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A B S T R A C T   

Existing stress evaluation methods based on the Lamb waves mainly use the time of flight (TOF) or velocity as the 
means of stress measurement. However, these two features used for stress measurement are sometimes insen-
sitive to stress changes. Therefore, it is essential to explore other features that are potentially more sensitive to 
stress changes. The time–frequency spectrums of signals containing stress information have not yet been fully 
studied for stress evaluation. This paper proposes a uniaxial stress measurement method based on two time-
–frequency characteristics of Lamb waves, i.e., the slope of time–frequency spectrum distribution (TFSD) and 
pulse width impact factor. Theoretical expressions of the slope of TFSD are derived. The impacts of excitation 
signal parameters (i.e., bandwidth and center frequency) and noise on two time–frequency characteristics were 
discussed. Then, the fitting results of the finite element simulation are consistent with the results predicted by 
theory. To experimentally validate the proposed theory, aluminum plate specimens with two different types of 
adhesives were used for the experiment. According to the experimental stress measurement expression, three 
uniaxial tensile tests in the range of 35–95 MPa were conducted on the identical batch of specimens. The 
maximum standard deviation of multiple measured stress based on pulse width impact factor is 3.76433 MPa, 
demonstrating excellent measurement stability. The maximum standard deviation of multiple measured stress 
based on the slope of TFSD is 9.12492 MPa. It shows that the proposed methodology is a promising alternative 
for stress measurement.   

1. Introduction 

Numerous large-scale engineering equipment are subjected to 
cyclical loads and harsh service environments during operation. Un-
dergoing long-term service, critical structural components will experi-
ence stress concentration and redistribution. If the stress level surpasses 
the intended design value or fatigue accumulates to a critical level, it can 
lead to macroscopic cracks and potentially catastrophic failures. These 
failures could manifest suddenly as fractures in aircraft wings, leakages 
in oil or natural gas pipelines, deformations in high-pressure vessels, or 
cracks in high-speed rail infrastructure [1–4]. Therefore, accurate stress 
measurement and characterization techniques in structural components 
are crucial to ensuring the safety of human life and property [5,6]. After 
many years of development, two categories of stress detection methods 
have been formed-destructive and nondestructive methods [7,8]. 

Without causing additional damage, the nondestructive methods 
implement stress measurements based on the variation of stress-related 
physical parameters. Among the nondestructive methods, ultrasound- 
based stress measurement is one of the most attractive methods 
because of its advantages of directional transmission, fast detection, and 
wide measurement range [9]. 

The ultrasonic stress measurement methods have rapidly developed 
since the acoustoelastic effect of bulk waves was first proposed and 
experimentally verified by Hughes and Kelly [10]. They implemented 
Murnaghan’s theory to describe the nonlinear changes in the structure’s 
constitutive relation under static loading to study the dependence of 
ultrasonic wave velocity on the applied load. The ultrasonic wave ve-
locity was found to be linearly related to the load in the linear elasticity 
range [11]. Therefore, the time-of-flight (TOF) or velocity of the ultra-
sonic wave is commonly used as a feature for stress measurement 
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[12,13]. Among approaches using bulk waves, longitudinal critically 
refracted (LCR) wave is one of the most popular stress measurement 
methods due to the highest sensitivity to uniaxial stress [14–16]. He 
et al. [17] placed a transmitter transducer and two receiver transducers 
on the steel plate to measure the average stress in a small region based 
on the TOF difference of the LCR waves obtained from the experiment. 
However, TOF and velocity are only two features from the plentiful 
information in the received signals. These two features are known to be 
easily distorted by environmental factors (e.g., noise), resulting in low 
detection reliability. Spectrum analysis appeared at the right time to 
enrich ultrasonic stress detection methods, which can provide the 
frequency-domain characteristics of signals [18,19]. Li et al. indicated 
the linear relationship between the inverse of characteristic frequency 
(CF) and uniaxial stress. Using the calibrated parameters, the uniaxial 
stress in a steel block has been evaluated by extracting the CF from the 
pulse-echo signals of shear waves [20]. However, with the growing 
demand for online stress monitoring in engineering, many researchers 
have focused their attention on Lamb waves in recent years to expand 
the evaluation range and enhance the accuracy of ultrasonic stress 
estimation. 

Husson [21] first introduced acoustoelastic theory into Lamb waves 
to investigate the dependence of group or phase velocity on applied 
stress. Gandhi et al. [22,23] derived the acoustoelastic equation for 
Lamb waves under biaxial stress. They discovered the linear correlation 
between the phase velocity changes and uniaxial stress. Meanwhile, the 
linear relationship was verified by simulation and experiment, which 
provides theoretical guidance for Lamb waves stress monitoring based 
on the phase velocity changes [24,25]. Shi adopted the TOF ratio of A0 
wave and S0 wave at a single frequency as the feature to evaluate stress. 
This strategy efficiently eliminates the impact of the distance between 
pitch-catch transducers on the stress calibration coefficient [26]. Shi et 
al. [27] proposed a method for estimating arbitrary biaxial stress by 
measuring the changes in phase velocity and conducted an experimental 
study based on piezoelectric transducer arrays. Pei [28] analyzed the 
effect of applied stress on high-order Lamb waves. Compared to other 
modes, the S1 mode demonstrates a higher sensitivity to stress in its 
group velocity change, enhancing the ability for stress measurement. 

For complex structures with arbitrary cross-sections, theoretical 
methods cannot obtain the dispersion curves under varied stress levels. 
Researchers established a semi-analytical finite element method to 
obtain the relationship between ultrasonic velocity and stress for 
selecting the mode-frequency pair most sensitive to stress [29–34]. To 
avoid the influence of human factors on signal feature extraction, Lim et 
al. [35] directly used the time-domain response as input to a convolu-
tional neural network to estimate dynamic stress. 

As seen from the above research, existing stress evaluation methods 
utilizing the Lamb waves primarily rely on TOF or velocity for stress 
measurement. However, these two features used for stress evaluation 
exhibit limited sensitivities to stress [28]. Therefore, it is essential to 
explore other features that are potentially more sensitive to stress 
changes. The time–frequency domain of the signal also contains much 
useful information. Pai et al. [36] indicated that the time-varying fre-
quencies can be used to distinguish whether the Lamb waves propa-
gating inside a flat plate are symmetric or antisymmetric modes. In 
addition, they found that the interaction of two different waves leads to 
peaks in the time–frequency curve, a feature that can be used for damage 
detection. Hua et al. [37] extracted frequency-velocity ridge from time- 
frequency spectrums and used ridge curvature as a damage index for 
corrosion damage which is independent of distance. Moreover, they also 
proposed the difference coefficient between the time–frequency images 
as an effective damage index for damage identification, free of reference 
signals. Rizvi et al. [38] proposed three time–frequency damage indices, 
namely the energy concentration of the time–frequency distribution, 
time–frequency flux, and instantaneous frequency. Based on these three 
time–frequency indices, they trained a regression model to predict crack 
size precisely. In addition to damage information, the time–frequency 

spectrums of the signals also contain stress information. Thus, this paper 
explores a stress measurement method based on multiple time-
–frequency features to enrich stress monitoring strategy and enhance the 
reliability of the detection results. The remaining sections of this paper 
are structured as follows: Firstly, the dispersive wave packets model is 
introduced, which is the theoretical basis for calculating the time-
–frequency characteristics. Then, the theoretical derivation of time-
–frequency characteristics of the response signal is given. At the same 
time, The impacts of excitation signal parameters (i.e., bandwidth and 
center frequency) and noise on two time–frequency characteristics were 
discussed. Subsequently, a finite element model is established to obtain 
ideal Lamb wave response signals without the effects of adhesive or 
noise. Then, aluminum plate specimens with two different types of ad-
hesives were used for the experiment. The effect of adhesive on stress 
measurement factor is analyzed. Simultaneously, three uniaxial tensile 
tests in the range of 35–95 MPa were conducted on the identical batch of 
specimens to verify the feasibility of the proposed approach. Ultimately, 
the conclusion and future studies related to this method are pointed out. 

