,25]. It should be note that, for the same initial parameter vectors and observed date, the results obtained by the
algorithms are the same. In order to present the results more intuitively, in the following parts, we use the general EM algo-
rithm to process the data.
3. Verifications from synthetic and experimental data

In this section, the studies of synthetic and experimental data are performed. Firstly, for analyzing the convergence and
the ability when dealing with dispersive signals, we considered different SR and noise intensities. The experiment contains
two parts, the first is to study the impact of excitation pulse bandwidth on the accuracy of the reconstructed signals. The
second, the ability of mode identification and time locating are verified. Additionally, the group velocity curves are also esti-
mated with the parameters.
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3.1. Study of synthetic signals

Generally, the convergence and speed of EM algorithm are related to the SR and the sampling length of the signal. Here,
we used an excitation of Gabor pulse with the bandwidth factor of 3.25E�6 and center frequency of 360 KHz. For studying
the accuracy of results, we associated the dispersion relation as shown in Fig. 1a (the k1 for A0 and S0 are 3.21E�4 and
1.855E�4; the k2 are �2.55E�11 and 6.429E�12, respectively.) with the model function Eq. (8), and synthesized dispersive
signals of a 2 mm thick aluminum plate as shown in Fig. 2a. These signals synthesized with the same parameter vectors and
different SRs. In the study, the cases of single A0, S0 packet and A0-S0 overlapping packet were considered. Where, the S01/
A01 is the direct arrival of S0/A0 mode, and the S02/A02 is the wave packet reflected by the left boundary. In addition, WGN
with �30 dBW (using a MATLAB function wgn) is added to all signals. Fig. 2b and 2c shows the synthetic noiseless signal and
noisy signal, and the corresponding parameter vectors were listed in the Table 1 which be used for evaluating the accuracy of
results. By observing the signal, we guessed the initial parameter vectors listed in the Table 2. Fig. 3 plotted the convergence

history of the parameter c of S01 and the k H kþ1ð Þ
m �H kð Þ

m k, respectively. And all the parameter results were listed in the
Table 3.

By comparing the predefined parameters and the convergence results in Fig. 3b, we can find that, except the case of
SR = 1E6 Hz, all the results are desirable. The confusing results of the case SR = 1E6 Hz can be attributed to the effect of
over-fitting. That is, too small sampling length to represent the predefined model accurately. The tolerance results in Fig. 3b
indicate that the larger sampling length may lead to fewer iterations. However, the larger sampling length, the more com-
putation. To examine the relationship between them, we evaluated the tolerance threshold as 1E�8, the number of iterations
and the operation time were listed in Table 4 (the hardware information: CPU, Intel Core i7–5600U and RAM, 8 GB).

As an extended application in the modal conversion cases, we need to classify the wave packets base on the dispersion
relation characteristic, i.e. obtaining the MIC. The calculated results of the MIC in the case of SR = 10E6 Hz were shown in
Fig. 4. It should be noted that, the MIC of the wave packets with the identical mode approximate to the same value.

To further investigate the noise resistance performance, as shown in Fig. 5, we synthetized signals (SR = 10E6 Hz) which
added with WGN of different intensities (�25 dBW, �20 dBW, �15 dBW and �10 dBW). With the same procedures, param-
eter results of the overlapping packets, i.e. A01 and S02, were given in the Table 5. Except the case of �10 dBW, the other
values are well; and the results of the case of �10 dBW are acceptable. However, the acceptable results were carried out
by taking the values in the Table 2 as the initial parameter vectors, and it is almost impossible to guess appropriate initial
parameter vectors from the signal in the Fig. 5. In the case of �15 dBW (the area of 60–90 ls), the overlapping wave packets
are immersed in severe noise, but can be observed. Therefore, the appropriate initial parameter vectors can be guessed. Over-
all, the results reveal the good anti-noise capability of the method, but the signal noise should be limited to guess the appro-
priate initial parameters.
3.2. Study on the impact of excitation bandwidth on the signal reconstruction

The essence of the general non-linear frequency dispersion theory is to use a two order polynomial to express the disper-
sion relation of a narrowband signal. The accuracy mainly depends on the bandwidth and the central frequency of excitation
pulse. The relation between the group velocity and frequency is vg ¼ 1=k1 ¼ @x=@k, where the x is angular frequency and k
is the wave number, and v 0

g ¼ �2v2
gk2 [16]. Thus, with the conception of general non-linear frequency dispersion theory, the

group velocity curve near the center frequency can be approximately presented by a linear equation.
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Table 1
Parameter vectors used for synthesizing the signal.