2. Theoretical background 

2.1. Dispersive wave packets model 

Using the Gabor pulse as the excitation signal and considering the 
quadratic dispersion, Jia et al. [39] provided a theoretical model 
comprising five parameters to describe wave packets in dispersive 
guided wave propagation. These parameters depict diverse signal 
characteristics, and subsequently in the paper, they are proposed to be 
applied to stress evaluation. 

First, this theoretical model is briefly reviewed. When the excitation 
signal generates from the origin, x = 0, this time-domain wave packets 
can be depicted by 

f(t) = m(t)eiω0 t , (1)  

where m(t) is the envelope function of an excitation signal, and ω0 
represents the specific frequency of the excitation signal. When a single 
mode wave travels to a position x, the waveform expression for this 1D 
propagation is shown as 

f(x, t) =
1
2π

∫ ∞

− ∞
M(ω − ω0)ei(ωt− kx)dω , (2)  

where M(ω) =
∫∞
− ∞ m(t)e− iωtdt, ω is angular frequency, k represents the 

wavenumber and is a function of ω for this single mode wave. This 
function represents the dispersion relation, denoted by the symbol K(ω)

in this paper. For describing the wave propagation, the dispersion 
relation is approximately replaced by Taylor expansion near the specific 
frequency ω0 

k ≡ K(ω) = k0 + k1(ω − ω0)+ k2(ω − ω0)
2
+⋯ , (3)  

where kj(j = 0,1, 2) represent the coefficients in front of the Taylor 
expansion terms of the wavenumber near the specific frequency ω0. To 
describe the nonlinear dispersion effect of wave propagation, the Taylor 
expansion is retained in the second-order approximation solution. Ac-
cording to Taylor expansion theory, we know 1/k1 = dω/dk, which is 
the expression of group velocity, represented as cg. By employing cg as a 
variable, the expression for k2 becomes − ćg/(2c2

g ), where the prime 
signifies the derivative with respect to ω. Then, substituting Equation (3) 
into Equation (2) yields 

f(x, t) = 1/(2π) × e− ik0x
∫ ∞

− ∞

[
M(ω − ω0)e− ik1x(ω− ω0)

]

×
[
e− ik2x(ω− ω0)

2
]
ejωtdω.

(4) 

Equation (4) can be understood as the inverse Fourier transform 

H. Cui et al.                                                                                                                                                                                                                                      



Ultrasonics 142 (2024) 107393

3

(IFT) of the product of two Fourier transforms, distinguished by the 
square brackets in the integral. 

The IFT of the expression in the first square brackets is m(t − k1x) and 
the IFT of the expression in the second square brackets is 

q(t) =
̅̅̅̅̅̅̅̅
α/π

√
exp(− αt2) , (5)  

where α = (4ik2x)− 1. Applying the convolution theory, the Equation (4) 
becomes 

f(x, t) = [m(t − k1x) ⊗ q(t) ]exp[i(ω0t − k0x) ] , (6)  

where ⊗ represents convolution. Let τ = k1x, where τ denotes the TOF of 
the wave packet. Therefore, the Equation (6) can be further written as 

f(τ, t) = [m(t − τ) ⊗ q(t)]exp[iω0⋅(t − τ) + iϕʹ] , (7)  

where ϕʹ = (ω0 − k0/k1)τ. 
In this study, the modulated Gaussian pulse with a center frequency 

2πfc was selected as the excitation signal 

e(t) = Aexp(− t2/2s2)cos(2πfct) , (8)  

where the A represents the amplitude, s represents the pulse width 
factor, which determines the time span of the pulse waveform. The se-
lection of ω0 is generally made to match a point where there is high wave 
energy intensity in the excitation signal. The frequency of the high wave 
energy intensity point in this excitation signal is the center frequency. 
Therefore, specific frequency ω0 equals to 2πfc, and m(t) in the Equation 
(1) becomes the envelope function of e(t). The expression of m(t) can be 
written as 

m(t) = Aexp(− t2/2s2). (9) 

Substituting the expressions of ω0 and m(t) into the Equation (7), the 
time-domain waveform expression can be derived as 

f(τ, t) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(g1(τ) − ig2(τ)/β)

√
exp

[
− (t − τ)2βg1(τ)

]
exp

{
i
[
2πfc⋅(t − τ)

+ g2(τ)⋅(t − τ)2
+ ϕʹ

] }
,

(10) 

where β = 1/2s2, g1(τ) and g2(τ) are the functions of the propagation 
time τ, containing the expansion coefficients kj(j = 1, 2). The mathe-
matic expressions of gj(τ)(j = 1,2) are 

g1(τ) = k2
1/(k

2
1 + (4βτk2)

2
); g2(τ) = 4β2τk2k1/(k2

1 + (4βτk2)
2
). (11) 

We can see that the amplitude and phase in time-domain waveform 
expression are the function of the propagation time τ. To simplify the 
analysis, amplitude and phase are considered as TOF-independent 
constants. Therefore, a parametric wave packet model considering 
nonlinear dispersion can finally be obtained 

υ(Θ; t) = ξexp
[
− βδ⋅(t − τ)2

]
cos

[
2πfc⋅

(
c⋅(t − τ)2

+ (t − τ)
)
+ φ

]
,

(12)  

where Θ = [ξδτ c φ]. All the parameters for describing the dispersive 
waveform are included in the vector Θ, where ξ represents the ampli-
tude, δ represents the pulse width impact factor, τ represents the TOF, c 
represents the mode characteristic constant, and φ represents the phase. 
Here, the expression of c equals to g2(τ)/2πfc and δ = g1(τ). Thus, the 
Equation (11) can be rewritten as 

δ = k2
1/(k

2
1 + (4βτk2)

2
);2cπfc = 4β2τk2k1/(k2

1 + (4βτk2)
2
). (13) 

The specific physical meaning of δ will be explained in the next 
section. 

2.2. Theoretical derivation of time–frequency characteristics of response 
signal 

2.2.1. Time-frequency characteristics of the received signals 
The time–frequency analysis technology maps the time-domain sig-

nals to the time–frequency domain, comprehensively reflecting the 
time–frequency characteristics of the time-varying signals. For stress 
measurement, previous work has studied the influence of stress on the 
time-domain characteristics (amplitude, phase, and TOF) of Lamb 
waves. In addition, some research has also explored the impact of stress 
on the frequency-domain characteristics of Lamb waves. However, these 
single-dimensional analyses, such as time-domain analysis or frequency- 
domain analysis, cannot fully utilize the information in the Lamb waves. 
Time-frequency analysis, on the other hand, can reflect the energy dis-
tribution with respect to both frequency and time. Therefore, exploring 
the relationship between the features of the time–frequency domain and 
stress is meaningful. 

Two time–frequency characteristics of Lamb wave signals are 
introduced for stress measurement in this paper. To more intuitively 
display their physical meaning, a synthetic time-domain signal with a 
propagation distance of 300 mm at 100 MPa uniaxial stress can be ob-
tained from the dispersive wave packet model (illustrated in Fig. 1 (a)). 
By employing the Wigner-Ville transformation, one can obtain the 
time–frequency spectrum of the signal. 

Two essential features (i.e., the TFSD and the pulse width) in the 
time–frequency domain of the Lamb waves are shown in Fig. 1 (b). 
Among them, the dash-dotted line represents the distribution of fre-
quency with time, whose slope at center frequency denotes how fast the 
frequency changes with time. We call it the slope of TFSD. A symbol H(σ)
is used to represent the slope of TFSD. Here, σ represents stress. Another 
time–frequency characteristic is pulse width, which is represented by a 
dashed line in Fig. 1 (b) and denotes the time span of the signal. The 
wave packet parameter δ(σ) obtained by the dispersive wave packets 
model is called the pulse width impact factor. The expansion of Lamb 
wave pulse width caused by dispersion is represented by δ(σ). Therefore, 

Fig. 1. Time-Frequency feature of Lamb waves: (a) time-domain waveform at 
100 MPa, (b) time–frequency result obtained by Wigner-Ville transformation of 
the time-domain waveform in figure (a). 
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this paper expects to use H(σ) and δ(σ) to achieve stress measurement in 
this paper. 

2.2.2. Theoretical derivation of the slope of TFSD 
To calculate the value of H(σ) at each stress level, the theoretical 

expression of the slope of TFSD needs to be derived. Firstly, we must 
derive the analytical expression of TFSD. This paper defines the curve 
formed by connecting the TOF corresponding to the highest energy 
value of each frequency component as the affine curve. The affine curve 
completely coincides with the TFSD. When an A0 mode travels to the 
position x, the analytical expression of the affine curve can be obtained 
by mapping the group velocity dispersion curve 

t = x/vg(ω) , (14)  

where vg(ω) represents the group velocity dispersion curve of the A0 
mode, which depicts the relationship of group velocity with frequency. 
Fig. 2 is a schematic diagram illustrating how an affine curve is obtained 
by mapping the group velocity dispersion curve. The affine curve is a 
function of time and frequency, while the group velocity dispersion 
curve is a function of velocity and frequency. From Fig. 2, it can be 
observed that for a given frequency point ω, we can calculate the cor-
responding time point t using t = x/vg. Thus, by applying an affine 
transformation to each frequency point on the group velocity, we can 
obtain the entire affine curve. Therefore, if we know the expression of 
the group velocity dispersion curve vg(ω), we can obtain the analytical 
expression of the affine curve through affine transformation. In 
conclusion, to determine the analytical expression of the affine curve, it 
is necessary to first understand the expression of the group velocity 
dispersion curve, and then use the affine transformation relationship to 
convert the relationship between frequency and velocity into a rela-
tionship between frequency and time. 

This paper assumes that the group velocity curve of the A0 wave 
within the available frequency range (AFR) can be approximately pre-
sented by a linear fitting equation (as shown in Fig. 3 (b)) 

vg(ω) = v́gω+ b , (15)  

where v́g is the slope of the linear equation. Substituting Equation (15) 
into Equation (14) yields the expression of the affine curve as 

ω = 1/vʹ
g(x/t − b). (16) 

Let τ be the TOF of the A0 wave. The slope of the affine curve at t = τ 
represents the slope of TFSD. Therefore, by differentiating ω with 
respect to t, one can derive the expression for H(σ), 

H(σ) = dω/dt| t=τ = − vgc/(τvʹ
g) , (17)  

where vgc represents the group velocity of the A0 wave with the center 
frequency component. The relationship between k1 and k2 can be 
derived from the Equation (13) 

k2 = (2πfcc)/(4β2τδ) × k1. (18) 

By combining the relation of k1 = (vgc)
− 1; k2 = − v́g/(2 ∗ v2

gc), we can 
obtain 

v́g = − (πfcc)/(β2τδ) × vgc. (19) 

By substituting the above equation into Equation (17), the expression 
of H(σ) can be further obtained 

H(σ) = (β2δ)/(πfcc). (20) 

It can be found that the value of H(σ) is determined by the wave 
packet parameters δ and c. Therefore, combining the dispersive wave 
packet model with a parameter estimation algorithm can quickly obtain 
the value of H(σ) from time-domain Lamb wave packet. 

This paper considers the zero-stress state as the initial state. There-
fore, the variation of the slope of TFSD ΔH(σ) induced by stress equals 
H(σ) under every stress level minus H(σ = 0) of the initial state. The 
expression of ΔH(σ) is as follows 

ΔH(σ) = (H(σ) − H(σ = 0)) , (21) 

We use ΔH(σ) as a stress measurement factor and calibrate the linear 
equation between ΔH(σ) and stress. 

In addition, the expression of the pulse width impact factor δ(σ) has 
been shown in Equation (13). Which is 

δ(σ) = k2
1/(k

2
1 + (4βτk2)

2
) (22) 

It can be seen that δ(σ) is a function of the Taylor expansion co-
efficients k1 and k2. Therefore, as long as we know k1 and k2, the theo-
retical value of δ(σ) can be calculated. The variation of pulse width 
impact factor Δδ(σ) induced by stress can be obtained by δ(σ) under 
every stress level minus δ(σ = 0) of the initial state 

Δδ(σ) = (δ(σ) − δ(σ = 0)). (23) 

This paper selects Δδ(σ) as another stress measurement factor. The 
linear correlation of Δδ(σ) with stress is also calibrated in the next part. 

3. Theoretical calculation and discussion of the time–frequency 
characteristics 

3.1. Theoretical calculation method of time–frequency characteristics 

To obtain the theoretical time–frequency characteristics proposed in 

Fig. 2. Affine transformation diagram: (a) affine curve, (b) group velocity dispersion curve.  
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the previous section, the group velocity curves under various stress 
conditions need to be acquired. The analytical expressions to predict the 
impact of uniaxial load on velocity were reported in detail by Gandhi et 
al. [23]. The dispersion relationship can be written as 

D11G1cot(γα1)+D13G3cot(γα3)+D15G5cot(γα5) = 0 , (24)  

and 

D11G1tan(γα1)+D13G3tan(γα3)+D15G5tan(γα5) = 0. (25) 

The Equation (24) represents symmetric modes and the Equation 
(25) is for antisymmetric modes. In the above two equations, γ =

ωd/(2c), where ω represents the angular frequency, d represents the 
plate thickness, and c denotes the phase velocity along the x1 axis. The 
symbols αi(i = 1, 3,5) represent the ratio of x3 to x1 wavenumbers. The 
parameters Gm are given as 

G1 = D23D35 − D33D25 , G3 = D31D25 − D21D35,

G5 = D21D33 − D31D23.
(26) 

The expressions of parameters Dij(i = 1,2, 3; j = 1, 2...6) are given in 
Ref [23]. These two equations can be solved numerically to calculate the 
dispersion curves under different stress levels. The research object of this 
paper is only the antisymmetric fundamental mode, namely the A0 
mode. Therefore, the dispersion curves of A0 mode Lamb waves under 
different stress states are presented in Fig. 3 (a). Taking an excitation 
signal with a central frequency of 50 KHz as an example, the pulse width 
factor of the excitation signal is s = 20E − 6. the power spectral density 
(PSD) of the excitation signal is also shown in Fig. 3 (a). The frequency 
interval [f1, f2] (shown in Fig. 3 (a)) corresponding to the half-maximum 
of PSD is defined as the available frequency range (AFR). Fig. 3 (b) is a 
zoomed-in view of the AFR, showing the group velocity curve in the 
AFR. It is found that group velocity curve changes accompanying the 
increment of stress. A linear equation (i.e., vg = vʹ

gω + b) is used to 
approximate the group velocity curve of A0 mode in the AFR. 