S01 A01 S02 A02

n 0.964 0.677 0.888 0.438
d 0.930 0.459 0.79 0.192

s lsð Þ 41.74 72.23 78.84 136.43
c(104) 0.533 �1.043 0.854 �0.824
0.459u 2.3 1.9 1.8 0.7

Table 2
The guessed initial parameter vectors.

Wave packet 1 Wave packet 2 Wave packet 3 Wave packet 4

n 1 0.8 0.8 0.5
d 0.6 0.6 0.6 0.4

s lsð Þ 40 70 80 135
c(104) 1 1 0.8 0.8
u 1 1 1 1
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Table 3
Parameters of each packet after 400 iterations.

S01 A01

n d s c u n d s c u

SR = 10E6 0.961 0.904 41.71 0.507 2.25 0.674 0.452 72.30 �0.988 1.95
SR = 5E6 0.954 0.898 41.72 0.605 2.25 0.689 0.481 72.26 �1.072 1.98
SR = 2E6 0.970 0.909 41.78 0.511 2.41 0.699 0.449 72.38 �1.064 2.27
SR = 1E6 0.965 0.940 41.67 0.279 2.14 0.733 0.410 72.72 �1.015 3.06

S02 A02

n d s c u n d s c u

SR = 10E6 0.889 0.807 78.85 0.824 1.82 0.442 0.204 136.43 �0.821 0.71
SR = 5E6 0.899 0.810 78.85 0.793 1.84 0.451 0.194 136.47 �0.846 0.82
SR = 2E6 0.902 0.777 78.63 0.824 1.32 0.445 0.200 136.43 �0.814 0.72
SR = 1E6 0.940 0.936 78.35 0.645 0.61 0.400 0.176 136.41 �0.773 0.61

Table 4
Number of iterations and operation time.

SR = 10E6 Hz SR = 5E6 Hz SR = 2E6 Hz

Number of iterations 148 152 131
Operation time (s) 12.94 9.69 6.48
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As shown in Fig. 6a, the black line is the group velocity curve of S0 mode, and the color lines are the fitting results (least
square fitting) under different bandwidth conditions, and the center frequencies all are 300 KHz (a point near the v 00

g ¼ 0).
Here, we define the error (EA-F) to evaluate the difference between the actual value and the fitted value, and the EA-F is
EA-F ¼ 1�
R f 1
f 0

DT fð ÞDP fð ÞdfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR f 1
f 0

DT fð Þ2df R f 1
f 0

DP fð Þ2df
q ; ð18Þ
where the f is the frequency. Fig. 6b plots the EA-F vary with bandwidth. It can be found that, with the decrease of bandwidth,
the EA-F decreases. It is mainly due to the effect of higher-order terms, which decreases with the bandwidth’s decrease.

In order to verify the trend of the actual cases, we adopted excitation pulses with different bandwidth and compared the
first arrival wave packet in the measured signals and the reconstructed signals. As shown in Fig. 7a, a pair of piezoelectric
wafer (PZT) with thickness of 0.5 mm and diameter of 8 mm were bonded on the top surface of a 2 mm thick aluminum
plate. The distance between the wafers is 450 mm. As shown in Fig. 7b, an analog output card (PCI-1721) and a data acqui-
sition card (PCI-1714U) were used for signal output and input. The analog output card is connected to a power amplifier
(ATA-2022), and the amplified excitation signal powers the actuator. The control system and the digital band-pass filtering
(100 KHz–720 KHz) are implemented by a program of National Instrument LabVIEW. In the experimental system, the analog
output and data acquisition cards were synchronized to make sure that the excitation and the data acquisition started at the
same time.

The central frequency of all the excitation signals is 300 KHz, and the bandwidths were controlled by the r. The Fig. 8a
plots the waveforms of the excitation signals, and the Fig. 8b gives the corresponding results of Fourier transform (FT). With
the increase of r, the bandwidth decreases. The Fig. 8c plots the waveforms of first arrival (S0 mode) in the measured and
reconstructed signals. Similar as the definition of EA-F introduced above, the deviation DO-R between original signal and
reconstructed signal can be calculated as
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Fig. 5. Synthetic signals added with WGN of different intensities.



Table 5
Iteration results of synthetic signals with different intensities of noise.