Furthermore, the Taylor expansion coefficients k1 and k2 can be ob-
tained. Taking the dispersion curve at 20 MPa as an illustration, it is 
evident from Fig. 3 (c) that the linear fitted line adequately approxi-
mates the dispersion curve in the AFR. In Fig. 3 (d), the fitted lines from 
0 to 100 MPa with a 20 MPa interval (Six fitted lines in total) are given to 
characterize the dispersion curves in the AFR. The calculation results 
indicate a regular change in the fitted lines with the increment of stress. 
It means that parameters calculated based on fitting coefficients may 
also change regularly accompanying the increment of stress. 

To calculate theoretical values of H(σ) and δ(σ), we need to obtain 
the parameters v́g, vgc, τ, k1 and k2 under all stress levels. Among them, v́g 

can be obtained from the linear equation vg = v́gω + b. Parameter vgc is 
the group velocity of the central frequency component. Parameter τ is 
the TOF of the central frequency component, which can be obtained by 
the expression τ = x/vgc. Parameters k1 and k2 can be obtained by 
combining the relation of k1 = (vgc)

− 1; k2 = − v́g/(2 ∗ v2
gc). Substituting 

the parameters v́g, vgc and τ into the Equation (17) can obtain the slope of 
the TFSD H(σ) under all stress levels. Substituting the parameters k1 and 
k2 into Equation (22) can obtain pulse width impact factor δ(σ) under all 
stress levels. From the above calculation process, it can be observed that 
parameters v́g, vgc, τ, k1 and k2 are influenced by the frequency range and 
central frequency of the excitation signal. Therefore, the next part will 
discuss the impact of the bandwidth and central frequency of the exci-
tation signal on the accuracy of stress evaluation based on two time-
–frequency characteristics proposed in this paper. 

3.2. The impact of the excitation signal 

The accuracy of stress evaluation based on the two time–frequency 
characteristics is influenced by the parameters of the excitation signal, 
including the bandwidth and center frequency of the excitation signal. 

Fig. 3. The method for calculating theoretical values of all parameters: (a) the dispersion curves of A0 mode Lamb waves under different stress states and PSD, (b) a 
magnified view of the AFR, (c) a fitted line of the dispersion curve in the AFR at 20 MPa, (d) all fitted lines of the dispersion curve within the AFR at 0 MPa, 20 MPa, 
40 MPa, 60 MPa, 80 MPa, and 100 MPa. 
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3.2.1. The impact of excitation signal bandwidth on the accuracy of stress 
evaluation 

The bandwidth of the excitation signal is controlled by the parameter 
s (pulse width factor). To investigate the influence of the excitation 
signal’s bandwidth on the accuracy of stress evaluation based on time-
–frequency characteristics, four excitation signals with a center fre-
quency of 50 KHz are studied. Their pulse width factors are s = 15E − 6, 
s = 20E − 6, s = 25E − 6, and s = 30E − 6 respectively. Fig. 4 shows the 
power spectra density of these four excitation signals. It can be observed 
that with the increase in the pulse width factor s, the bandwidth of the 
excitation signal gradually decreases. 

For excitation signals with different bandwidths, the two stress 
evaluation factors ΔH(σ) and Δδ(σ) under different stresses are calcu-
lated using the method described in the previous section. As shown in 
Fig. 5 (a) and (b), both stress measurement factors exhibit a linear 
relationship with stress even when using excitation signals with 
different bandwidths. The accuracy of stress evaluation based on time-
–frequency characteristics is defined as ΔH(σ)/MPa/H(σ = 0)
(Δδ(σ)/MPa/δ(σ = 0)). The relationship between the accuracy of stress 
evaluation based on two time–frequency characteristics and the band-
width of the excitation signal is shown in Fig. 5 (c) and (d). It can be 
observed that the accuracy of the stress measurement factor ΔH(σ) is not 
affected by the bandwidth of the excitation signal. For the stress mea-
surement factor Δδ(σ), the accuracy of stress evaluation decreases as the 
bandwidth of the excitation signal decreases. Therefore, increasing the 
bandwidth of the excitation signal can improve the accuracy of stress 
evaluation based on the stress evaluation factor Δδ(σ). 

3.2.2. The impact of excitation signal center frequency on the accuracy of 
stress evaluation 

From Fig. 3 (a), it can be seen that for excitation signals with the 
same frequency range, the dispersion degree of the propagating wave 
gradually weakens as the center frequency of the excitation signal in-
creases. Therefore, to discuss the influence of the propagating wave 
dispersion degree on the accuracy of stress evaluation based on two 
time–frequency characteristics. This section studied eight excitation 
signals with the same bandwidth (i.e., s = 20E − 6), centered at fre-
quencies ranging from 50 KHz to 190 KHz with a step size of 20 KHz. 

Fig. 6 (a) and (b) display the two stress evaluation factors ΔH(σ) and 
Δδ(σ) under different stresses. It can be observed that even when the 
excitation signals have different center frequencies, both time-
–frequency characteristics still exhibit a linear relationship with stress. 
Following the definition in the previous section, the accuracy of stress 
evaluation based on two time–frequency characteristics is calculated. 

The relationship between the accuracy of stress evaluation based on two 
time–frequency characteristics and the center frequency of the excita-
tion signal is shown in Fig. 6 (c) and (d). The accuracy of stress evalu-
ation based on both time–frequency characteristics decreases as the 
dispersion degree of the propagating wave weakens. 

Compared to ΔH(σ), the accuracy of stress evaluation using Δδ(σ) as 
a stress measurement factor is more severely affected by dispersion 
degree. Therefore, as the center frequency of the excitation signal in-
creases, the bandwidth should be expanded to ensure the accuracy of 
stress evaluation when using Δδ(σ) as a stress measurement factor. 

In addition, for the low dispersion degree of the propagating wave, 
the time–frequency characteristics proposed in this paper can still be 
used for stress evaluation. However, it is impractical in experiments due 
to the minimal variations in the two time–frequency characteristics. 
Therefore, in practical applications, choosing excitation signals that can 
generate a propagating wave with a higher dispersion degree is advis-
able. For example, within 200 KHz, the A0 mode can be selected, while 
above 300 KHz, the S0 mode can be chosen. 

3.3. The impact of noise on the linearity of proposed time–frequency 
characteristics 

To analyze the influence of noise on the stress evaluation based on 
two time–frequency characteristics, it is necessary to obtain time- 
domain signals with different intensity noise. Time-domain signals 
with noise are obtained by overlaying theoretical time-domain wave-
forms with Gaussian white noise. Theoretical time-domain waveforms 
under different stress levels can be reconstructed by combining the pa-
rameters (τ, k1 and k2) with the dispersive wave packet model (Equation 
(11) and Equation (12)). The parameters τ, k1 and k2 are listed in 
Table 1. White Gaussian noise (WGN) can be obtained by a MATLAB 
function wgn. This paper investigates the impacts of five types of noise 
intensities (− 20 dB, − 25 dB, − 30 dB, − 35 dB, and − 40 dB) on the stress 
evaluation based on two time–frequency characteristics proposed in this 
paper. Fig. 7 shows the signals under zero stress, which are added with 
WGN of different intensities. 

Time-domain signals with noise can be represented by the dispersive 
wave packets model (i.e., Equation (12)). Thus, combining the expect-
ation–maximization (EM) algorithm with the dispersive wave packets 
model allows for the rapid acquisition of the wave packet parameter 
vector Θ = [ξδτcφ] of Lamb wave signals under all stress levels. 

The EM algorithm is implemented through two alternating steps. The 
first step is to calculate the probability distribution of hidden variables 
based on the initial estimates. That is the E-step; the second step is to 
utilize the probability distribution obtained in the E-step to maximize 
the likelihood function, which generates a new parameter vector. That is 
the M-step. Then, the parameters from the M-step are used to update the 
initial parameters in the E-step. After cyclic iteration, the estimated 
values of the parameter vector can be obtained. The specific imple-
mentation steps can be referenced in Jia’s work [39]. Once the param-
eters corresponding to the wave packets at every stress state are 
extracted, the pulse width impact factor δ(σ) and the slope of TFSD are 
naturally obtained according to the Equations (22) and (20). 

Generate twenty sets of Gaussian white noise with the same noise 
intensity randomly, and superimpose them on the theoretical recon-
structed signals under any stress to form twenty signals. Thus, under 
each stress, twenty noisy signals are used to calculate twenty stress 
measurement factors ΔH(σ) or Δδ(σ). The mean and deviation of the 
twenty sets of ΔH(σ) (Δδ(σ)) are calculated. Repeat the above calcula-
tion process for all stresses to obtain the influence of this noise intensity 
on the accuracy of stress evaluation using the two time–frequency 
characteristics. Thus, the impacts of different noise intensities on the 
stress evaluation using the two time–frequency characteristics are 
shown in Fig. 8. 

In Fig. 8, the symbol represents the mean of twenty ΔH(σ) (or Δδ(σ)). 
The Error bars represent the standard deviation. It can be seen that a Fig. 4. PSD of the excitation signal with different pulse width factor.  
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significant level of noise intensity can affect the linearity and standard 
deviation of two time–frequency characteristics. As the noise intensity 
decreases, both the effects on linearity and standard deviation of the two 
time–frequency characteristics gradually decrease. For ΔH(σ), when the 
noise intensity is below − 35 dB, its linearity and standard deviation are 
minimal. Compared to the characteristic ΔH(σ), the noise resistance 
performance of characteristic Δδ(σ) is slightly stronger, able to with-
stand noise levels below − 30 dB. 

3.4. Calibration of the theoretical stress measurement expression 

To complete the calibration of the theoretical stress measurement 
expression, the theoretical values of the above two stress measurement 
factors are calculated under different stress levels in this section. Based 
on the previous analysis and discussion about the impact of the excita-
tion signal, we choose a Gabor pulse in Equation (8) with A = 1, fc =

50 KHz, and s = 20E − 6 as the excitation signal. Fig. 9 (a) displays the 
time-domain wave packet of the excitation signal. Fig. 9 (b) exhibits the 
PSD of the excitation signal. The frequency range for half of the PSD is 
the available frequency region. 

The study object of this paper is an aviation-specific aluminum plate 
with a thickness of 2 mm, belonging to the 2024 alloy. The material 

exhibits a density of 2730 kg/m3, a Poisson’s ratio of 0.34, and a 
Young’s modulus of 73.1 GPa. The distance from the actuator to the 
receiving sensor is 300 mm. The applied stress varies in increments of 
10 MPa, ranging from 0 to 100 MPa. By the theoretical calculation 
method introduced in Section 3.1, parameters v́g, vgc, τ, k1 and k2 under 
all stress levels can be obtained and listed in Table 1. Moreover, Table 1 
also contains the theoretical H(σ) and δ(σ). 

Using the parameters τ, k1 and k2, theoretical time-domain wave-
forms under different stress levels can be reconstructed by the dispersive 
wave packet model. Fig. 10 (a) shows the theoretical time-domain 
waveforms obtained using Equation (12) from 0 to 100 MPa with a 
20 MPa interval (six stress levels in total). We can see that the time delay 
in the time-domain waveform increases with the increment of stress. 
Fig. 10 (b) displays the TFSD of the response signals at stress levels of 20 
MPa, 60 MPa, and 100 MPa. The straight line represents the tangent of 
the affine curve at t = τ, and its slope is the slope of TFSD. The results 
exhibit the changes in the slope of TFSD accompanying the increment of 
the stress. In Fig. 10 (c), the pulse widths of the response signals under 
the stress levels of 20 MPa, 60 MPa, and 100 MPa, are given. It can be 
found that when the propagation distance is the same, the greater the 
stress, the more severe the time span of the wave packet expansion. It 
should be noted that the frequency range of TFSD displayed in Fig. 10 

Fig. 5. The influence of the bandwidth of the excitation signal: (a) and (b) The effect of the excitation signal bandwidth on the stress measurement factor ΔH(σ) and 
Δδ(σ) respectively. (c) and (d) The effect of the bandwidth of the excitation signal on the accuracy of stress assessment using ΔH(σ) and Δδ(σ) as the stress evaluation 
factor respectively. 
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(b) and (c) is − 6 dB bandwidth of the response signals for better 
observation, instead of the whole bandwidth. 

Submitting the theoretical H(σ) and δ(σ) into the Equation (21) and 
Equation (23) respectively, the values of ΔH(σ) and Δδ(σ) are calcu-
lated. A linear fit is used to characterize the functional relationship 
between stress σ and ΔH(σ). The linear relationship obtained by fitting 
is, namely, the stress measurement expression. Similarly, calculating the 
fitted linear relationship between stress σ and Δδ(σ) means completing 
the calibration of the stress measurement expression of the stress mea-
surement factor Δδ(σ). Fig. 11 shows the theoretical calibration results 
for two stress measurement factors. 

It is evident that a good linear correlation between the two stress 
measurement factors and stress. Fig. 11 (a) gives the theoretical stress 
measurement expression when selecting ΔH(σ) as a stress measurement 
factor 

σ = 6.85757E − 7 × ΔH(σ) − 0.63506. (27) 

Fig. 11 (b) gives the theoretical stress measurement expression when 
selecting Δδ(σ) as a stress measurement factor 

σ = − 8605.10129 × Δδ(σ) − 0.14427. (28)  

4. Simulation and experimental results 

4.1. Simulation results 

4.1.1. Simulation method 
A finite element simulation method is developed to acquire time- 

domain signals under different stress states to explore the viability of 
the above methods. A three-dimensional solid model was utilized in the 

Fig. 6. The influence of the center frequency of the excitation signal: (a) and (b) The effect of the excitation signal center frequency on the stress measurement factor 
ΔH(σ) and Δδ(σ) respectively. (c) and (d) The effect of the center frequency of the excitation signal on the accuracy of stress assessment using ΔH(σ) and Δδ(σ) as the 
stress evaluation factor respectively. 