A01 S02

n d s c u n d s c u

�25 dBW 0.718 0.465 72.51 �1.031 2.00 0.917 0.776 78.50 0.877 1.82
�20 dBW 0.635 0.417 72.12 �1.089 2.16 0.897 0.850 78.99 0.894 1.63
�15 dBW 0.630 0.537 72.24 �1.119 2.40 0.930 0.857 79.07 0.814 1.94
�10 dBW 0.587 0.348 72.44 �1.003 2.42 0.872 0.650 78.85 1.013 1.69
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Fig. 7. (a) Aluminum plate used for sampling Lamb wave signals. (b) Experimental setups.
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DO-R ¼ 1 �
R t1
t0
MO tð ÞMP tð ÞdtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR t1

t0
M0 tð Þ2dt R t1

t0
MP tð Þ2dt

q ; ð19Þ
The DO - R result of each experimental case is drawn in the Fig. 8d, which indicates that the narrower bandwidth means
the smaller deviation. This trend is similar to the analysis of the group velocity (as shown in the Fig. 6b), which means the
narrowband excitation pulse is necessary for the application of the general non-linear frequency dispersion theory.
3.3. Analysis of experimental data

As shown in Fig. 9, a 1.82 mm thick aluminum plate (type-2024 with material parameters, density: q ¼ 2700 kg=m3,
Young’s modulus: E = 73.1GPa, and the Poisson ratio is 0.33) with the in-plane dimension of 650 � 600 mm2 is used in
our experimental verification. Two identical piezoelectric wafers (PZT) used as actuator and receiver, were bonded to the
top surface of the sample. The thickness across the wafer is 0.5 mm, and the diameter is 10 mm. The excitation signal is
the same as which in the study of synthetic signals, i.e., a Gabor pulse with the bandwidth factor of 3.25e�6 and the center
frequency of 360 KHz.

The detected signal with the sampling rate of 10 MHz, containing wave packets with different amplitude, was shown in
Fig. 10. In the region of 0–120 ls, there are four obvious individual packets. In the region of 120–150 ls, a possible single
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packet appears, but the boundaries and the amplitude indicate that it may be an overlapping packet that consists of an S0
and an A0 packet. The region of 150–210 ls apparently contains three packets, and at least four packets should be in the
region of 210–300 ls. Based on the observed data, the guessed initial parameter vectors were obtained and be listed in
the Table 6.
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Table 6
The guessed initial parameter vectors to the detected signal.

P.1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13

n 65 45 52 50 30 30 50 30 35 50 25 20 20
d 0.9 0.6 0.8 0.75 0.65 0.3 0.5 0.3 0.5 0.4 0.2 0.3 0.2

s lsð Þ 28 50 80 95 140 145 155 170 195 225 240 245 265
c(104) 0.5 �0.9 0.9 0.9 1 �0.8 1.0 �0.7 1 1 �0.8 1 �0.5
u 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 7
Iteration result of the parameter vectors in the detected signal.

P.1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13

n 66.2 44.6 53.3 51.3 44.5 22.6 45.7 17.2 35.1 31.9 42.3 39.5 13.1
d 0.96 0.60 0.77 0.71 0.63 0.50 0.73 0.13 0.39 0.27 0.84 0.18 0.07

s lsð Þ 29.3 49.5 85.0 98.4 141.2 143.2 156.9 169.3 196.2 224.5 243.6 244.3 268.0
c(104) 0.28 �1.02 0.86 0.97 1.17 �1.58 1.19 �0.70 1.01 0.93 �0.08 0.83 �0.45
u 2.26 �4.04 8.61 8.63 3.28 �3.61 4.93 �3.79 2.30 �2.83 6.17 �3.37 7.27
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We obtained the parameter vectors listed in Table 7 after 1000 times of iteration. Fig. 11a shows the convergence history

of k H kþ1ð Þ
m �H kð Þ

m k. The reconstructed signal that utilizing the parameters in Table 7 is given in Fig. 11b, and we can note that
the calculated signal can represent the detected signal well. TheMIC results, i.e. shown in Fig. 11c, indicate the packets of 1, 3,
4, 5, 7, 9, 10 and 12 can be classified into the same mode, i.e. S0 mode; and the packets of 2, 6, 8 and 13 can be classified into
another mode, i.e. A0 mode. By evaluating the value of MIC, the mode type of packet 11 is uncertain; with the sign of k1 � k2,
packet 11 can be classified into A0 mode. Additionally, theMIC results of S0 mode concentrate better than the A0 mode. That
mainly because that under the same bandwidth, the higher order terms impact more obviously on the A0-mode than the S0-
mode.