Table 1 
The theoretical values of all parameters under all stress levels.   

v́g(10− 3) vg τ(10− 6) k1(10− 4) k2(10-10) H(σ)(109) δ(σ)

0 MPa  2.34657  1797.19918  166.92641  5.56892  − 3.63870  − 4.58813  0.77077 
10 MPa  2.34899  1795.15506  167.11648  5.57527  − 3.65077  − 4.57298  0.76960 
20 MPa  2.35138  1793.11479  167.30663  5.58163  − 3.66282  − 4.55797  0.76843 
30 MPa  2.35373  1791.07838  167.49685  5.58799  − 3.67484  − 4.54308  0.76726 
40 MPa  2.35605  1789.04586  167.68715  5.59435  − 3.68684  − 4.52831  0.76609 
50 MPa  2.35833  1787.01724  167.87751  5.60072  − 3.69882  − 4.51367  0.76493 
60 MPa  2.36059  1784.99253  168.06793  5.60708  − 3.71077  − 4.49916  0.76377 
70 MPa  2.36281  1782.97176  168.25841  5.61345  − 3.72270  − 4.48476  0.76261 
80 MPa  2.36499  1780.95494  168.44895  5.61982  − 3.73460  − 4.47049  0.76146 
90 MPa  2.36714  1778.94209  168.63955  5.62619  − 3.74648  − 4.45634  0.76030 
100 MPa  2.36925  1776.93322  168.83020  5.63257  − 3.75833  − 4.44232  0.75915  
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simulation to establish an aluminum plate measuring 600 mm × 600 
mm × 2 mm in dimensions. Poisson’s ratio was 0.34. The density was 
2730 kg/m3. Young’s modulus was 73.1 GPa. 

The whole simulation process comprises two analysis steps. The 
initial step uses the static analysis step to obtain the initial state under 
the action of pre-stress. The second step is using the dynamic explicit 
analysis step to analyze the propagation of Lamb waves. The excitation 
signal chosen was a Gabor pulse in Equation (8) with A = 1, fc =

50 KHz, and s = 20E − 6. 
To generate a pure A0 mode, out-of-plane displacements in the same 

direction were simultaneously excited at two excitation nodes located at 
the same position on both surfaces of the aluminum plate, respectively. 
The out-of-plane displacement of a sensing node serves as the Lamb 
wave response signal. The distance between the excitation node and the 
sensing node is set as 300 mm. 

In transient simulation, ensuring model accuracy hinges on two 
critical factors: grid size and time increment step. From experience, it is 
recommended that the grid size be a minimum of one-tenth of the Lamb 
wavelength. Considering the A0 mode with a wavelength of 34.68 mm 
at 50 KHz, the maximum grid size was restricted to 1 mm. The time 
increment step denotes the minimum time interval between each sub- 
analysis step. In this simulation, the time increment step was set to 5 
ns. Fig. 12 shows the out-of-plane displacement field of the aluminum 
plate when the A0 wave reaches the sensing node at 100 MPa stress 
state. 

Fig. 13 (a) displays the Lamb wave response signals received by 
sensing nodes under different stress states ranging from 0 to 100 MPa. 
With increasing stress, one can observe a gradual rise in the time delay of 
the time-domain signal envelope. Simultaneously, stress also changes 
the slope of TFSD (Fig. 13 (b)) and expands the time span of the wave 
packet gradually (Fig. 13 (c)). The trend of two time–frequency features 
changing with stress is the same as the theoretical prediction. 

4.1.2. Calibration of simulation stress measurement expression 
Lamb wave response signals obtained by finite element simulation 

can be represented by the dispersive wave packets model (i.e., Equation 
(12)). Thus, the wave packet parameter vector Θ = [ξδτcφ] of Lamb wave 
response signals under all stress levels can be obtained by combining the 
expectation–maximization (EM) algorithm (detailed description in 

Fig. 7. A comparison of the signals under zero stress with five types of in-
tensity noise. 

Fig. 8. The effect of different noise intensities on the linearity and standard deviation of proposed time–frequency characteristics: (a) and (b) the effect of noise on 
ΔH(σ) and Δδ(σ) respectively. 

Fig. 9. Excitation signal: (a) time-domain representation, (b) frequency-domain representation.  
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Section 3.3) with the dispersive wave packets model. Furthermore, 
Substituting parameters δ and c into Equation (20) yields the time-
–frequency feature H(σ). 

The values of the packet parameter δ(σ), and H(σ) , corresponding to 
different stress states from 0 MPa to 100 MPa, are listed in Table 2. 

The values of ΔH(σ) and Δδ(σ) for simulation response signals are 
calculated. The linear relationship between stress σ and ΔH(σ) obtained 
by fitting is, namely, the stress measurement expression. Similarly, 
calculating the fitted linear relationship between stress σ and Δδ(σ)
means completing the calibration of the stress measurement expression 
regarding Δδ(σ). Fig. 14 shows the calibration results of two stress 
measurement factors based on simulation response signals. 

An excellent linear correlation between the two stress measurement 
factors and stress is apparent. Fig. 14 (a) shows the stress measurement 
expression of simulated ΔH(σ)

σ = 7.83001E − 7 × ΔH(σ) − 0.45778. (29) 

In Fig. 14 (b), the stress measurement expression of simulated Δδ(σ)
is given 

σ = − 7381.65657 × Δδ(σ) − 1.28057. (30)  

4.2. Experimental results 

4.2.1. Experimental setup 
To validate the practical applicability of the proposed method, two 

aluminum plates with different adhesives were used for the experiment. 
Fig. 15(a) and (b) depict the experimental setup and specimens. The 
specimen is 2024 aluminum, which is widely used in aviation. To avoid 
interference from boundary reflected waves on the first arrival wave, the 
aluminum plate dimensions are 800 mm × 600 mm × 2 mm (length ×
width × thickness). Each end of the plate has a 100 mm region reserved 
for connection to fixtures. The material properties include a density of 
2730 kg/m3, Poisson’s ratio of 0.34, and Young’s modulus of 73.1 GPa. 
Piezoelectric ceramic pieces (PZT) are used as actuators and response 

Fig. 10. Theoretical reconstruction waveforms and time–frequency feature of response signal under different stresses: (a) theoretically generated waveforms, (b) the 
slope of TFSD of the response signal, (c) the pulse width of the response signal. 

Fig. 11. Theoretical stress measurement expression: (a) expression of ΔH(σ), (b) expression of Δδ(σ).  

H. Cui et al.                                                                                                                                                                                                                                      



Ultrasonics 142 (2024) 107393

11

sensors. The material of piezoelectric ceramic pieces is PZT-5H. Its 
diameter and thickness are 10 mm and 0.2 mm, respectively. We used 
two types of adhesives to stick the PZT onto the tested aluminum plate, 
shown in Fig. 15 (c). These adhesives are dual-component epoxy adhe-
sive (J-133 structure adhesive, produced by the Institute of Petro-
chemistry Heilongjiang Academy of Sciences) and epoxy prepreg 

(Carbon fiber reinforced epoxy prepreg). Four PZTs are pasted onto the 
aluminum plate. PZT1 and PZT2 are pasted on both sides of the exci-
tation point to excite Lamb wave signals, as shown in Fig. 15 (d). The 
double-sided excitation method can remove S0 mode Lamb waves, and 
generate a pure A0 wave in the aluminum plate. PZT3 and PZT4 are 
pasted on both sides of the sensing point to receive Lamb wave signals. 
The excitation point and sensing point located on the axis of symmetry 
of the aluminum plate form a pitch-catch path with a distance of 300 
mm. The pitch-catch path is parallel to the direction of loading. A set of 
electronic equipment systems is used to excite and obtain Lamb wave 
signals, including an analog output module (PCI-1721), a high-voltage 
amplifier (ATA-2022), and an oscilloscope (DSO5034A). The control 
program is realized using LabVIEW. 

A self-designed fixture is used to connect the aluminum plate to the 
stretching machine, which ensures that static uniaxial tensile load is 
evenly applied to the aluminum plate. The lower end of the fixture has a 
600 mm × 2 mm × 100 mm groove in the middle. One end of the 
aluminum plate is inserted into the groove to fully match the fixture, and 
each end is fixed with 58 dowel pins with a diameter of ϕ10. 

The assembled fixture and aluminum plate are clamped at both ends 
of the tensile testing machine (Sinter-WEW-B-1000 KN)’s hydraulic 
grips for tensile testing. There are eight stress levels ranging from 30 
MPa to 100 MPa, with increments of 10 MPa. After reaching a stress 
level, hold for 1 min to stabilize the applied stress. Then, the pulse signal 
in Fig. 11 is generated through an analog output module. The amplitude 
of the pulse signal is ±5 V. To enhance the signal-to-noise ratio, the 
pulse signal undergoes amplification through a high-voltage amplifier 
and is subsequently powered by the driver. The gain of the voltage 
amplifier is set to 15 dB. Meanwhile, the oscilloscope begins to collect 
dynamic data from the response sensors. The sampling rate is set to 2 
MSamples/s, and to reduce the impact of noise on the signal, 32 times 
averaging sampling is adopted. Finally, the signals are stored in a 
computer for signal processing. 

4.2.2. Experimental results and the effects of adhesive types 
Lamb wave response signals propagated along the direction of 

loading under different stress states are shown in Fig. 16 (a). The slope of 
TFSD and time-domain width of the wave packet of experimental 
response signals at 30 MPa, 60 MPa, and 90 MPa are illustrated in Fig. 16 
(b) and (c), respectively. It is evident that the trend of two time-
–frequency features changing with stress is the same as theoretical 
prediction and finite element simulation. 

The pulse width impact factor δ(σ) and wave packet parameter c of 
the experimental response signals under all stress levels can be esti-
mated by combining the EM algorithm with the dispersive wave packet 
model. Substituting δ(σ) and c into Equation (20) can obtain the slope of 
TFSD H(σ) under all stress levels. To verify the stability of the proposed 
method, the specimen bonded with each type of adhesive was subjected 
to three tensile tests at different times within one day respectively. Each 
test collected one set of data, and we can obtain three sets of results 
based on each specimen. H(σ) and δ(σ) obtained from experimental 
signals of dual-component epoxy adhesive specimens are shown in 
Table 3. 

We consider the 0 MPa state as the initial state. The values of 
H(σ = 0) and δ(σ = 0) can be obtained by fitting the experimental data. 
Thus, experimental ΔH(σ) and Δδ(σ) under all stress states of each test 
can be obtained by Equation (21) and Equation (23). 

The relation between these two stress measurement factors of two 
aluminum plates with different adhesives and stress are displayed in 
Fig. 17 (a) and (b). The scatter points represent three sets of results for 
each specimen. The symbol represents the mean of three sets of ΔH(σ) or 
Δδ(σ) under every stress state. The error bar represents the standard 
deviation. It can be seen that the variation trends of the experimental 
ΔH(σ) and Δδ(σ) every type of adhesive sample with stress are different. 
This means that the coefficients for stress evaluation based on two 
time–frequency characteristics change with different adhesives. 

Fig. 12. The out-of-plane displacement field.  

Fig. 13. Finite element simulation waveforms and time–frequency feature of 
response signals under different stresses: (a) finite element simulation wave-
forms, (b) the slope of TFSD of response signals, (c) pulse width of 
response signals. 

Table 2 
The values of all parameters of finite element simulation response signals under 
all stress levels.   

δ(σ) H(σ)

0 MPa  0.69582 − 3.71880E9 
10 MPa  0.69443 − 3.70681E9 
20 MPa  0.69293 − 3.69282E9 
30 MPa  0.69151 − 3.67916E9 
40 MPa  0.69007 − 3.66622E9 
50 MPa  0.68867 − 3.65322E9 
60 MPa  0.68746 − 3.64088E9 
70 MPa  0.68614 − 3.62927E9 
80 MPa  0.68473 − 3.61518E9 
90 MPa  0.68341 − 3.60222E9 
100 MPa  0.68246 − 3.59336E9  
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Furthermore, regarding the time–frequency characteristic H(σ), the 
linearity and standard deviation of the experimental results of the dual- 
component epoxy adhesive specimens are significantly better than 
epoxy prepreg adhesive specimens. Therefore, using the dual- 
component epoxy adhesive to bond PZT is more conducive to stress 
evaluation based on the time–frequency characteristic H(σ). As for the 
time–frequency characteristic δ(σ), the linearity and standard deviation 
of the experimental results for the two different adhesive specimens are 
relatively good. Therefore, from the perspective of linearity and stan-
dard deviation, the relationship between δ(σ) and stress is more stable 
than that of H(σ), implying that δ(σ) is a superior stress evaluation 
characteristic. 

The comparison of the stress measurement factor ΔH(σ) and Δδ(σ) of 
theory, simulation, and experiment is also displayed in Fig. 17. The 
simulation results are close to the theoretical results. However, the slope 
obtained from the experimental results is considerably different from the 
theoretical slope. We can see that the type of adhesive has a significant 
impact on the slope of the experiment results. Therefore, it can be 
inferred that one significant reason for the discrepancy between exper-
iment and theory is the lack of the influence of the adhesive types on two 
time–frequency characteristics in theory or simulation. 

4.3. Actual stress measurement 

By calibrating stress measurement coefficients through experiments, 
stress evaluation can be achieved. Due to the superior linearity and 

stability of the data compared to that of the epoxy prepreg, we chose the 
experimental data of the dual-component epoxy adhesive specimen for 
the calibration of stress measurement expression. By fitting the mean of 
three sets of ΔH(σ) or Δδ(σ) under every stress state of dual-component 
epoxy adhesive specimen, as shown in Fig. 17 (a) and (b), the experi-
mental stress measurement expression representing the relationship 
between stress σ and stress measurement factor ΔH(σ) can be calibrated. 
The calibration result is shown in Fig. 18 (a) 

σ = 1.43233E − 6 × ΔH(σ)+ 0.67354. (31) 

The experimental stress measurement expression representing the 
relationship between stress σ and stress measurement factor Δδ(σ) can 
be calibrated, as shown in Fig. 18 (b) 

σ = − 5481.61385 × Δδ(σ) − 0.36408. (32) 

The determination coefficients for the linear fitting exceed 0.98, 
indicating an excellent linear correlation between the two stress mea-
surement factors obtained from the experimental results and the applied 
stress. 