To qualitatively analyze the results, we estimated the propagation path of each wave packet in the signal. As shown in
Fig. 12, taking the locations of actuator and receiver as point 0 and 1, the propagation paths and distances can be estimated
as follows, No.1 (0-1, 150 mm), No.2 (0-2-1, 450 mm), No.3 (0-3-1, 522.02 mm), No.4 (0-4-1, 750 mm), No.5 (0-5-1,
831.94 mm), No.6 (0-2-4-1, 1050 mm), No.7 (0-4-2-1, 1200 mm), No.8 (0-6-9-1, 1308.6 mm) and No.9 (0-7-8-1,
1308.6 mm). Due to the same distances along the path of No.8 and No.9, the actual number of paths is eight. With the dis-
tance from the path of No.1 and the ToA of first two packets (i.e. the direct arrival of S0 and A0), the group velocity can be
calculated as 5119.5 m/s and 3030.3 m/s. With the above information, we compared the estimation and calculation ToA
results as shown in Fig. 13a (where the sign(c) > 0 stands for the S0 mode and sign(c) < 0 stands for the A0 mode). However,
the error increases with time, and may be induced by the inaccurate group velocity caused by the system delay. The system
delay might be caused by two possible reasons. One is the delay between the analog output card and the data acquisition
card; the other is the delay between the analog output card and the power amplifier. Therefore, basing on the time difference
between the two wave packets (P1 and P3, P2 and P8) and their distance difference, we re-calculate the group velocity. The
group velocity for S0 is 5386.0 m/s and for A0 is 3105.3 m/s, respectively, and the comparison is shown in Fig. 13b where the
error between estimation and calculation mainly caused by the system delay, so we took the ToA of P1 in both estimation
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and calculation as the zero point. The comparison can be performed as Fig. 13c. All the results match well, except the ToA of
P6 and P13.

With the estimated group velocities (vg) of S0 and A0, the corrected ToA, and the relation between the v 0
g and k1, k2, the

corresponding group velocity curves around the center frequency can be estimated. From the MIC, i.e. Eq. (11), the k2 can be
expressed by
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k2 ¼ 2pf cc
4b2sd

k1; ð20Þ
And combine the relation of k2 ¼ �v 0
g= 2v2

g

� �
and k1 ¼ 1=vg , we can get
v 0
g ¼ �pf cc

b2sd
vg ; ð21Þ
Then the v 0
g of P1 and P2 can be obtained as �2.822E�4 and 5.516E�4 (unite: m/(Hz�mm�s)), respectively. Fig. 14a

plots the estimated and theoretical curves. In the available Frequency-thickness area (estimated by the half-peak of
power spectral density (PSD) of the excitation signal), the two curves are well coincident, and the EA-F of S0 and A0
are 0.17E�4 and 9.3E�4, respectively. The Fig. 14b and c plot the details of the curves. Additionally, the fitted straight
lines which are based on the data of the theoretical curves are also given, and the v 0

g of the lines are �3.061E�4 (S0)
and 5.517E�4 (A0), respectively. For the A0 mode, the difference mainly is the velocity; and the estimation of v 0

g per-
forms much better than the S0.

By analyzing the data above, the conclusions can be derived as follows. (1) For the single packet (i.e. P1, P2, P3, P4, P9 and
P10 in the signal), both the results of ToA and MIC are desirable. (2) For the case that two wave packets almost completely
overlapped (i.e. the case of P5 + P6), the MIC and the sign of c can be available, but the ToA may be disturbed. (3) For the
overlapping packets with the bigger time difference (i.e. the case of P7 + P8), both credible ToA and MIC can be obtained.
(4) With the increase of overlapping wave packets (i.e. the case of P11 + P12 + P13), the MIC of some/all packets are unreli-
able. (5) The estimated group velocity curves can present the dispersion relation in a finite area which near the center
frequency.
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4. Conclusion

In this study, we developed an approach based on EM algorithm for Lamb wave signal processing. By using the narrow-
band Gabor pulse as the excitation signal, the model function of the dispersive waveform was derived. With the obtained
parameters, the MIC for the wave packet classification can be further calculated. In the study of synthetic signals, the con-
vergence and speed were examined. The accuracy and feasibility of the parameters were further discussed by the
experiments.

This technique can be used to extract ToA and mode information from the wave packets with unknown dispersion rela-
tion. The extracting of ToA in wave packets is the fundamental step for Lamb wave inspection; the classification of wave
packets can make it convenient for Lamb wave signals analyzing. It should be noted that, in the cases of anisotropic materials
the dispersive time–frequency trends vary constantly, and using a specific MIC to classify the wave packets is inaccurate.
Using the approach proposed several merits in SHM/NDE for damage locating and identification can be summarized as:
(1) The ToA is an approximated constant which can provide a high resolution to locate damage. (2) The adoption of the exci-
tation frequency region is relaxed, i.e. the excitation frequency in a non-dispersive region is not essential. (3) Wave packet
modes can be classified byMIC, which can avoid the uncertainty caused by multimode in the process of signal analysis. Addi-
tionally, the current approach may need much calculation, and the risk of over-fitting may produce a confused the results.
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