After obtaining the experimental stress measurement expression, 
three uniaxial tensile tests were conducted on the identical batch of 
specimens to validate the efficacy of the proposed method. The applied 
stress on the tested aluminum plate changes from 35 to 95 MPa with 
increments of 10 MPa. Three sets of response signals were collected for 
stress evaluation. Stress measurement factors ΔH(σ) and Δδ(σ) are listed 
in Table 4. 

Fig. 14. Simulation stress measurement expression: (a) expression of ΔH(σ), (b) expression of Δδ(σ).  

Fig. 15. Experimental setup: (a) experimental process, (b) experimental specimen, (c) two types of stick Methods of PZT, (d) diagrammatic sketch of double-sided 
excitation method. 
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Stress measurement factors ΔH(σ) and Δδ(σ) were substituted into 
Equation (31) and Equation (32) to obtain the estimated stress. Table 5 
lists the evaluation results using the stress measurement factor from 
Table 4. 

The maximum evaluated deviation for ΔH(σ) in Table 5 is 15.44195 
MPa, and for Δδ(σ), the maximum evaluated deviation is 5.49768 MPa. 
The error bar diagrams for three sets of evaluation results are shown in 
Fig. 19. The maximum standard deviation of three measured stresses 
based on Δδ(σ) is 3.76433 MPa, demonstrating excellent measurement 
stability. The maximum standard deviation of three measured stresses 
based on ΔH(σ) is 9.12492 MPa. Similarly, it can be seen that the stress 
evaluation performance of δ(σ) is superior to H(σ). 

The results show that the stress evaluation expressions (Equation 
(31) and Equation (32)) calibrated from the experimental data work 
well for stress measurement. 

In practice, once the suitable pitch-catch distance has been selected, 
the stress evaluation expressions can be calibrated as long as time-
–frequency characteristics of signals under any two known stress levels 
are obtained. Then, actual stress levels can be measured based on cali-
brated stress evaluation expressions. It should be clarified that stress 
evaluation expression varies with the propagation distance, which has 

implications for the convenience of the proposed method. Therefore, we 
will explore characteristics that are insensitive to propagation distance 
in the next work. In addition, the uniaxial load direction is pre-
determined in this work, ensuring alignment with the propagation path 
of Lamb waves. However, during actual stress measurement, maintain-
ing parallelism between the stress direction and the pitch-catch path 
poses a challenge when employing a pair of actuator-receiver sensors. 
The transducer array, similar to a three-dimensional rosette gauge, 
needs to be set to calculate the stress in any desired direction by utilizing 
information from various directions. 

5. Conclusion 

This paper proposes a stress measurement strategy based on time-
–frequency characteristics. Firstly, two time–frequency characteristics 
of the signals are selected for stress measurement. One is the slope of 
TFSD (H(σ)), and the other is the pulse width impact factor (δ(σ)). The 
theoretical expression of the slope of TFSD is derived. The theoretical 
predicted values of these two time–frequency characters demonstrate a 
linear relationship with uniaxial stress. Therefore, they promise to serve 
as the features for stress evaluation. To better utilize the methods pro-

Fig. 16. Experimental waveforms and time–frequency feature of response signal under different stresses: (a) experimental response waveforms, (b) the slope of TFSD 
of experimental response signals, (c) pulse width of experimental response signals. 

Table 3 
Three sets of results of the dual-component epoxy adhesive specimen.  

Stress (MPa) H(σ)(109) δ(σ)

Test 1 Test 2 Test 3 Test 1 Test 2 Test 3 

30  − 4.64809  − 4.65224  − 4.65319  0.82775  0.82780  0.82780 
40  − 4.64571  − 4.64483  − 4.65517  0.82598  0.82617  0.82697 
50  − 4.63334  − 4.64148  − 4.64413  0.82415  0.82399  0.82483 
60  − 4.62857  − 4.63369  − 4.64053  0.82288  0.82280  0.82352 
70  − 4.62521  − 4.6288E9  − 4.62880  0.82035  0.82137  0.82121 
80  − 4.61766  − 4.61838  − 4.61838  0.81830  0.81882  0.81884 
90  − 4.60882  − 4.61505  − 4.61735  0.81639  0.81756  0.81732 
100  − 4.60479  − 4.60499  − 4.60016  0.81532  0.81549  0.81517  
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posed in this paper, the impacts of excitation signal parameters (i.e., 
bandwidth and center frequency) and noise on two time–frequency 
characteristics were discussed through theoretical analysis. 

Meanwhile, the viability of the proposed method was investigated 
from three aspects: theory, simulation, and experiment. Their results all 
demonstrate that the proposed time–frequency characteristics have a 
good linear relationship with uniaxial stress. The slope of the simulation 
results is close to the theoretical slope. The slope obtained from the 
experimental results is considerably different from the theoretical slope. 
To investigate the reason for the discrepancy between the experiment 
and theory, aluminum plate specimens with two different types of ad-

hesives were used for the experiment. The variation trends of experi-
mental ΔH(σ) and Δδ(σ) every type of adhesive sample with stress are 
different. It can be inferred that one significant reason for the discrep-
ancy between experiment and theory is the lack of the influence of the 
adhesive types on two time–frequency characteristics in theory or 
simulation. In addition, from the perspective of linearity and standard 
deviation, the relationship between δ(σ) and stress is more stable than 
that of H(σ), implying that δ(σ) is a superior stress evaluation charac-
teristic. Then, according to the stress evaluation expression, three uni-
axial tensile tests in the range of 35–95 MPa were conducted on the 
identical batch of specimens. The maximum standard deviation of three 

Fig. 17. The comparison of the stress measurement factor ΔH(σ) and Δδ(σ) of theory, simulation, and experiment (dual-component epoxy (DCE) adhesive and epoxy 
prepreg (EP) adhesive): (a) the comparison of ΔH(σ); (b) the comparison of Δδ(σ). 

Fig. 18. Experimental stress measurement expression: (a) expression of ΔH(σ), (b) expression of Δδ(σ).  

Table 4 
Stress measurement factors calculated from three uniaxial tensile tests.  

Applied Stress (MPa) ΔH(σ)(107) Δδ(σ)

Test 1 Test 2 Test 3 Test 1 Test 2 Test 3 

35  2.15030  2.20911  2.51431  − 0.00682  − 0.00574  − 0.00674 
45  3.03490  3.40523  3.54618  − 0.00855  − 0.00837  − 0.00826 
55  3.85313  3.66334  4.41227  − 0.01076  − 0.00986  − 0.01027 
65  4.02563  4.24217  5.16887  − 0.01154  − 0.01150  − 0.01231 
75  4.94020  5.36857  6.19359  − 0.01341  − 0.01436  − 0.01475 
85  5.32704  5.93364  6.3016  − 0.01552  − 0.01538  − 0.01628 
95  6.91784  6.89002  7.66363  − 0.01754  − 0.01745  − 0.01767  
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measured stresses based on Δδ(σ) is 3.76433 MPa, demonstrating 
excellent measurement stability. The maximum standard deviation of 
three measured stresses based on ΔH(σ) is 9.12492 MPa. 

This paper fully utilizes the information in the Lamb wave signals 
and introduces a new way of detecting stress based on two time-
–frequency characteristics. The proposed method is adaptable for inte-
gration into current health monitoring systems to enrich stress 
monitoring strategy. 
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